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Abstract— Existing autonomous vehicle (AV) navigation al-
gorithms treat lane recognition, obstacle avoidance, local path
planning, and lane following as separate functional modules
which result in driving behavior that is incompatible with
human drivers. It is imperative to design human-compatible
navigation algorithms to ensure transportation safety. We
develop a new tightly-coupled perception-planning framework
that combines all these functionalities to ensure human-
compatibility. Using GPS-camera-lidar sensor fusion, we de-
tect actual lane boundaries (ALBs) and propose availability-
reasonability-feasibility (ARF) threefold tests to determine if
we should generate virtual lane boundaries (VLBs) or follow
ALBs. If needed, VLBs are generated using a dynamically
adjustable multi-objective optimization framework that con-
siders obstacle avoidance, trajectory smoothness (to satisfy
vehicle kinodynamic constraints), trajectory continuity (to avoid
sudden movements), GPS following quality (to execute global
plan), and lane following or partial direction following (to
meeting human expectation). Consequently, vehicle motion is
more human compatible than existing approaches. We have
implemented our algorithm and tested under open source data
with satisfying results.

I. INTRODUCTION

As more and more companies are developing autonomous
vehicles (AVs), it is important to ensure that the driving
behavior of AVs is human-compatible because AVs will have
to share roads with human drivers in the years to come.
When planning motion for an AV, we can adjust speed and
trajectory in many possible ways but not all plans guarantee
human compatibility, which requires the understanding of
human decision process. A human driver is far better than
an AV when handling complex situations. A human driver
can avoid obstacles and still respect lane markings (LMs)
and traffic cones to a large degree. A human driver can
override lane boundaries (LBs) in appropriate scenarios: lane
markings (LMs) may disappear or be blocked by construction
or parked vehicles, LMs may not be consistent with the
traveling direction, a vehicle may be traveling too fast, thus
being temporarily unable to follow the sudden changes in
LMs, etc. In fact, there is a tight coupling between perception
for scene understanding and motion planning, which involves
finding an optimal trajectory under multiple objectives.
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Fig. 1. We generate virtual lane boundaries for autonomous driving to
ensure human compatible driving under complex road conditions: (a) current
lane lacks left side lane boundary, (b) traffic cones alter roads, (c) parked
cars block streets, (d) there are no LMs at all. Green curves are the VLBs
generated by our algorithm (best viewed in color).

However, traditional navigation design in AVs treats func-
tionalities such as lane recognition, obstacle avoidance, lo-
cal path planning, and lane following as separate modules
which results in unnatural driving behavior from a human
perspective. For example, a low-level obstacle avoidance as
reflex behavior often emphasizes speedy response instead
of incorporating in-depth LB understanding. The resulting
obstacle avoidance may not be human-compatible.

We propose a new tightly-coupled perception-planning
framework to improve human-compatibility. Using GPS-
camera-lidar multi-modal sensor fusion, we detect actual lane
boundaries (ALBs) and propose availability-resonability-
feasibility tests to determine if we should generate virtual
lane boundaries (VLBs) or follow ALBs. When needed,
VLBs are generated using a dynamically adjustable multi-
objective optimization framework that considers obstacle
avoidance, trajectory smoothness (to satisfy vehicle kino-
dynamic constraints), trajectory continuity (to avoid sudden
movements), GPS following quality (to execute global plan),
and lane following or partial direction following (to meet
human expectation). The resulting trajectory is more human
compatible than existing approaches, especially when coping
with difficult conditions (see Fig. 1).

We have implemented our algorithm and tested it with
the KITTI open source data set. The source codes have
been released on Github™. The results have shown that our
algorithm automatically and dyanmically switches between
VLBs and ALBs. The ratio of time the VLB dominated
segments range from 29% to 100% depending upon road
scenarios. Our multiple-objective tightly-coupled perception-



planning framework produces high quality trajectories in city
environments.

II. RELATED WORK

Our research is related to LB detection and tracking, local
path planning, and obstacle avoidance.

LB detection and tracking plays an important role in au-
tonomous driving, which has been studied for years [1], [2].
Andrade et al. [3] propose to detect and track LBs by using
Hough transform and a shape-preserving spline interpolation.
Li et al. [4] introduce predictive random sample consensus
(RANSAC) to fit and track LBs in the presence of heavy
noise and outliers. Petrovai et al. [5] apply stereovision to
track 3D LBs. Huang et al. [6] detect and estimate multiple
LBs by fusing calibrated video imagery and laser range data
for a moving vehicle. Joshi et al. [7] use a 1D Laplacian
filter to extract and track LBs from 3D lidar data. Kang et
al. [8] propose a probabilistic decision-making algorithm to
track curbs that uses interacting multiple model method for
autonomous mobile robot navigation. Most existing methods
detect and track LBs as an isolated perception problem. In
this work, we tightly couple perception with planning by
generating VLBs in sensor space while considering vehicle
size and kinodynamic constraints.

Traditionally, obstacle avoidance is often designed as a low
level reflex for a robot to stay away from obstacles. Obstacle
avoidance for autonomous driving involves planning the AV’s
trajectory by satisfying control objectives subject to non-
collision constraints. Many methods for obstacle avoidance
have been proposed [9], [10]. Khatib [11] designs artificial
potential field to represent the obstacles so that a robot
reaches the goal without colliding with obstacles. Song et al.
[12] construct a vision vector space to facilitate motion plan-
ning to avoid obstacles by fitting the dynamic requirement of
a motorcycle. Kahlouche et al. [13] employ optical flow to
get the information about the robot environment for visual
obstacle avoidance. Sgorbissa et al. [14] integrate a prior
knowledge of the environment with local perceptions, and
guarantee that the robot can never be trapped in deadlocks
even when operating within a partially unknown dynamic
environment. For simple mobile robots in slow speed, ob-
stacle avoidance does not have to be built on sophisticated
perception model. However, an AV has to follow traffic rules
and handle conflicting goals to meet human expectations.

Local path planning produces a collision-free path for AVs
based on a predefined global route and in situ information
from on-board sensors [15]. Compared with the grid-based
methods [16], the sampling-based methods [17] are more
widely used to find a collision-free path due to the high-speed
driving requirement. Likhachev et al. [18] present a graph-
based planning and re-planning algorithm, which is able to
produce bounded sub-optimal solutions to speed up decision
time. Chu et al. [19] propose to generate an optimal path for
off-road autonomous driving with static obstacles. Li et al.
[20] employ a hierarchical planning strategy by extracting a
reference path from the lidar-based localization map. Bai et
al. [21] utilize an intention-aware online planning approach

for AVs to drive near pedestrians safely, efficiently, and
smoothly. Ma et al. [22] propose an efficient sampling-based
planning method, which introduces a rule-template set based
on the traffic scenes and an aggressive extension strategy of
search tree. However, these dedicated planning approaches
seek to find an optimal trajectory in the free space to avoid
static or dynamic obstacles. The trajectory generated may
not be compatible with human drivers.

III. PROBLEM DEFINITION

The vehicle is equipped with a frontal view camera, a
lidar, and a GPS receiver, which is the common sensory
configuration for AVs. Prior maps, such as Google™ Maps
or OpenStreetMaps™ [23], are used as a part of the inputs.
We have the following assumptions,
a.1 The camera is pre-calibrated, and the nonlinear distor-

tion of images has been removed.
a.2 All sensor readings are synchronized.
a.3 The coordinate system transformations between any two

sensors are known by prior calibration.
All coordinate systems are right hand system and common

notations are defined as follows,
• {L} defines the lidar coordinate system with x-axis

pointing in the vehicle forward direction, y-axis point-
ing to the left, and z-axis pointing upward. Pi,t =
[xi,t, yi,t, zi,t]

ᵀ ∈ R3 is the i-th 3D lidar point with
respect to {L} at time t ∈ {0, 1, ..., T}, and Pt :=
{Pi,t} is the set of lidar points at time t.

• {C} defines the camera coordinate system with x-axis
pointing to the right of the vehicle lateral direction and
z-axis pointing forward coinciding with the front-view
camera’s principal axis.

• {I} defines image coordinate system. Let pk,t =
[u v]ᵀ ∈ {I} be the k-th pixel point in image It at
time t, where (u, v) is the image coordinate.

• {W} defines the world coordinate system which over-
laps with {L} at the vehicle starting position.

Denote the left and right LBs in {W} by WLl and WLr

at time t, respectively. Note that left superscript in this
paper describes the coordinate system for the corresponding
variable. With the assumptions and notations defined, our
problem is defined as follows,

Problem 1: Given a prior map, current GPS position, and
in situ camera and lidar inputs, and velocity profile and
global route from a global planner, recognize, generate and
track LBs WLl and WLr in {W}, or report when the VLBs
cannot be generated.

IV. ALGORITHM

Fig. 2 shows the system diagram. It mainly contains the
following blocks: A) Free-space detection, B) VLB genera-
tion where we perform ALB detection and also determine
how we should generate VLBs, and C) VLB registration
where we track the LBs through an extended Kalman filter
(EKF) and re-project VLBs in {W}. We start with the free-
space detection.
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Fig. 2. System diagram. The solid star represents the output of pose estimation, which is also the input to the continuous LB generation and LB projection.

A. Free-space Detection

The free-space is collision free surface in front of the
vehicle which can be defined by road edges and obstacle
boundaries. We detect free space in both camera and lidar
modalities and extract free-space surface boundary in {L}
(see Box 1.1 in Fig. 2).

We start with recognizing road surface in both image
and lidar data based on our prior work [24] where we
have employed camera-lidar fusion to obtain road surface
pixel set IPr in image coordinate {I} using the appearance
classification. We also have the corresponding 3D point
lidar point cloud set LPr ⊂ Pt for IPr. For each point
pr ∈ IPr and its corresponding lidar point Pr ∈ LPr,
we have the projection relationships between them, p̃r =

cpK[CLR C
Lt]P̃r and Pr = cq[K

C
LR]−1p̃r−CLR

−1C
Lt, where

cp and cq are scalars, a vector with symbol ‘∼’ on top is
in its homogeneous representation, K is the intrinsic camera
matrix under the pin hole model, and CLR and CLt are the
rotation matrix and translation vector between {L} and {C},
respectively. We also use two more inputs from [24]: the
road surface model with coefficient vector H∗r which is
acquired by fitting points in LPr to a polynomial model,
and d⊥(H∗r ,Pi,t) which is the shortest distance for a point
Pi,t to the road surface.

Building on these prior results, we design a two-step
approach to obtain 3D free-space surface boundary points. 1)
We only keep lidar points LCt with small elevation difference
to the surface model, LCt = {Pi,t| cl ≤ d⊥(H

∗
r ,Pi,t) ≤

cu,Pi,t ∈ Pt}, where cl and cu are thresholds. 2) We
compute the average surface normal of each pixel’s neighbor
set and use it to determine if it is on the smooth surface. Let
us detail the second step here.

For each point Pi,t ∈ LCt, we can find its neighbor set
LEi by selecting the K-nearest neighbors (KNNs) [25] with
an upper bound dr. LEi = {Pj,t| ‖Pi,t−Pj,t‖ ≤ dr,Pj,t ∈
LCt}, where index variable j ∈ N satisfies j 6= i and 1 ≤
j ≤ K. Next we apply methods in [26] to extract surface
normal for the neighbor set to determine if Pi,t is a smooth
road point. Define Ĉi,t =

1
|LEi|

∑
Pj,t∈LEi

Pj,t to be the 3D

centroid of LEi, and

de(Pi,t) =
1

|LEi|
∑

Pj,t∈LEi

‖Pi,t −Pj,t‖
‖Pi,t‖

, (1)

to be the normalized average distance for all points in LEi

to Pi,t. Define ds(Pi,t,Pj,t) = ‖Pj,t − Ĉi,t‖/‖Pi,t‖ as the
normalized distance for the point Pj,t to remove scale effect.
Define a weight value wj,t for the Pj,t to be

wj,t=

exp
−

ds(Pi,t,Pj,t)
2

de(Pi,t)
2

, if ds(Pi,t,Pj,t)≥de(Pi,t),

1, otherwise.

Let λ1, λ2 and λ3 be the eigenvalues of the correlation matrix∑|LEi|
j=1 wj,t(Pj,t − Ĉi,t)(Pj,t − Ĉi,t)

ᵀ, and suppose λ1 ≤
λ2 ≤ λ3. According to [27], a point on smooth road surface
has λ1 significantly smaller than the other two; for a free-
space surface boundary point, λ1 and λ2 are substantially
smaller than λ3. Therefore, we can use this property to obtain
boundary point set LFt by thresholding,

LFt =
{

Pi,t|λ3/
∑3

i=1
λi ≥ λd,Pi,t ∈ LCt

}
, (2)

where λd is the threshold. Inspired by [28], we can fur-
ther remove noisy points in set LFt by examining surface
normal vector directions. For a point Pi,t ∈ LFt, we
compute the average surface normal θi,t as follows, θi,t =

1
|LEi|

∑|LEi|
j=1 arctan

|zi,t−zj,t|√
|xi,t−xj,t|2+|yi,t−yj,t|2

. Note that points

on the road surface have small variations in z direction
which means small θi,t values. Therefore, we can identify
boundary/obstacle points by thresholding on θi,t and obtain
free-space surface boundary point set LBt as follows,

LBt = {Pi,t|θi,t ≥ θv,Pi,t ∈ LFt}, (3)

where θv is the threshold.
Next, we need to verify if there is available free space

in front of the vehicle given vehicle kinodynamic and size
constraints. We apply a state lattice planner [29] to generate a
set of seven candidate arc trajectories {LLlp}7lp=1 that evenly
cover curvatures in the allowable range given the current
speed. The length of arc is the braking distance. Let dv be



the haft width of the vehicle. We evaluate all points in the
region swiped by the vehicle if following the arc LLlp which
is set LPlp = {Pi,t|min ‖Pi,t−Pw‖ ≤ dv,Pi,t ∈ Pt,Pw ∈
LLlp}. Denote the logic OR operator by

∨
. If we have,∨

lp

{L
Plp

⋂
LBt = ∅

}
= 1, (4)

then the free space exists (see decision box 1.2 in Fig. 2)
and we move on to next step. Otherwise, there is no feasible
road and global planner needs to be notified to re-plan route.
The global planner concerns overall routing and is not the
concern of this paper.

B. VLB Generation

VLBs and corresponding lane center curves (LCCs) regu-
late how the vehicle can move. Generating them is equivalent
to local planning but with tight coupling to perception and
vehicle kinodynamic constraints. By tight coupling we mean
that LCCs and VLBs are evaluated directly and locally in the
sensor space without an additional world model. We have to
answer two important questions here: 1) when should we
decide to deviate from ALBs? and 2) how to generate VLBs
to balance multiple requirements to be human compatible?

1) LB representation: Before we dive into details, let
us define LCC and the information obtained from ALB as
shown in our prior work [24]. In fact, it is also possible
to use lane detection methods from other existing works.
From [24], we obtain ALB and the corresponding LCC LLa

is represented as cubic B-spline curves that are made of l
piecewise polynomial functions,

LLa,l(s) = al,0 + al,1s+ al,2s
2 + al,3s

3 (5)

be the l-th curve segment where {al,j |l = 1, 2, ..., nc−3, j =
0, 1, 2, 3} are 3-vectors for polynomial coefficients, 0 ≤ s ≤
se, nc is the number of the control points for the spline curve,
and se = nc+3 is the maximum knots. Subscript a indicates
this LCC is from ALB. As shown in [24], for a given LCC
and a lane width, it is trivial to obtain the left and right LBs
LLl(s) and LLr(s), respectively, and vice versa.

2) Examining ALB quality: For question 1), we determine
if the vehicle should follow ALBs using availability, reason-
ability, and feasibility (ARF) tests (see Box 2.2 in Fig. 2).
For availability, we examine if ALBs provide a sufficiently
long trajectory to follow.∫ se

0

‖LL
′

a(s)‖ds ≥ lmin, (6)

where ‖ · ‖ is the vector l2-norm and lmin is the trajectory
length threshold.

For reasonability, we check if the LCC LLa heading
agrees with the vehicle’s current heading. Let nv ∈ R3 point
to the vehicle’s driving direction at time t, and nu ∈ R3

be the first derivative of the LCC LLa(s) when s = 0,
respectively. Let 〈·, ·〉 represent the inner product between
two vectors. For a threshold βl = 10◦, if

arccos
〈nv,nu〉
‖nv‖‖nu‖

≤ βl, (7)

then the current LCC LLa is reasonable.
For feasibility, we want to make sure that the curvature of

the LCC is compatible with the current vehicle speed. We
precompute a look-up table offline considering the vehicle
speed and the curvature. Let 〈· × ·〉 represent vector cross
product. Let κmax be the maximum allowable LCC curvature
for the vehicle given the current forward speed vt. We have
a feasible LCC if

‖〈LL
′

a(s)× LL
′′

a(s)〉‖
‖LL′

a(s)‖3
≤ κmax. (8)

ARF test results are used to set weights in selecting LCCs
for VLB and will be detailed later in Section IV-B.4.

3) VLB generation: For question 2), to generate human-
compatible VLBs, we need to a) respect partial information
from ALB, b) follow GPS waypoints, c) avoid dynamic and
stationary obstacles, and d) consider vehicle kinodynamic
constraints.

Therefore, we need the planned GPS trajectory as a seed.
From the current GPS reading and the prior map, we can
extract a set of GPS way points to represent the road ahead.
The number of points depends on the velocity of the vehicle
and the minimum number needed to construct a cubic B-
spline representation. We can project these 2D map points
onto the road surface model to obtain 3D points. Applying
cubic B-spline fitting and coordinate transformation, we
obtain its representation in current lidar coordinates to be
LLg(s) where subscript g means this is from GPS reference.
Note that LCC of VLBs should start with the endpoint of
previous LCC (denoted by LL−(s)) at time t − 1 which
happens when s = se. LLg(s) and LL− do not necessarily
overlap. A minimum distance parallel shift of LLg(s) allows
point LL−(se) be located on the shifted LLg(s). The shifted
LLg(s) is cropped to start at the point and serve as the
seed trajectory for candidate trajectory generation. In fact,
the shifted LLg(s) does not need to be collision free. The
new trajectory along with velocity profile and vehicle size are
then used to generate candidate trajectories by sampling on
lattice using [29], which provide us a set of candidate LCCs
LL ⊂ Lc considering the vehicle’s kinodynamic constraints.
Of course, any candidate LCC LL also have to pass our
ARF tests. If none of the candidate LCC pass ARF tests, the
system reports “no feasible road” to the global planner.

We then select the best candidate LCC by minimizing a
cost function C(LL) (see Box 2.5 in Fig. 2)

LL? = argmin
LL⊂Lc

C(LL), (9)

that is designed to consider human compatibility by integrat-
ing smoothness fs, obstacle avoidance fo, GPS trajectory
following fg , trajectory continuity fc, and ALBs fa as
follows

C(LL) = fs(
LL) + w2fo(

LL, LBt) + w3fg(
LL, LLg)

+ w4fc(
LL, LL−) + w5fa(

LL, LLa), (10)

where w2, .., w5 are non-negative weighting variables.



Function fs(LL) controls the smoothness of the LCC [30],

fs(
LL) =

∫ se

0

‖LL
′
(s)‖2ds+w1

∫ se

0

‖LL
′′
(s)‖2ds, (11)

where w1 is a non-negative weight variable, [0, se] define
spline parameter range for the LCC.

Function fo(
LL, LBt) is the cost related to the clear-

ance to boundary/obstacle LBt set in (3). Let d∗o =
min

Pi,t∈LBt,0≤s≤se
‖LL(s) − Pi,t‖, be the shortest distance

between a candidate LCC and a road edge point Pi,t ∈ LBt,
we have

fo(
LL, LBt) =


0 if d∗o ≥ dr,

cb
dl−dr

(d∗o − dr) if dl < d∗o < dr,

∞ otherwise.
(12)

where cb is linear cost coefficient for distance to obstacle,
dl and dr define the distance interval where the linear cost
function is applied.

Cost function fg(LL, LLg) wants the output trajectory to
be similar to that of the GPS trajectory,

fg(
LL, LLg) =

∫ se

0

‖LL− LLg‖2ds. (13)

Cost function fc(
LL, LL−) maintains continuity of LCC

from prior period LL− (noting it has been transformed to
current {L} coordinate),

fc(
LL, LL−) =

∫ se

0

‖LL− LL
−‖2ds. (14)

This cost function helps avoid sudden motion and makes the
LCC more compatible with human drivers.

Cost function fa(LL, LLa) regulates the LCC to be close
to ALBs,

fa(
LL, LLa) =

∫ se

0

‖LL− LLa‖2ds. (15)

This function regulates LCC to follow ALBs as much as
possible which makes LCC to meet human expectation better.

4) Weight settings: Non-negative weighting variables w1,
w2, w3, w4, and w5 play an important role in regulating the
LCC. This is done before LCC generation (see Box 2.3 in
Fig. 2).
w1 and w4 control the smoothness of the resulting LCC.

They should be an increasing function of velocity due to
vehicle kinodynamic constraints. They are also related to
driving status. If the vehicle decides to make a turn or switch
lanes as instructed by the global planner, then we set them to
be zero since we do not need to follow the previous direction.
w2 controls how conservative the vehicle should be in

obstacle avoidance. It should be a function of the relative
velocity to obstacles. For example, the existence of a cyclist
demands higher w2 settings.
w3 controls GPS following quality. It should be deter-

mined by how good the prior map quality is. If the road is
under construction and the prior map has not been updated,
then we should reduce w3 to allow more deviation from the
original map.

w5 is adjusted according to ARF test results. If ALBs do
not exist or are not reasonable (i.e. fail the first two tests of
ARF tests), we set w5 to be 0 because there is no trustable
LLa. However, w5 remains positive if ALBs are infeasible
due to vehicle kinodynamic constraints. If ALBs pass all
ARF tests, then w5 is set to the highest value to ensure good
lane following.

C. VLB Registration
So far, we have obtained LCCs which are computed in

local lidar coordinates and are piece-wise polynomials over
time. To ensure a smooth and continuous trajectory in {W},
we apply an EKF to track VLBs to generate and register
continuous curves (see Boxes 3.2 and 3.3 in Fig. 2).

We need the coordinate transformation from time t− 1 to
t. This can be obtained using the optimization-based multi-
sensor state estimator [31] (see Box 3.1 in Fig. 2)). Denote
the rotation matrix and translation vector with respect to
{W} at time t by LRt and Ltt, respectively. Let LRt

t−1 and
Lttt−1 be the relative rotation matrix and translation vector
from t−1 to t, respectively. We have LRt

t−1 = LRt−1
LR−1t

and Lttt−1 = Ltt−1 − LRt
t−1
Ltt. Recall the cubic B-spline

curves are made of piecewise polynomial functions, and
each polynomial function needs four control points to satisfy
its continuity properties. We sort the control points for the
optimal LCC LL? according to the increasing order of their
distance to the origin of {L}. let LP? = {P1,P2, ...,Pnc}
be the control point set for the LL?. Here, ‖Pp‖ < ‖Pq‖
for Pp,Pq ∈ LP? if p < q. Let

zp,t = [Pᵀ
p ,P

ᵀ
p+1,P

ᵀ
p+2,P

ᵀ
p+3]

ᵀ, (16)

be the observations for the LCC for p = 1, 2, ..., nc − 3.
Define a state vector

xp,t−1 = [aᵀ
p,3,a

ᵀ
p,2,a

ᵀ
p,1,a

ᵀ
p,0]

ᵀ, (17)

through (5) for the LCC at time t − 1. The state transition
function is just the coordinate system transformation between
adjacent time epochs,

xp,t = Rt
t−1xp,t−1 +


03×1
03×1
03×1
Lttt−1

+ wt, (18)

where wt has zero mean and covariance Qt, and Rt
t−1 =

diag(LRt
t−1,

LRt
t−1,

LRt
t−1,

LRt
t−1) is a diagonal block

matrix. According to [32], the observation function is

zp,t =


03×3

2
3I −I I

03×3 − 1
3I 03×3 I

03×3
2
3I I I

6I 11
3 I 2I I

xp,t +mt, (19)

where mt is zero mean and has the covariance Ωt, and I is a
3×3 identity matrix. We continuously predict and update the
EKF as more data comes in, and register the optimal LCC
by

WL?(s) = LRᵀ
t
LL?(s)− Ltt, (20)

from {L} to {W}. We also apply (20) to obtain the left VLB
WLl(s) and the right VLB WLr(s), respectively.



TABLE I
%VLBS ON KITTI DATASET

Sequence Duration length % (w5 = 0)

2011 09 26 drive 0035 13 s 60.41 m 100%
2011 09 26 drive 0039 40 s 297.09 m 100%
2011 09 26 drive 0051 44 s 255.42 m 92%
2011 09 26 drive 0056 30 s 419.95 m 29%

V. EXPERIMENTS

We have implemented the proposed method in C++ and
shared it on Github™1. It is tested on a Laptop PC with
an Intel® Core™i7-3517U CPU@1.90GHz and 8 GB RAM.
We test our approach using the KITTI dataset [33], which
contains images covering a variety of street scenes captured
from a vehicle driving around the city of Karlsruhe.

(a) No LMs. (b) Passing static obstacle.

(c) Neogoiating traffic barriers. (d) Road intersections

(e) Merging w. dynamic obstacles (f) Parked cars and no LMs.

Fig. 3. Sample algorithm outputs for six different scenarios (Best viewed
in color).

We have tested our algorithm on four different sequences
of two categories from KITTI dataset including city and
residential area (see Tab. I). In all cases, our algorithm can
generate feasiable LCC and VLBs to guide the vehicle. In
last column, we track the ratio when w5 = 0 because it
indicates that the vehicle decides to deviate from ALBs. The
ratio varies from from 29% to 100% due to different road
scenarios. Some road segments have great ALBs and do not
need VLB generation as much (e.g. the fourth row) while
some roads do not have ALBs at all (e.g. the first two rows).

Sample outputs are shown in Fig. 3. The green masked
area is the free space detected by the algorithm. Four
different dotted lines are drawn on the six figures: purple
lines represent GPS way points from Google maps, blue lines
are the algorithm output LCCs WL?(s), red lines are the high
precision GPS recording of actual human driving the vehicle
which can be viewed as the human decision counterpart,

1https://github.com/bli-tamu/LDRT
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Fig. 4. Contribution to LCC cost by different components.

and two green lines are the left LB WLl(s) and the right
LB WLr(s), respectively. It is clear that way points from
Google maps are too lousy to be used as direct navigation
guides, as indicated by the poor quality of purple lines. When
comparing our algorithm outputs to the GPS recording of
the human driving, blue lines are quite in agreement with
red lines with the only exception in Fig. 3(e). Note that red
lines extend beyond blue lines due to different trajectory
length which does not mean that they do not agree. Even
in Fig. 3(e), both the blue line and the red line are viable
choices. In all cases, our algorithm can generate LCCs that
are compatible with human expectations.

Fig. 4 further illustrates how different components con-
tribute to the VLB LCC selection in (10) using the second
and fourth sequence in Tab. I. The plots are the normalized
ratios in the overall objective function value. During the com-
putation, the weight settings for the optimization problem are
set as w1 = 1, w2 = 1, w3 = 2, w4 = 0.2 and w5 = 5 for
non-zero cases to balance the multiple objectives in the LCC
selection. It is clear that every component in (10) plays a role
in determining LCC.

The more interesting part is the dynamic change of ratios,
as shown by Fig. 4(a) which really exposes the inner-works
of VLB generation. First, there are no ALBs in the entire
sequence and w5 has to be zero during 100% of the time.
Second, both fs (green solid line) and w2fo (blue dashed
line) are relatively high throughout the entire sequence be-
cause it is important to avoid obstacles and maintain smooth
motion during the driving. A close look reveals that there
are four sudden drops for w2fo. Two short segments are
located at frames 34–85, one long segment appears at frames
216–254 and the last one is at frames 374–394. These are
due to the fact that there are no obstacles at the time and
the road is empty. Consequently, the vehicle relies more on
GPS trajectory following and we can see that ratio of w3fg
increases. It means that the algorithm automatically falls
back to rely on other available information when there are no
LMs and no obstacles, which is desirable. The w4fc usually
has a segment of being zero at frames 293–334 because the
vehicle is make a 90◦ turn and actively set w4 to be zero.
Similar scenario happens at the beginning of Fig. 4(b). The
sequence in Fig. 4(b) has high quality ALBs mostly and only
needs to rely on VLBs 29% of the time. It is clear that w5fa
remains high at frames 44–149 and 184–293 where the AV
relies a lot on the ALB following. In addition, the reason that
we have a segment of VLBs at frames 150-183 is due to a



parked vehicle occupying part of the road which is shown in
Fig. 3(b).

VI. CONCLUSION AND FUTURE WORK

We reported our development of a new tightly coupled
perception and planning framework to enable AVs to con-
sider multiple conflicting goals simultaneously and generate
human-compatible navigation trajectories. We built on our
prior work to detect free space using camera-lidar sensor
fusion and proposed ARF tests to determine whether the AV
should simply follow ALBs or generate VLBs by taking into
account vehicle kinodynamic constraints, obstacle avoidance,
smooth motion, GPS trajectory following, respecting direc-
tion of LMs in a multi-objective optimization framework
with dynamically adjustable weights for different road sce-
narios. We implemented our algorithm and the test results
confirmed our design.

In the future, more physical experiments will be conducted
and we will incorporate more functionalities such as velocity
planning to make navigation decisions more human-like and
human-compatible.
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