Planning Production Line Capacity to Handle Uncertain Demands for a Class of Manufacturing Systems with Multiple Products

Presented at ICRA 2011 workshop “Uncertainty in Automation” on May 9th, 2011, Shanghai, China

Qianchuan Zhao
Center for Intelligent and Networked Systems (CFINS)
Department of Automation and TNList
Tsinghua University, Beijing, China
• Joint work with Hao Liu (Tsinghua), Ningjian Huang (GM), Xiang Zhao (GM)
• Supported by NSFC and GM
Outline

• Problem Background
• Problem Description
• Problem Formulation
• Problem Analysis and Solution
• Preliminary Results
Outline

• Problem Background
• Problem Description
• Problem Formulation
• Problem Analysis and Solution
• Preliminary Results
Problem Background

• Manufacturing enterprise globalization
 – Global manufacturing network
 • Production lines globally located
 • Multi-products allocated to plants at different locations

• Market globalization
 – Uncertainty
 • Demand
 • Worldwide competition
 • Product price
Problem Background

• Capacity planning
 – Taken before investment
 – Once determined, the capacity could not be changed easily
 – “a firm’s decisions on very large capital investments affect its competitiveness for the next 10 years.”*

Outline

• Problem Background
• Problem Description
• Problem Formulation
• Problem Analysis and Solution
• Preliminary Results
Problem Description

- A manufacturing network
 - Multiple plants and various products
 - Each plant could produce several kinds of products
Problem Description

• Capacity planning
 – To decide the maximal line production rates for each product at each plant
 • The planned maximal line production rates determine the corresponding investments on facilities (hardware)
• How to find the best configuration of the maximal line production rates (capacity configuration)?
Problem Description

• Objective
 – To achieve maximal total profit

• Factors considered
 – Various cost (see next page for detail)
 – Penalty for underproduction (overproduction not allowed)
 – Key point: Production time of a plant shared (discretely divided) among the products produced by the plant
Cost Profile

• Investment cost on production lines
 – Related to the capacity configuration
• Setup cost of production lines
 – Related to the actual line production rates
• Consumption cost of production
• Labor cost (in normal working time and overtime)
Problem Description

• Objective
 – To maximize the total profit
• Given parameters
 – Various cost, penalty, reward coefficients
• Decision variables
 – Network capacity configuration
• Constrains
 – Line production rate constraint
 – Normal working and overtime hours constraint
 – Non-overproduction constraint
Outline

• Problem Background
• Problem Description
• Problem Formulation
• Problem Analysis and Solution
• Preliminary Results
Problem Formulation

- A stochastic programming problem:

\[
\max_{JPH_0 \geq 0} \int (JPH_0) + \mathcal{D}(JPH_0)
\]

where

\[
\mathcal{D}(JPH_0) = E_d \left[Q(JPH_0, d) \right]
\]

and

\[
Q(JPH_0, d) = \max_x \left\{ g(x) \mid h(x, JPH_0, d) \leq 0, x \in X \right\}
\]
Problem Formulation

• A Stochastic programming problem
 – First stage decision variables: capacity configuration
 • \(JPH_{ij0} \): Maximal line production rate of product \(j \) in plant \(i \)
 • Fitted together to vector \(JPH_0 \)
 • Have to be determined ahead of the investment and the realization of demands.
 – Second stage decision variables: production arrangement
 • \(JPH_{ijt} \): Actual production line rate run for product \(j \) in plant \(i \) in period \(t \).
 • \(y^n_{ijt} \) (\(y^o_{ijt} \), respectively): Normal working (overtime, respectively) hours distributed to product \(j \) in plant \(i \) in period \(t \).
 • Fitted together to vector \(x \).
\[
\text{max} \left\{ \sum_{i \in I, j \in J, t \in T} \left(r_{ij}^n y_{ij}^n JPH_{ij} + r_{ij}^o y_{ij}^o JPH_{ij} \right) - \sum_{i \in I, j \in J, t \in T} c_{ij} JPH_{ij} - \sum_{i \in I, j \in J} s c_{ij} (JPH_{ij})_0 \right\}
\]

\[
g(x) = \sum_{i \in I, j \in J, t \in T} \left(r_{ij}^n y_{ij}^n JPH_{ij} + r_{ij}^o y_{ij}^o JPH_{ij} \right) - \sum_{i \in I, j \in J, t \in T} c_{ij} JPH_{ij} - \sum_{i \in I, j \in J} s c_{ij} (JPH_{ij})_0
\]

\[
f(JPH_0) = \sum_{i \in I, j \in J, t \in T} \left(r_{ij}^n y_{ij}^n JPH_{ij} + r_{ij}^o y_{ij}^o JPH_{ij} \right) - \sum_{i \in I, j \in J, t \in T} c_{ij} JPH_{ij} - \sum_{i \in I, j \in J} s c_{ij} (JPH_{ij})_0
\]

\[
h(x, JPH_0, d) = h(x, JPH_0, d) \leq 0, x \in X
\]
Problem Formulation

\[
\begin{align*}
\max & \quad \sum_{i \in I, j \in J, t \in T} \left(r_{ij}^n y_{ijt}^n JPH_{ijt} + r_{ij}^o y_{ijt}^o JPH_{ijt} \right) - \sum_{i \in I, j \in J, t \in T} c_{ijt} JPH_{ijt} - \sum_{i \in I, j \in J} s c_{ij} (JPH_{ij0}) \\
\text{s.t.} & \quad JPH_{ijt} \leq JPH_{ij0} \quad \forall i \in I, j \in J, t \in T \\
& \quad \sum_{j \in J} y_{ijt}^n \leq HIW^n_{it} \quad \forall i \in I, t \in T \\
& \quad \sum_{j \in J} y_{ijt}^o \leq HIW^o_{it} \quad \forall i \in I, t \in T \\
& \quad \sum_{i \in I} \left(y_{ijt}^n JPH_{ijt} + y_{ijt}^o JPH_{ijt} \right) \leq d_{jt} \quad \forall j \in J, t \in T \\
& \quad JPH_{ijt} \geq 0, y_{ijt}^n, y_{ijt}^o \in \mathbb{Z} \quad \forall i \in I, j \in J, t \in T
\end{align*}
\]

- Actual line production rate
- Maximal line production rate
- Line production rate constraint
- Normal working hours constraint
- Overtime hours constraint
- Non-overproduction constraint
- Uncertain demand (r.v.)
Outline

• Problem Background
• Problem Description
• Problem Formulation
• Problem Analysis and Solution
• Preliminary Results
Problem Analysis

• Two main difficulties
 – The demand uncertainty makes the objective value estimation very hard.
 \[f(JPH_0) + E_d [Q(JPH_0, d)] \]
 – Even the second stage problem (without uncertainty) is hard to solve due to its complexity:
 \[Q(JPH_0, d) = \max_x \{ g(x) | h(x, JPH_0, d) \leq 0, x \in X \} \]
Objective Value Estimation

• Objective value has to be estimated based on demand forecasting.
• To obtain an approximately accurate estimation, large amount of demand instances should be randomly generated and calculated with.
The Second Stage Problem

• The second stage problem

\[Q(JPH_0, d) = \max_x \{ g(x) \mid h(x, JPH_0, d) \leq 0, x \in X \} \]

 – Given \(JPH_0 \) and \(d \)
 – To find the best production arrangement

• Nonlinearity
 – Constraints with product terms

\[
\sum_{i \in I} \left(y^n_{yt} JPH_{yt} + y^o_{yt} JPH_{yt} \right) \leq d_{jt}
\]

 ==> Polynomial programming problem
The Second Stage Problem

- Consider a simple version of the second stage problem:
 - One plant, various products, one period
 - No overtime allowed
- The KNAPSACK problem is polynomially reducible to this problem.

\[
\begin{align*}
\text{max } & \sum_{j \in J} r_j^n y_j^n JPH_j - \sum_{j \in J} c_j JPH_j \\
\text{s.t. } & JPH_j \leq JPH_{j0}, \quad \forall j \in J \\
& \sum_{j \in J} y_j^n \leq HIW^n \\
& y_j^n JPH_j \leq d_j, \quad \forall j \in J \\
& JPH_j \geq 0, y_j^n \in \mathbb{Z}, \quad \forall j \in J
\end{align*}
\]

NP-hard.
Problem Solution

• First consider the second stage problem
 – Polynomial programming problem
 – NP-hard: no efficient exact solution method for large problem

• Two methods of handling this polynomial programming problem
 – Convert to MIP problem2 (F. Glover, E. Woolsey, 1974) and solve with MIP solving tools (e.g. CPLEX)
Two Methods of Handling Polynomial Programming Problem

- **RLT**
 - Key idea:
 - Reformulation-Linearization/convexification + Branch-and-bound
 - May not find the optimal solution within finite time
- **Convert to MIP problem**
 - Could fine optimal solution with MIP solving tools
 - Computing time increases exponentially with the size of the problem.
Convert to MIP Problem

• Key idea:
 – Replace each product term with an additional variable.
 – Introduce an additional constraint for each replacement so that
 • the additional variable equals to the corresponding product term in any case, and thus
 • the two problems before and after the replacement are equivalent.
Convert to MIP Problem

• Conversion rule used in our problem (demonstration):
 – Product term $u \times v$ ($u \in \{0, 1\}$, $0 \leq v \leq 1$) replaced by variable W
 – Additional constraints

\[u + v - W \leq 1 \]
\[u \geq W \]
\[v \geq W \]

\[
\begin{array}{ccc}
\text{u} & \text{v} & \text{W} \\
0 & v_0 & 0 \\
1 & v_0 & v_0 \\
\end{array}
\]
Convert to MIP Problem

• Product terms in our problem

\[y_{ijt}^n JPH_{ijt} \quad y_{ijt}^o JPH_{ijt} \]

where \(0 \leq JPH_{ijt} \leq JPH_{ij0} \cdot y_{ijt}^n, y_{ijt}^o \in \mathbb{Z} \).

• Transform into terms having the feature of \(u,v \) \((0 \leq u \leq 1, v \in \{0,1\})\) by variable substitution

\[
\begin{align*}
y_{ijt}^n &= 2^{k-1} y_{ijt,k} + 2^{k-2} y_{ijt,k-1} + \cdots + y_{ijt,1} \\
y_{ijt}^o &= 2^{l-1} y_{ijt,l} + 2^{l-2} y_{ijt,l-1} + \cdots + y_{ijt,1} \\
JPH_{ijt} &= JPH_{ij0} z_{ijt}
\end{align*}
\]

(\(k = \min \{ k \in \mathbb{Z} \mid 2^k > HIW_{it}^n \} \))

(\(l = \min \{ l \in \mathbb{Z} \mid 2^l > HIW_{it}^o \} \))
Problem Solution

• Now consider the capacity planning problem
 – Objective value hard to accurately estimate due to
 • Demand uncertainty
 • NP-hardness of the second stage problem
 – Large search space
 • Assume I plants, J products, and M possible chooses of maximal line production rate for production j at plant i (for any $j \in J$ and any $i \in I$), then
 • Number of possible capacity configurations: $M^{I \times J}$
Problem Solution

• So we turn to Ordinal Optimization (OO)* to find good enough solutions.

Strengths of OO:
– Allow a rough performance estimation model
– Guarantee a high probability to find good enough solutions

OO Applied Solution Framework

• Capacity configuration (design) sampling
 – Uniformly and randomly sample N designs
• Performance estimation
 – Using a rough estimation model
 – OPC type and noise level estimated
• Selecting
 – Horse racing selection rule adopted
• Further distinguishing
Performance Estimation

• A rough estimation model
 – Randomly generate one instance of demand (Bass model* used here for forecasting)
 – For each of the sample designs
 • Evaluate the total profit under the demand instance by solving the second stage problem (Conversion to MIP + CPLEX)
 • The performance of the sample are roughly set to be the profit evaluated

• Estimate the Ordered Performance Curve (OPC) type based on the sorted performances of the N designs.

Introduction to OPC

• Ordered Performance Curve (OPC)
 – A plot of the performance values as a function of the order of performance

• Five OPC types (normalized) *

![Graphs of different OPC types](image-url)
Selecting

• Horse racing selection rule
 – Sort the sample designs according to their estimated performances, and
 – Select the top-s designs as the selected set S
 • s depends on the specified good enough set G, the required alignment level k, the OPC type and the noise level.
 • s could be decided according to the Universal Alignment Probability (UAP) table given by OO theory.
Further Distinguishing

• To find the best from the selected designs
 – Generate more instances of demand
 – For each of the top-s designs
 • Evaluate its performances under each of the instances
 • Average the performances to obtain a more accurate performance estimation
 – Select the design with the best average performance as the final solution
Outline

- Problem Background
- Problem Description
- Problem Formulation
- Problem Analysis and Solution
- Preliminary Results
Second Stage Problem Example

• Problem settings
 – 2 plants, 3 products, and 1 period
 – Given capacity configuration JPH_0 and demand d

$$JPH_0 = \begin{bmatrix} 0 & 50 & 50 \\ 50 & 50 & 0 \end{bmatrix}, \quad d = [5000, 5000, 5000]$$

 – Normal working hours $HIW^n = [120, 120]$
 – Overtime hours $HIW^o = [24, 24]$
 – Other coefficients are set such that

 • the rewards of producing per unit of product 1 and 2 are the same, and are higher than producing per unit of product 3.
Second Stage Problem Example

• Results
 – Actual line production rate
 \[
 \begin{bmatrix}
 JPH_y \\
 \end{bmatrix} =
 \begin{bmatrix}
 0 & 41.67 & 0 \\
 34.72 & 0 & 0
 \end{bmatrix}
 \]
 – Normal working and overtime hours distribution
 \[
 \begin{bmatrix}
 y^w_y \\
 \end{bmatrix} =
 \begin{bmatrix}
 0 & 120 & 0 \\
 120 & 0 & 0
 \end{bmatrix}
 \]
 \[
 \begin{bmatrix}
 y^o_y \\
 \end{bmatrix} =
 \begin{bmatrix}
 0 & 0 & 0 \\
 24 & 0 & 0
 \end{bmatrix}
 \]
Example with OO Applied

• Problem settings
 – 2 plants, 3 products, and 12 period
 – $JPH_{ij0} \in \{0, 10, 20, \ldots, 100\}$, for any i and any j
OO Applied Example

• 1000 design samples uniformly sampled and estimated
 - Performance estimating time
 • Rough performance (total profit) estimation for 1 sample design: ≈10s
 • Total time: ≈ 1000*10s ≈ 3h
 - Further distinguishing time (s = 30)
 • Each selected design further estimated with 27 demand instances
 • Total time: ≈ s*27*10s ≈ 2.5h
OO Applied Example

- Normalized OPC
- Noise level W
 - Assume worst case

A Bell type OPC.
OO Applied Example

• Select the top 30 designs in the 1000 to insure
 \[P \left[\left| G \cap S \right| \geq 1 \right] \geq 0.95 \]
 where G = set of top 5% designs.

• The solution with the best average performance (after further distinguishing)
 \[JPH_0 = \begin{bmatrix} 0 & 80 & 20 \\ 70 & 10 & 0 \end{bmatrix} \]
Summary

• Capacity planning problem
 – A stochastic programming problem
 – Objective value hard to estimate
 – NP-hardness of second stage problem

• Solution
 – OO applied solution framework
 – Second stage problem converted to MIP

• Preliminary Results