Workshop on Uncertainty in Automation, ICRA 2011

Aerial Robots for Construction

Vijay Kumar
UPS Foundation Professor
Departments of Mechanical Engineering and Applied Mechanics
and Computer and Information Science
Member of the GRASP Laboratory and the
Graduate Group of Computational Biology

University of Pennsylvania

Acknowledgements
ONR N00014-08-1-0696 (HUNT)
ONR Grant N00014-09-1-1051 (SMARTS)
ARL W911NF-08-2-0004 (MAST)
ONR N00014-09-1-1051 (ANTIDOTE)
Q. Lindsey, D. Mellinger, V. Kumar, Construction of Cubic Structure with Teams of Aerial Robots, RSS, LA, June 2011
Cooperating Robots and Assembly
Unmanned Air Vehicles

- **Aerovironment Black Widow** – 2.12 oz.
- **BAE Systems Microstar** – 3.0 oz.
- **Astec Pelican**
- **Astec Hummingbird**
- **U. Penn Piper cub 6 lb**
- **Stanford DFly**
- **Aerovironment Pointer** – 9.6 lb
- **UCB Smart bird**
- **Boeing/Insitu Scaneagle** – 33 lb
- **AAI Shadow 200** – 328 lb
- **Bell Eagle Eye** – 2,250 lb
- **Gen. Atomics – Predator B** – 7,000 lb
- **Boeing X-45A UCAV** – 12,195 lb (est)
- **Northrop-Grumman Global Hawk** 25,600 lb
- **D. Pines, 2005**
Assembly

- Structured
- Mass/Batch
- Indoor

- Human intervention usually always possible

- Process tolerance < 0.1 mm

Construction

- Unstructured
- Customized
- Outdoor

- Potentially remote, hostile environments

- Process tolerance > 5 mm
Goal

Assembly and Construction of 3-D Structures
Goal
Assembly and Construction of 3-D Structures

This talk …

Special Cubic Structures
Assembly Primitives

P1

P2

P3

P4
Tolerances and Variation

Product Design
Part, assembly

Tolerances

Assembly
Process Model

Admissible variation

Manufacturing
Assembly plan

Successful!

Process tolerance

Process variation

Unsuccessful!

Robotic
Assembly Model

Automation, Robotics

Penn Engineering
Assembly Primitives

P1

P2

P3

P4
Special Cubic Structures

Structures consisting of layers/strata

- No holes in any 2D stratum
- No cantilevered sections
Wavefront Raster (WFR) Algorithm

1: Build any square in the 2-D region
2: while not finished do
3: mark squares immediately connected to already built region
4: for (leftmost column) to (rightmost column)
5: build marked squares in column from bottom to top
Quad Rotors

[Mellinger, Michael and Kumar, ISER 2010; Mellinger and Kumar, ICRA 2011]
Cooperative Grasping and Lifting

\[u^* = \arg \min_u \{ J | Au = w \}, \quad J = \sum_i f_i^T Q f_i \]
Part Bins
Gripper
Force Feedback

- Can estimate mass, moments of inertia
- Confirm stable prehension

Feel/respond to forces

Estimated Mass (kg) vs. Time (s) graph
Assembly Modes

M1

M2

M3

M4

M5
Assembly

- Hover at P_1
- Execute trajectory from P_1 to P_2
- Hover at P_2
- Yaw Left
- Yaw Right
- Release and Ascend

Failed assembly, repeat attempt

- $|\psi_{error}| > \psi_{max}$
- $|\psi_{error}| > \psi_{max}$
Assembly Errors
Assembly Results with Three Robots

<table>
<thead>
<tr>
<th>Number of Parts</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Trial 3</th>
<th>Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>32</td>
<td>34</td>
<td>40</td>
<td>192</td>
</tr>
<tr>
<td>Successful</td>
<td>32</td>
<td>33</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Attempts</td>
<td>32</td>
<td>34</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Actual Time</td>
<td>449.6</td>
<td>486.6</td>
<td>588.2</td>
<td>587.3</td>
</tr>
<tr>
<td></td>
<td>450.7</td>
<td>486.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Column retries</td>
<td>5</td>
<td>3</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Beam retries</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Time (in simulation)</td>
<td>443.6</td>
<td>480.4</td>
<td>581.9</td>
<td>2642.0</td>
</tr>
</tbody>
</table>
Challenges

- Distributed assembly
Challenges

- Distributed assembly
- Unstructured environments
Challenges

- Distributed assembly
- Unstructured environments
- Part design and payloads
Robotic Assembly/Construction

Product Design
Part, assembly

Tolerances

Assembly Process Model

Admissible variation

Manufacturing
Assembly plan

Robotic Assembly Model

Successful!

Process tolerance

Automation, Robotics

Process variation
Conclusion

- Agile, small, aerial robots create new opportunities for robotics
- SWAP constraints
- Force feedback enables adaptation
- Networks enable functionality beyond what can be achieved by individual robots