

Planning Production Line Capacity to Handle Uncertain Demands for a Class of Manufacturing Systems with Multiple Products

Presented at ICRA 2011 workshop "Uncertainty in Automation" on May 9th, 2011, Shanghai, China

> Qianchuan Zhao Center for Intelligent and Networked Systems (CFINS) Department of Automation and TNList Tsinghua University, Beijing, China

- Joint work with Hao Liu (Tsinghua), Ningjian Huang (GM), Xiang Zhao (GM)
- Supported by NSFC and GM

Outline

- Problem Background
- Problem Description
- Problem Formulation
- Problem Analysis and Solution
- Preliminary Results

Outline

- Problem Background
- Problem Description
- Problem Formulation
- Problem Analysis and Solution
- Preliminary Results

Problem Background

- Manufacturing enterprise globalization
 - Global manufacturing network
 - Production lines globally located
 - Multi-products allocated to plants at different locations
- Market globalization
 - Uncertainty
 - Demand
 - Worldwide competition
 - Product price

Problem Background

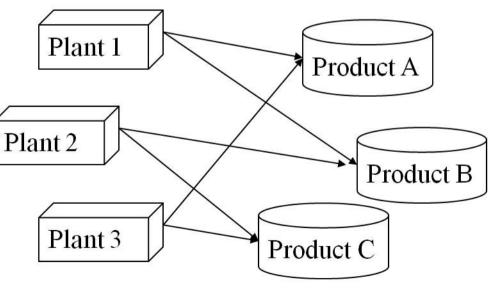
- Capacity planning
 - Taken before investment
 - Once determined, the capacity could not be changed easily
 - "a firm's decisions on very large capital investments affect its competitiveness for the next 10 years."*

* B. Fleischmann, S. Ferber and P. Henrich, "*Strategic Planning of BMW's Global Production Network*," Interfaces 36(3): 194-208, 2006.

Outline

- Problem Background
- Problem Description
- Problem Formulation
- Problem Analysis and Solution
- Preliminary Results

- A manufacturing network
 - Multiple plants and various products
 - Each plant could produce several kinds of products



- Capacity planning
 - To decide the maximal line production rates for each product at each plant
 - The planned maximal line production rates determine the corresponding investments on facilities (hardware)
- How to find the best configuration of the maximal line production rates (capacity configuration)?

- Objective
 - To achieve maximal total profit
- Factors considered
 - Various cost (see next page for detail)
 - Penalty for underproduction (overproduction not allowed)
 - Key point: Production time of a plant shared (discretely divided) among the products produced by the plant

Cost Profile

• Investment cost on production lines

Related to the capacity configuration

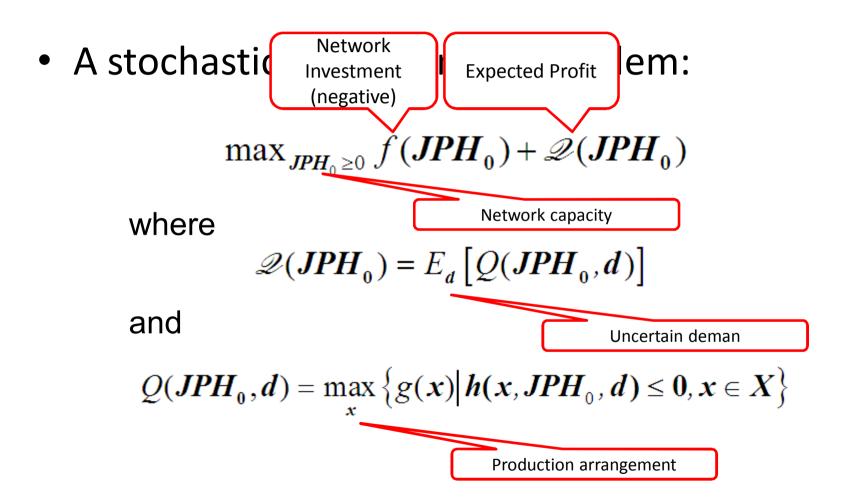
- Setup cost of production lines
 - Related to the actual line production rates
- Consumption cost of production
- Labor cost (in normal working time and overtime)

- Objective
 - To maximize the total profit
- Given parameters
 - Various cost, penalty, reward coefficients
- Decision variables
 - Network capacity configuration
- Constrains
 - Line production rate constraint
 - Normal working and overtime hours constraint
 - Non-overproduction constraint

Outline

- Problem Background
- Problem Description
- Problem Formulation
- Problem Analysis and Solution
- Preliminary Results

Problem Formulation



Problem Formulation

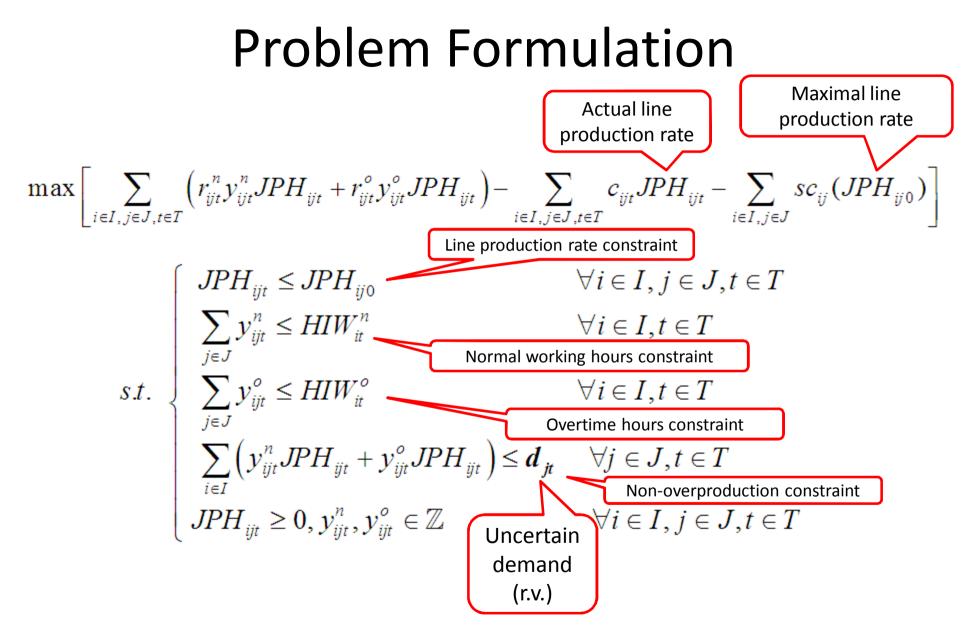
- A Stochastic programming problem
 - First stage decision variables: capacity configuration
 - *JPH*_{ij0}: Maximal line production rate of product *j* in plant *i*
 - Fitted together to vector **JPH**₀
 - Have to be determined ahead of the investment and the realization of demands.
 - Second stage decision variables: production arrangement
 - *JPH_{ijt}* : Actual production line rate run for product *j* in plant *i* in period *t*.
 - yⁿ_{ijt} (y^o_{ijt}, respectively): Normal working (overtime, respectively) hours distributed to product j in plant i in period t.
 - Fitted together to vector **x**.

$$g(\mathbf{x}) \qquad f(JPH_{0})$$

$$\max \left[\sum_{i \in I, j \in J, t \in T} (r_{ijt}^{n} y_{ijt}^{n} JPH_{ijt} + r_{ijt}^{o} y_{ijt}^{o} JPH_{ijt}) - \sum_{i \in I, j \in J, t \in T} c_{ijt} JPH_{ijt} - \sum_{i \in I, j \in J} sc_{ij} (JPH_{ij0}) \right]$$

$$st. \begin{cases} JPH_{ijt} \leq JPH_{ij0} & \forall i \in I, j \in J, t \in T \\ \sum_{j \in J} y_{ijt}^{n} \leq HIW_{it}^{n} & \forall i \in I, t \in T \\ \sum_{j \in J} y_{ijt}^{o} \leq HIW_{it}^{o} & \forall i \in I, t \in T \\ \sum_{i \in I} (y_{ijt}^{n} JPH_{ijt} + y_{ijt}^{o} JPH_{ijt}) \leq d_{jt} & \forall j \in J, t \in T \\ JPH_{ijt} \geq 0, y_{ijt}^{n}, y_{ijt}^{o} \in \mathbb{Z} & \forall i \in I, j \in J, t \in T \end{cases}$$

$$h(\mathbf{x}, JPH_{0}, \mathbf{d}) \leq 0, \mathbf{x} \in \mathbf{X}$$



Outline

- Problem Background
- Problem Description
- Problem Formulation
- Problem Analysis and Solution
- Preliminary Results

Problem Analysis

- Two main difficulties
 - The demand uncertainty makes the objective value estimation very hard.

 $f(JPH_0) + E_d[Q(JPH_0, d)]$

- Even the second stage problem (without uncertainty) is hard to solve due to its complexity: $Q(JPH_0, d) = \max_x \{g(x) | h(x, JPH_0, d) \le 0, x \in X\}$

Objective Value Estimation

- Objective value has to be estimated based on demand forecasting.
- To obtain an approximately accurate estimation, large amount of demand instances should be randomly generated and calculated with.

The Second Stage Problem

• The second stage problem

 $Q(JPH_0, d) = \max_{x} \left\{ g(x) \middle| h(x, JPH_0, d) \le 0, x \in X \right\}$

- Given **JPH**₀ and **d**
- To find the best production arrangement
- Nonlinearity
 - Constraints with product terms

$$\sum_{i \in I} \left(y_{ijt}^n JPH_{ijt} + y_{ijt}^o JPH_{ijt} \right) \le \boldsymbol{d}_{jt}$$

==> Polynomial programming problem

The Second Stage Problem

- Consider a simple version of the second stage problem:
 - One plant, various products, one period
 - No overtime allowed
- The KNAPSACK problem is polynomially reducible to this problem.

 $\max \sum_{j \in J} r_{j}^{n} y_{j}^{n} JPH_{j} - \sum_{j \in J} c_{j} JPH_{j}$ $\int JPH_{j} \leq JPH_{j0} \quad \forall j \in J$ $\sum_{j \in J} y_{j}^{n} \leq HIW^{n}$ $y_{j}^{n} JPH_{j} \leq d_{j} \quad \forall j \in J$ $JPH_{j} \geq 0, y_{j}^{n} \in \mathbb{Z} \quad \forall j \in J$

Problem Solution

- First consider the second stage problem
 - Polynomial programming problem
 - NP-hard: no efficient exact solution method for large problem
- Two methods of handling this polynomial programming problem
 - Reformulation-Linearization/convexification
 Technique (RLT)^{1 (}H.D. Sherali, C.H. Tuncbilek, 1992⁾
 - Convert to MIP problem^{2 (}F. Glover, E. Woolsey, 1974⁾ and solve with MIP solving tools (e.g. CPLEX)

Two Methods of Handling Polynomial Programming Problem

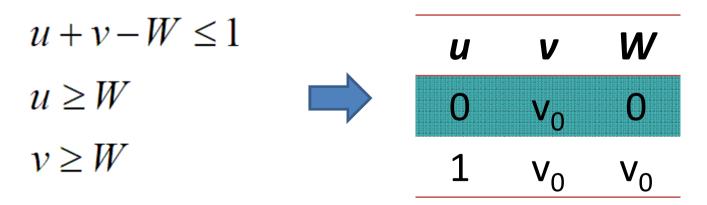
- RLT
 - Key idea:
 - Reformulation-Linearization/convexification + Branchand-bound
 - May not find the optimal solution within finite time
- Convert to MIP problem
 - Could fine optimal solution with MIP solving tools
 - Computing time increases exponentially with the size of the problem.

Convert to MIP Problem

- Key idea:
 - Replace each product term with an additional variable.
 - Introduce an additional constraint for each replacement so that
 - the additional variable equals to the corresponding product term in any case, and thus
 - the two problems before and after the replacement are equivalent.

Convert to MIP Problem

- Conversion rule used in our problem (demonstration):
 - Product term u^*v ($u \in \{0, 1\}, 0 \le v \le 1$) replaced by variable W
 - Additional constraints



Convert to MIP Problem

• Product terms in our problem

 $y_{ijt}^n JPH_{ijt} \quad y_{ijt}^o JPH_{ijt}$

where $0 \leq JPH_{ijt} \leq JPH_{ij0}, y_{ijt}^n, y_{ijt}^o \in \mathbb{Z}$.

Transform into terms having the feature of u*v
 (0 ≤ u ≤ 1, v∈{0, 1}) by variable substitution

 $y_{ijt}^{n} = 2^{k-1} y_{ijt,k}^{n} + 2^{k-2} y_{ijt,k-1}^{n} + \cdots y_{ijt,1}^{n} \quad (k = \min\left\{k \in \mathbb{Z} \left| 2^{k} > HIW_{it}^{n}\right\}\right\}$ $y_{ijt}^{o} = 2^{l-1} y_{ijt,l}^{o} + 2^{l-2} y_{ijt,l-1}^{o} + \cdots y_{ijt,1}^{o} \quad (l = \min\left\{l \in \mathbb{Z} \left| 2^{l} > HIW_{it}^{o}\right\}\right\}$ $JPH_{ijt} = JPH_{ij0} z_{ijt}$

Problem Solution

- Now consider the capacity planning problem
 - Objective value hard to accurately estimate due to
 - Demand uncertainty
 - NP-hardness of the second stage problem
 - Large search space
 - Assume I plants, J products, and M possible chooses of maximal line production rate for production j at plant i (for any j∈J and any i∈I), then
 - Number of possible capacity configurations: $M^{(I*J)}$

Problem Solution

- So we turn to Ordinal Optimization (OO)* to find good enough solutions.
 Strengths of OO:
 - Allow a rough performance estimation model
 - Guarantee a high probability to find good enough solutions

* Yu-Chi Ho, Qian-Chuan Zhao, Qing-Shan Jia, *"Ordinal optimization: soft optimization for hard problems,"* Springer, 2007

OO Applied Solution Framework

- Capacity configuration (design) sampling
 Uniformly and randomly sample N designs
- Performance estimation
 - Using a rough estimation model
 - OPC type and noise level estimated
- Selecting
 - Horse racing selection rule adopted
- Further distinguishing

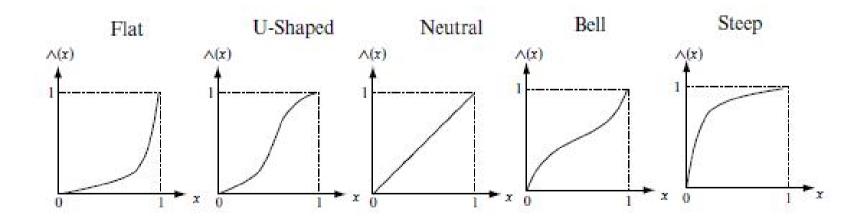
Performance Estimation

- A rough estimation model
 - Randomly generate one instance of demand (Bass model* used here for forecasting)
 - For each of the sample designs
 - Evaluate the total profit under the demand instance by solving the second stage problem (Conversion to MIP + CPLEX)
 - The performance of the sample are roughly set to be the profit evaluated
- Estimate the Ordered Performance Curve (OPC) type based on the sorted performances of the *N* designs.

* F.M. Bass, "A new product growth model for consumer durables," 2011/J Management Science 15:215-227, 1969.

Introduction to OPC

- Ordered Performance Curve (OPC)
 - A plot of the performance values as a function of the order of performance
- Five OPC types (normalized)*



Selecting

- Horse racing selection rule
 - Sort the sample designs according to their estimated performances, and
 - Select the top-*s* designs as the selected set *S*
 - s depends on the specified good enough set G, the required alignment level k, the OPC type and the noise level.
 - *s* could be decided according to the Universal Alignment Probability (UAP) table given by OO theory.

Further Distinguishing

- To find the best from the selected designs
 - Generate more instances of demand
 - For each of the top-*s* designs
 - Evaluate its performances under each of the instances
 - Average the performances to obtain a more accurate performance estimation
 - Select the design with the best average performance as the final solution

Outline

- Problem Background
- Problem Description
- Problem Formulation
- Problem Analysis and Solution
- Preliminary Results

Second Stage Problem Example

- Problem settings
 - 2 plants, 3 products, and 1 period
 - Given capacity configuration JPH₀ and demand d

$$JPH_{0} = \begin{bmatrix} 0 & 50 & 50 \\ 50 & 50 & 0 \end{bmatrix} \qquad d = \begin{bmatrix} 5000 & 5000 & 5000 \end{bmatrix}$$

- Normal working hours $HIW^n = \begin{bmatrix} 120 & 120 \end{bmatrix}$
- Overtime hours $HIW^{\circ} = \begin{bmatrix} 24 & 24 \end{bmatrix}$
- Other coefficients are set such that
 - the rewards of producing per unit of product 1 and 2 are the same, and are higher than producing per unit of product 3.

Second Stage Problem Example

• Results

Actual line production rate

$$\left(JPH_{ij}\right) = \begin{bmatrix} 0 & 41.67 & 0\\ 34.72 & 0 & 0 \end{bmatrix}$$

Normal working and overtime hours distribution

$$\begin{pmatrix} y_{ij}^n \end{pmatrix} = \begin{bmatrix} 0 & 120 & 0 \\ 120 & 0 & 0 \end{bmatrix} \quad \begin{pmatrix} y_{ij}^o \end{pmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 24 & 0 & 0 \end{bmatrix}$$

Example with OO Applied

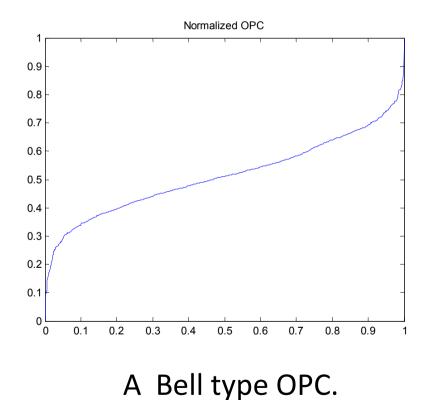
- Problem settings
 - 2 plants, 3 products, and 12 period
 - $-JPH_{ij0} \in \{0, 10, 20, ..., 100\}, \text{ for any } i \text{ and any } j$

OO Applied Example

- 1000 design samples uniformly sampled and estimated
 - Performance estimating time
 - Rough performance (total profit) estimation for 1 sample design: ≈10s
 - Total time: ≈ 1000*10s ≈ 3h
 - Further distinguishing time (s = 30)
 - Each selected design further estimated with 27 demand instances
 - Total time: ≈ *s**27*10s ≈ 2.5h

OO Applied Example

Normalized OPC



- Noise level W
 - Assume worst case

OO Applied Example

• Select the top 30 designs in the 1000 to insure $P[|G \cap S| \ge 1] \ge 0.95$

where G = set of top 5% designs.

• The solution with the best average performance (after further distinguishing)

$$\boldsymbol{JPH}_{0} = \begin{bmatrix} 0 & 80 & 20 \\ 70 & 10 & 0 \end{bmatrix}$$

Summary

- Capacity planning problem
 - A stochastic programming problem
 - Objective value hard to estimate
 - NP-hardness of second stage problem
- Solution
 - OO applied solution framework
 - Second stage problem converted to MIP
- Preliminary Results