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Problem Background

 Manufacturing enterprise globalization

— Global manufacturing network
* Production lines globally located
* Multi-products allocated to plants at different locations

 Market globalization

— Uncertainty
 Demand
* Worldwide competition
* Product price



Problem Background

e Capacity planning
— Taken before investment

— Once determined, the capacity could not be
changed easily

— “a firm’s decisions on very large capital
investments affect its competitiveness for the next
10 years.””

* B. Fleischmann, S. Ferber and P. Henrich, “Strategic Planning of
BMW:'s Global Production Network,” Interfaces 36(3): 194-208, 2006.
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Problem Description

* A manufacturing network

— Multiple plants and various products

— Each plant could produce several kinds of

products
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Problem Description

e Capacity planning

— To decide the maximal line production rates for
each product at each plant

* The planned maximal line production rates determine
the corresponding investments on facilities (hardware)

* How to find the best configuration of the
maximal line production rates (capacity
configuration)?



Problem Description

* Objective
— To achieve maximal total profit
* Factors considered

— Various cost (see next page for detail)

— Penalty for underproduction (overproduction not
allowed)

— Key point: Production time of a plant shared
(discretely divided) among the products produced
by the plant



Cost Profile

Investment cost on production lines
— Related to the capacity configuration

Setup cost of production lines

— Related to the actual line production rates
Consumption cost of production

Labor cost (in normal working time and
overtime)



Problem Description

Objective
— To maximize the total profit

Given parameters

— Various cost, penalty, reward coefficients

Decision variables

— Network capacity configuration
Constrains

— Line production rate constraint

— Normal working and overtime hours constraint
— Non-overproduction constraint
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Problem Formulation

. Network
¢ A StOC h d St |{ Investment Expected Profit em.
(negative)

max ypy ., f (JPH,)+ 2(JPH,)

where Jﬁork capacity

2(JPH,)=E,[O(JPH,.d

and ﬁrtam deman

O(JPH,.d) = max | g(x)| h(x,JPH,.d) < 0,x ¢ X|

ﬁ)n arrangement
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Problem Formulation

* A Stochastic programming problem

— First stage decision variables: capacity configuration

* JPH;,: Maximal line production rate of productin plant i
* Fitted together to vector JPH,

e Have to be determined ahead of the investment and the
realization of demands.

— Second stage decision variables: production arrangement

* JPH;, : Actual production line rate run for productjin plant i in
period t.

* Vit (y",-jt, respectively): Normal working (overtime, respectively)
hours distributed to productjin plantiin period t.

* Fitted together to vector x.
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Problem Formulation
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Problem Analysis

e Two main difficulties

— The demand uncertainty makes the objective
value estimation very hard.

f(JPH)+E, |O(JPH,.d)|

— Even the second stage problem (without
uncertainty) is hard to solve due to its complexity:

O(JPH,,d) = max{g(x)|h(x,JPH,, d)<0,xc X |



Objective Value Estimation

* Objective value has to be estimated based on
demand forecasting.

* To obtain an approximately accurate
estimation, large amount of demand instances
should be randomly generated and calculated

with.



The Second Stage Problem

* The second stage problem
O(JPH,.d) = max{g(x)|h(x,JPH,,d) < 0,x c X |
— Given JPH, and d
— To find the best production arrangement

* Nonlinearity

— Constraints with product terms
Y \ViIPH, + v, JPH,, ) <d,

==> Polynomial programming problem



The Second Stage Problem

* Consider a simple version of the second stage

problem:

— One plant, various products, one period

— No overtime allowed

* The KNAPSACK problem
is polynomially reducible
to this problem.

¥

NP-hard.
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Problem Solution

* First consider the second stage problem
— Polynomial programming problem
— NP-hard: no efficient exact solution method for large
problem
 Two methods of handling this polynomial
programming problem

— Reformulation-Linearization/convexification
Technique (RLT)!(H.D. Sherali, C.H. Tuncbilek, 1992)

— Convert to MIP problem?2 F. Glover, E. Woolsey, 1974 and
solve with MIP solving tools (e.g. CPLEX)



Two Methods of Handling Polynomial
Programming Problem

* RLT

— Key idea:

* Reformulation-Linearization/convexification + Branch-
and-bound

— May not find the optimal solution within finite time
* Convert to MIP problem

— Could fine optimal solution with MIP solving tools

— Computing time increases exponentially with the size
of the problem.



Convert to MIP Problem

* Key idea:

— Replace each product term with an additional
variable.

— Introduce an additional constraint for each
replacement so that

* the additional variable equals to the corresponding
product term in any case, and thus

* the two problems before and after the replacement are
equivalent.



Convert to MIP Problem

* Conversion rule used in our problem
(demonstration):

— Product term u*v (ue{0, 1}, 0 < v <1) replaced by
variable W

— Additional constraints

u+v-w <1 U v W

v e

P W 1 VO VO

2011/5/9 26



Convert to MIP Problem

Product terms in our problem
vI.JPH, v’ JPH,

It
where 0<JPH,, < JPH . ],.v,, €L .
* Transform into terms having the feature of u*v
(0<u<1l, vE{O, 1}) by variable substitution

v, =270, #2700 +eys, (=min|le 22" > HITY |

v It « It < ri-1 < .l

JPH,, = JPH,z,



Problem Solution

* Now consider the capacity planning problem

— Objective value hard to accurately estimate due to
 Demand uncertainty
* NP-hardness of the second stage problem

— Large search space

* Assume / plants, J products, and M possible chooses of
maximal line production rate for production j at plantj
(for any jeJ and any iel), then

 Number of possible capacity configurations: M”(/*)J)



Problem Solution

* So we turn to Ordinal Optimization (OO)” to
find good enough solutions.
Strengths of OO:
— Allow a rough performance estimation model

— Guarantee a high probability to find good enough
solutions

*Yu-Chi Ho, Qian-Chuan Zhao, Qing-Shan Jia, “Ordinal
optimization: soft optimization for hard problems,” Springer, 2007



OO Applied Solution Framework

Capacity configuration (design) sampling
— Uniformly and randomly sample N designs
Performance estimation

— Using a rough estimation model
— OPC type and noise level estimated

Selecting

— Horse racing selection rule adopted

Further distinguishing



Performance Estimation

* Arough estimation model

— Randomly generate one instance of demand (Bass model*
used here for forecasting)

— For each of the sample designs

* Evaluate the total profit under the demand instance by
solving the second stage problem (Conversion to MIP +
CPLEX)

* The performance of the sample are roughly set to be the
profit evaluated

e Estimate the Ordered Performance Curve (OPC) type

based on the sorted performances of the N designs.

* F.M. Bass, “A new product growth model for consumer durables,”
Management Science 15:215-227, 1969.



Introduction to OPC

* Ordered Performance Curve (OPC)

— A plot of the performance values as a function of
the order of performance

* Five OPC types (normalized)*

Flat U-Shaped Neutral Bell Steep

0 | X 0



Selecting

Horse racing selection rule

— Sort the sample designs according to their
estimated performances, and

— Select the top-s designs as the selected set S

* sdepends on the specified good enough set G, the
required alignment level k, the OPC type and the noise
level.

e scould be decided according to the Universal
Alignment Probability (UAP) table given by OO theory.



Further Distinguishing

* To find the best from the selected designs
— Generate more instances of demand
— For each of the top-s designs

* Evaluate its performances under each of the instances

* Average the performances to obtain a more accurate
performance estimation

— Select the design with the best average
performance as the final solution
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Second Stage Problem Example

* Problem settings
— 2 plants, 3 products, and 1 period

— Given capacity configuration JPH, and demand d

p— 0 50 50
° 15050 0

} d =[5000 5000 5000]
— Normal working hours HIW* ={120 120]
— Overtime hours HIW® =24 24]

— Other coefficients are set such that

* the rewards of producing per unit of product 1 and 2 are the same,
and are higher than producing per unit of product 3.



Second Stage Problem Example

e Results

— Actual line production rate

e V| O 4167 0
( ”{34.72 0 0}

— Normal working and overtime hours distribution

A [0 120 0 L [0 00
(yﬂ){lzo 0 0} (yg){m 0 0}



Example with OO Applied

* Problem settings

— 2 plants, 3 products, and 12 period
—JPHUOE{O, 10, 20, ..., 100}, for any i and anyj



OO Applied Example

e 1000 design samples uniformly sampled and
estimated

— Performance estimating time

* Rough performance (total profit) estimation for 1
sample design: =10s

e Total time: = 1000*10s = 3h
— Further distinguishing time (s = 30)
* Each selected design further estimated with 27 demand
instances
e Total time: = s*27*10s = 2.5h



OO Applied Example

e Normalized OPC * Noise level W

NNNNN 264 OPC — Assume worst case

[ 1 [ 1 [ [ 1 [ 1
0 0.1 0.2 03 04 05 06 07 0.8 0.9 1

A Bell type OPC.



OO Applied Example

* Select the top 30 designs in the 1000 to insure
P[|GNS[21]20.95

where G = set of top 5% designs.

* The solution with the best average
performance (after further distinguishing)

0 80 20}

JPH, =
’ {70 10 0



Summary

e Capacity planning problem

— A stochastic programming problem

— Objective value hard to estimate

— NP-hardness of second stage problem
* Solution

— 0O applied solution framework

— Second stage problem converted to MIP

* Preliminary Results



