

Flexible Manufacturing Line with Multiple Robotic Cells

Heping Chen hc15@txstate.edu

Robotics Laboratory Ingram School of Engineering Texas State University

OUTLINE

- Introduction
- Autonomous Robot Teaching

 POMDP based learning algorithm
- Performance Optimization
 - Single cell optimization
 - Multi cell Optimization
- Discussion

Trim and Final Assembly Line

- When one work station fails, the production line has to be stopped
 - Low efficiency
 - High cost
- For complex manufacturing processes, is it possible to optimize the system performance?
 - Single work station optimization?
 - Multi work station optimization?

Proposed Solution

Problems

- Big part location errors
 - Can happen after a new batch is launched
 - Parts could come from different suppliers
- Typically manual teaching methods are used to adjust the parameters
 - Production line has to be stopped
- Installing additional sensors generates new problems
 - System upgrading cost
 - Maintenance issues
 - Sensor failure

SAN MARCOS

Failure Correction

Autonomous Robot Teaching

- Reducing the operational cost
- Sensor accuracy problem
- Calibration is difficult
- Noise

Autonomous Robot Teaching

TEXAS STATE UNIVERSITY SAN MARCOS

POMDP

- Partial Observable Markov Decision Process
 - State Transition is Uncertair
 - Observation is uncertain
 - State is partial observable
- Why POMDP?

 Using POMDP to estimate the underlying errors through executing actions and receiving observations

POMDP Method

 s_0

00

 R_0

 S_{j}

 A_{l}

A₀ .

- Belief State
 - Real state is unknown
 - How to make decision?
 - Assign a belief b over state S
 - Update the belief state in each step

$$b'(s'|b, a, o) = \frac{O(o|s')\sum_{s} b(s)T(s'|s, a)}{\sum_{s'} O(o|s')\sum_{s} b(s)T(s'|s, a)}$$

 $\sum b(s) = 1$

 $- \underbrace{\text{Defining Value Functions}}_{k=0} V^{*}(b) = J^{\pi^{*}}(b)$ $J^{\pi}(b_{0}) = \sum_{k=0}^{\infty} \gamma^{k} r(b_{k}, a_{k}) = \sum_{k=0}^{\infty} \gamma^{k} E\left[R\left(s_{k}, a_{k}\right) | b_{o}, \pi\right] = \max_{a \in A} \left[r\left(b, a\right) + \gamma \sum_{o \in O} z\left(o | b, a\right) V^{*}\left(\tau\left(b, a, o\right)\right)\right]$ $= \max_{a \in A} \left[r\left(b, a\right) + \gamma \sum_{o \in O} z\left(o | b, a\right) V^{*}\left(\tau\left(b, a, o\right)\right)\right]$

– Approximating Value Functions

• Alpha Vector
$$V(b) = \max_{\alpha \in \Gamma} V^{\alpha}(b) \quad V^{\alpha}(b) = \langle \alpha \cdot b \rangle = \sum_{i} \alpha_{i} b_{i}$$

R,

 S_2

 o_2

 A_2

 R_2

*S*₃

OUTLINE

- Introduction
- Autonomous Robot Teaching

 MDP based learning algorithm
 POMDP based learning algorithm
- Performance Optimization
 - Single work station optimization
 - Multi work station optimization

Discussion

Example: Single Stage Assembly

Assembly Process

Parameters:

search force, search radius, search speed, insertion force

How to tune the Assembly Parameters?

Example: Multi-Stage Assembly

Problems

- Design of Experiment (DOE)
- Genetic Algorithm (GA)
- Genetic Algorithm (GA)+ANN

- Model Free
- Offline
- Manufacturing line has to be stopped
- Cannot deal with variations, including part location errors, part geometry errors and environmental errors.

• First Time Through (FTT) rate

$$\overline{r}_{f}(\mathbf{x}, \mathbf{T}_{c}) = \frac{1}{n} \sum_{i=1}^{n} \rho(\mathbf{t}_{i}, \mathbf{T}_{c}); \quad \rho(\mathbf{t}_{i}, \mathbf{T}_{c}) = \begin{cases} 1 & t_{i} \leq T_{c} \\ 0 & otherwise \end{cases}$$

- How to balance FTT rate and cycle time?
 - FTT rate is calculated statistically.
 - Cycle time is recorded each assembly
 - Modeling?
 - Optimization methods?
 - FTT prediction? Cycle time estimation?

SAN MARCOS

Multi Work Station Optimization

- FTT rate of the whole system
- Cycle time of the production line

EXAS

SAN MARCOS

Performance Optimization

- Performance optimization
 - Knowledge transfer
 - What can we transfer? How to transfer?

Discussions

• Comments

- Robot teaching
- System optimization
- Interesting topics?

