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Abstract— The main challenge in scheduling multi-cluster
tools in semiconductor manufacturing is the interactions among
clusters. These interactions create a k-unit optimal production
that do not exist in single-cluster tools. This paper analyzes
optimal scheduling of k-unit cycle production of multi-cluster
tools with single-blade robots. A resource-based method is
used to analytically derive closed-form expressions for the
minimal cycle time of a multi-cluster tool. Conditions for
decoupling multi-cluster tools and optimality conditions for the
widely used pull schedule are also presented. An example from
industry production is used to illustrate the derived formula
and decoupling conditions.

I. INTRODUCTION

With the increasing complexity of semiconductor manu-
facturing processes, multi-cluster tools are used to accommo-
date the industry needs 1. For a multi-cluster tool, such as the
2-cluster tools shown in Fig. 1(a), there are multiple robots to
transfer wafers among various clusters, and each robot serves
within one cluster. Each cluster consists of process modules
(PMs), transport modules (robots), and load locks (cassette
modules). Each wafer is picked up by a transfer robot and
moved to PMs according to predefined routing sequences
(recipes). The robot in a cluster tool can be single-blade or
double-blade. A single-blade robot can hold only one wafer
at a time.

The goal of this paper is to provide a methodology to
analyze the k-unit production cycle time and to optimally
schedule robots in multi-cluster tools. We consider an M -
multi-cluster tool that is composed of M single clusters con-
nected in a tree-like layout, that is, no loop inter-connection.
Only one- or two-wafer capacity inter-cluster buffers are
considered here. Fig. 1(b) shows an example of a 10-cluster
tool.

A multi-cluster tool can be considered as several intercon-
nected single clusters, or robotic cells. The main complexity
of scheduling of a multi-cluster tool comes from interac-
tion dependencies among individual clusters. The “pull”
(or reverse) schedule for single-blade robots is discussed
as the optimal schedule for single cluster tools [1]. In
the pull schedule, the robot is sequentially moving wafers
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Fig. 1. A schematic of (a) a two-cluster tool and (b) an inter-connected
10-cluster tool

from one PM to the next PM. In [1], a polynomial time
algorithm is provided for finding the optimal one-unit cycle
schedule under constant robot moving time. Heuristics and
approximation algorithms dealing with k-unit cycles in a
single robotic cell have been studied in [2], [3].

For multi-cluster tools, a few results have been reported
recently. In [4], a robotic cell with three single-gripper
robots for semiconductor manufacturing is presented, and
the authors compared the throughput of the pull strategy by
simulation. In [5], an integrated event graph and network
model is used to find all optimal schedules for a multi-cluster
tool. The recent study [6] presents an analytical schedul-
ing scheme for multi-cluster tools using a decomposition
approach. Chan et al. [7] extend the results in [6] with
a consideration of non-zero robot moving time. However,
neither [7] nor [6] does consider the multiple-unit cycles.

The focus of this paper is on the throughput and robot
scheduling of k-unit (k ≥ 1) production of multi-cluster
tools. This paper is an extension of the previous work in [5]–
[7]. The contributions of this paper are twofold. First, we
use a concept of resource cycles that is first proposed in [7]
to quantify the dependencies among clusters in a multi-
cluster tool. The unified treatment of all resources allows
us to identify the interactions among single clusters. Such
interactions can cause that every single cluster repeats its
one-unit schedule for k times before the whole multi-cluster
tool returns to the original state at the beginning of these one-
unit schedules. We call this repeated schedule as k-unit cycle
production. To our knowledge, these phenomena have not
been studied in the literature. Second, we establish conditions
under which a multi-cluster tool can be decoupled into single
clusters so that existing efficient algorithms for single cluster
tools can be used to find optimal schedules.

The rest of the paper is organized as follows. In Section II,



we introduce notations and the concept of resource cycle for
single-cluster tools. In Section III, we present the optimal
scheduling analysis. The decoupling conditions are discussed
in Section IV. An industrial example of a multi-cluster tool
is presented in Section V before we conclude the paper.

II. RESOURCE-BASED CLUSTER-TOOL SCHEDULING

A. Notations and problem statement

We consider the following assumptions for M -multi-
cluster tools: (1) All wafers follow an identical flow that
visits each PM only once (multiple parallel PMs is con-
sidered as one PM); (2) The cassette modules always have
wafers/spaces for robot to pick or place at any time; (3) All
the activity times are deterministic; and (4) Buffer modules
have either one- or two-wafer capacity. We define an m-
branch-cluster tool (Fig. 2) as a branch of an M -multi-
cluster tool. An m-branch-cluster tool consists of m single
cluster tools in series, each of which connects to exactly two
neighboring single clusters, except the leaf (ending) and the
head (starting) single clusters, which connect to only one
neighboring single cluster. We also use the word “job” to
represent “wafer” in all subsequent discussion.

C1 Ci−1 Ci Ci+1

Pib

Cm

R1 Ri Ri+1Ri−1 Rm

Fig. 2. A schematic of an inter-connected m-branch cluster.

We assume that single cluster Ci
2, i = 1, . . . ,m, consists

of ci number of PMs, denoted by Pij , j = 1, . . . , ci, and a
single-blade robot Ri. Here we consider the buffer module
connecting Ci and Ci+1 as one of the PMs belonging to Ci,
and we denote bi as the index of the buffer module Pibi

.
For a single-space buffer module, both the inlet and outlet
jobs share the same space. For a double-space buffer module,
Pibi:1 and Pibi:2, respectively, the first (from Ci and Ci+1)
and second buffer (from Ci+1 back to Ci) spaces of the
buffer module. For Ci, the processing time for buffer Pibi

is denoted by tibi
. For Ci+1, the buffer module serves as

cassette modules. The index of this cassette module is “0”
and the processing time is denoted by ti+1,0. No real wafer
processing is taken in all buffer modules, namely, tibi

=
ti+1,0 = 0. We however keep these notations for capturing
the dependencies among clusters in later sections.

For cluster Ci, let tij be the processing time for module
Pij , εi be the time to load/unload a job to/from a PM,
and δi be the robot move time between any pair of mod-
ules/buffer/cassette within Ci. To facilitate later discussion,

2As [6], we define the decoupled single-cluster Ci as the ith single cluster
detached from a multi-cluster tool by replacing the buffer modules with
virtual PMs and infinite number of jobs and spaces at the input/output
module. With a slight abuse of notation, we use Ci to indicate the ith cluster
of a multi-cluster tool and the decoupled ith cluster without confusion.

we define αij = 2εi +δi +tij , βi = 2(εi +δi), βδi
i = βi−δi,

α0
ij = αij−tij . We assume that the wafer processing at each

PM starts right after the robot places an unprocessed wafer
inside that PM. As a result, we only consider the sequencing
and scheduling of robot movement activities. We define an
activity Aij associated with Pij in Ci as three consecutive
actions taken by robot Ri: (1) unloading a job from Pij ,
(2) traveling from Pij to Pi,j+1, and (3) loading this job
into Pi,j+1. Activities Ai0 and Aici

represents the actions
of loading/unloading a job from or to cassette modules. We
take the same treatment for buffer modules with activities
Ai,bi−1 and Aibi

.
We consider a one-unit wafer cycle as a sequence of

feasible activities consisting of every activity exactly once
and during which, exactly one job is imported from and
exported to the cluster tool. The one-unit cycle time (or
simply cycle time) is the minimum time required to complete
the one-unit wafer cycle. For a single-cluster tool, after a one-
unit cycle, the tool returns to the same state as the beginning
of the cycle. However, this is not always true for multi-cluster
tools. A concept of resource cycle will be used to capture
such repeated cycles.

A one-unit cycle schedule in Ci is determined by the robot
movement sequence πi = (Aij0Aij1 · · ·Aijci

). An optimal
schedule π∗

i maximizes the throughput and therefore mini-
mizes the cycle time Ti(πi). We can view a one-unit cycle
robot schedule for an M -multi-cluster tool is determined
by two steps: the first step considers only a combination
of all individual robot schedule π = (π1, π2, . . . , πM ).
The second step is to coordinate all πi. To capture the
robot coordination among clusters, we consider the dis-
tribution of jobs (wafers) among clusters. We denote the
job distribution among an M -multi-cluster tool as n =
(n1, n2, . . . , nM ), where ni is the number of jobs in Ci.
We denote Ti,...,m(πi, . . . , πm;ni, . . . , nm) the cycle time
of an (m − i + 1)-branch cluster tool with the first to the
ending cluster tools indexed from i to m and under schedule
(πi, . . . , πm) and job distribution (ni, . . . , nm).

B. Resource-based optimal schedules for single-cluster tool

For Ci, we define the push strategy as a schedule with
activity indexes (Ai0Ai1 · · ·Aici

), namely, in an increasing
order starting with Ai0Ai1, and the pull strategy as a schedule
with activity indexes (Ai0Aici

· · ·Ai1) in an decreasing order
starting with Ai0Aici

. We denote the cycle time for the push
schedule as TF

i = βi +
∑

l∈{1,...,ci} αil. In [7], we define an
activity chain in a single cluster is a sequence of activities
(excluding Ai0) with consecutively increasing order indexes
appear (not necessary adjacently) in a schedule. Activity Ai0

itself is also an activity chain. We have the following result 3.
Lemma 1: Given a schedule πi =

(
Aij0Aij1 · · ·Aijci

)
for

a single-cluster tool, the number of activity chains is equal
to the number of jobs ni in the tool under πi.

For example, for schedule πi = (Ai0Ai3Ai1Ai2), ni = 2
since, excluding Ai0, there are only two activity chains in

3Due to the page limit, all proofs of lemmas and theorems are omitted
in this paper. The details of all proofs can be found in [8].



πi. We note that ni is a function of πi. Also, ni = 1 under
the push schedule and ni = ci under the pull schedule.

We also define a resource as a physical object performing
certain timed activities, for example, PMs, robots, buffers,
and jobs. The one-unit resource cycle (or simply resource
cycle) of a resource is a sequence of activities that, (1)
starting from a particular state, returns the resource to its
original state if the resource is a PM, robot, or buffer, or
(2) starting from a particular activity chain, advances the
resource to the next activity chain if the resource is a job.
The resource cycle time (RCT ) of resource Q, denoted by
RCT (Q), is the minimum cycle time duration for a resource
to perform all the activities in its own resource cycle without
extra waiting for other resource cycles.

In a one-unit cycle, since Ai0 advances a new job to Ai1

and each of the other ni jobs advances to the next activity
chain, all the activities chains repeat exactly once. Given a
schedule πi =

(
Aij0Aij1 · · ·Aijci

)
, the resource cycle for

Pij is the sequence of activities from Aij to Ai,j−1 inclu-
sively, namely, RC(Pij) = (AijAij1 · · ·Aijk(πi)

Ai,j−1). Let
IA(Pij) = {j, j1, . . . , jk(πi), j − 1} be the index set of the
activities in the resource cycle of Pij .

From [7], we know that all process and buffer modules
can be categorized into two types of resources: ΛP

i =
{j|(Ai,j−1Aij) �⊆ πi}, and ΛR

i = {j|(Ai,j−1Aij) ⊆ πi},
where ΛP

i is the index set of resources whose resource cycle
is different from the robot cycle, and ΛR

i is the index set of
resources whose resource cycle times coincide with that of
the robot. We define the unavoidable activity set UA(Pij),
as the index set of js and the activities contained in both
IA(Pij) and ΛR, namely, UA(Pij) = {IA(Pij)∩ΛR

i }∪{j}.
From [7], we have

RCT (Pij) = (|IA(Pij)| − |UA(Pij)|)βi +
∑

k∈UA(Pij)

αik,

where | · | denotes the cardinality of a set, and

RCT (Ri) = (ci + 1 − |ΛR
i |)βi +

∑
j∈ΛR

i

αij .

The following lemma from [7] gives a lower bound of the
tool’s cycle time.

Lemma 2: For a single-cluster tool, the one-unit cycle
time Ti(πi) under schedule πi satisfies

Ti(πi) ≥ max
{

max
j∈ΛP

i

{RCT (Pij)}, RCT (Ri)}
}

. (1)

So far our discussion on the resource cycle of a job only
focuses on a one-unit cycle. We now describe the complete
resource cycle of a job. We define the complete-job-resource
cycle time as the minimal total time for a job to be processed
and exit the whole single-cluster tool without extra waiting
inside the tool. The complete-job-resource cycle time is equal
to the sum of the times for all activities chains, which is
also equal to the cycle time TF

i of the push schedule. Since
the total number of jobs produced during a complete-job-
resource cycle time is ni, we also call the complete-job-
resource cycle time as n-unit job-resource cycle time and

the corresponding cycle is called the n-unit job-resource
cycle. The average n-unit job-resource cycle time (or simply
average job-resource cycle time) (AJRCT) is the average
time for a job to go through one activity chain, namely, T F

i

ni
.

For a single-cluster tool, the AJRCT cannot dominate
the whole cycle time. Intuitively, this observation results
from the fact that the AJRCT in every one-unit cycle is
less than the one-unit cycle time due to no congestion
(blocking) is assumed at the input/output module. Because
the AJRCT never dominates the whole one-unit cycle time,
most literature do not include them in computing the cycle
time for single-cluster tools; see [1]. However, the AJRCT
would be useful in in the analysis of multi-cluster tools
dealing with multiple parts.

In [1], a concept of basic cycles is proposed. A basic
cycle dominates all other schedules in the sense of having
smaller cycle times and is a schedule with activity indexes in
decreasing order except those in ΛR

i . We have the following
results.

Theorem 1: For a single cluster under a basic cycle
schedule πi, |IA(Pij)| = |UA(Pij)| + 1, for all j ∈
ΛP

i . Moreover, the one-unit cycle time Ti(πi) is Ti(πi) =
max

{
maxj∈ΛP

i
{RCT (Pij)}, RCT (Ri)}

}
.

III. SCHEDULING OF MULTI-CLUSTER TOOLS

In this section, we first discuss the job distribution among
a multi-cluster tool. Then we discuss the minimum cycle
time analysis for an m-branch and M -cluster tool.

A. Job distribution in a multi-cluster tool

In an m-cluster tool, we need to specify the job distribu-
tion to completely determine the cycle time. We represent
the number of jobs in cluster Ci in terms of ni, the number
of jobs in the corresponding decoupled single-cluster tool.
Moreover, the jobs in the buffer module Pibi

is considered
as jobs belonging to Ci, instead of Ci+1. It is necessary to
explain when and how the job distribution in Ci is defined.
First, the number of jobs in Ci in a multi-cluster tool is equal
to the number of jobs in that single cluster during the steady
state operation after Ai0 and before Aici

. Second, it would
be helpful to consider the initial job location. For Ci with
a double-space buffer, let ni be the number of jobs that is
determined by Lemma 1. The initial job location is to have
one job only in the beginning PM of each activity chain
except the chain that includes the buffer: (1) When the job
distribution is ni−1, then there is no job in the activity chain
that contains the buffer; (2) When the job distribution is ni,
then the activity chain that contains the buffer should have
one job in the first buffer space only; and (3) When the job
distribution is ni +1, then the activity chain that contains the
buffer should have totally two jobs in the two buffer spaces.
For Ci with a single-space buffer, the job distribution and
initial location is the same as in Case (1) above.

Let us consider a 2-branch cluster (C1, C2) under schedule
(π1, π2). Let ni be the number of jobs in Ci (when it is
decoupled from the other one) under schedule πi, i = 1, 2
respectively. The number of jobs could vary under (π1, π2).



If P1b1 is single-space, then the total number of jobs N =
n1 + n2 − 1 is distributed in C1 and C2 as (n1 − 1, n2);
if P1b1 is double-space, N can then be the following three
cases: (a) N = n1 + n2 − 1 and distributed as (n1 − 1, n2);
(b) N = n1 + n2 and distributed as (n1, n2); and (c) N =
n1 + n2 + 1 and distributed as (n1 + 1, n2). The analysis is
given in [8].

B. Minimum cycle time and optimal schedules

We define the minimal cycle time is the smallest cycle
time over all possible job distributions under the same
given schedule in a multi-cluster tool. Let T 0

i (πi;ni) and
T

tSi
i (πi;ni) denote the cycle times of the decoupled cluster

Ci with zero processing time at Pibi
(i.e., tibi

= 0) and
processing time tSi

at Pibi
(i.e., tibi

= tSi
), respectively.

From [8], we show that the job distributions n1 − 1 and
n1 + 1 in C1 can be treated as n1, and T 0

1 (π1;n1 − 1)
and T 0

1 (π1;n1 + 1) are thus equal to T 0
1 (π1;n1). In a

multi-cluster tool, although all the robots can work in a
coordinated fashion to improve the over-all cycle time, such
a collaborative robot movement cannot reduce any single-
cluster’s cycle time more than what the decoupled cluster
with tibi

= 0 can reach. This observation is summarized in
the next lemma.

Lemma 3: Let Ti(πi) be the cycle time for Ci when
operates collaboratively with all other clusters in the multi-
cluster tool, then Ti(πi) ≥ T 0

i (πi) under any πi.
If we attempt to schedule the multi-cluster tool using

the decoupled single-cluster tools with all buffer modules
replaced by zero-processing time modules, it is unlikely to
obtain a cycle time equal to the lower-bound because some
clusters are forced to synchronize with the adjacent clusters.
Therefore, it is necessary to take into account the interactions
among all clusters.

Consider a 2-cluster tool consisting of C1 and C2 with C2

being the leaf cluster tool. We drop n2 from T 0
2 (π2) because

n2 is completely determined by π2 as shown in Lemma 1.
Let kL be the largest PM index (if exists) in ΛP

1 smaller than
k in π1 and kR be the smallest PM index (if exists) in ΛP

1

greater than k in π1. From C2’s point of view, P1b1 is its
input/output module P20. After R2 unloads a job from it, it
will take a certain time delay before R2 loads a job to it. This
delay makes P20, from C1’s point of view, a resource with a
recourse cycle time as RCT (P20). Also, let RCT 0(P20) =
RCT (P20)− t20 and the following theorem gives a formula
for the cycle time of a 2-cluster tool with a single-space
buffer.

Theorem 2: For a 2-cluster tool C1 and C2 connected by
a single-space buffer P1b1 and under schedule π = (π1, π2),
the minimal cycle time is

T1,2(π1, π2;n1 − 1, n2)=

max{T tS1
1 (π1;n1 − 1),T 0

2 (π2),K12},

where T
tS1
1 (π1;n1 − 1) = T1(π1;n1)|t1b1=tS1

, tS1 =
RCT 0(P20) = βδ2

2 +
∑p

l=1 α2l + β2 +
∑c2

l=q+1 α2l,

p = max{p : A20A21 · · ·A2p ⊆ π2}, q = min{q :
A2qA2,q+1 · · ·A2,c2−1A2,c2 ⊆ π2},

K12 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

RCT 0(P1b1 )+T F δ2
2

n2
, if b1 ∈ ΛP

1 ,

max
{

RCT 0(Q)+T F δ2
2

n2
: Q ∈ {P1kL

, P1kR
, R1}

}
,

if b1 ∈ ΛR
1 ,

RCT 0(P1b1) = RCT (P1b1)|t1b1=0, RCT 0(Q) =
RCT (Q)|t1b1=0, and TF δ2

2 (π2) = βδ2
2 +

∑c2
j=1 α2j ; if

p = 0 (q = c2), then the first (second) sum in tS1 is zero.
Theorem 2 captures the dependencies between C1 and C2

analytically through two terms: RCT 0(P1b1)+ tS1 and K12.
tS1 can be viewed as P1b1 ’s “virtual processing time,” which
is equal to the time duration for R2 to return a job to P1b1

after R2 unloads a job from it, that is, RCT 0(P20). K12

is the AJRCT, representing the n-unit job-resource cycle,
which is the phenomenon appearing in scheduling multi-
cluster tools but not in single-cluster tools. The K12 term
is due to interaction between the two single clusters. We can
extend the results in Theorem 2 to an m-branch tool [8].

Corollary 1: For an m-branch-cluster tool under a sched-
ule π = (π1, π2, . . . , πm) and all buffers are single-space,
the minimal cycle time is

T1,...,m(π1, . . . , πm)

= max
{

max
1≤i≤m−1

T
tSi
i (πi), T 0

m(πm), max
1≤i≤m−1
j>i

Kij

}
, (2)

where T
tSi
i (πi) = Ti(πi)|tibi

=tSi
, tSi

= RCT 0(Pi+1,0), for
bi ∈ ΛP

i , i �= m, j = i + 1, . . . , m − 1,⎧⎪⎪⎨
⎪⎪⎩

Kij =
RCT 0(Pibi

)+
Pj

k=i+1 T F0δk
k +RCT 0(Pk0)

Pj−1
k=i+1(nk−1)+nj

,

Kim =
RCT 0(Pibi

)+
Pm−1

k=i+1 T F0δk
k +T F δm

m
Pm−1

k=i+1(nk−1)+nm
,

RCT 0(Pibi
) = RCT (Pibi

)|tibi
=0, RCT 0(Pi0) =

βδi
i +

∑pi

l=1 αil + βi +
∑ci

l=qi+1 αil, pi =
max{pi : Ai0Ai1 · · ·Aipi

⊆ πi}, qi = min{qi :
Aiqi

Ai,qi+1 · · ·Ai,ci−1Ai,ci
⊆ πi}, TF 0δi

i =
βδi

i +
∑ci

l=1,l �=bi
αil + α0

ibi
, i = 1, · · · ,m − 1,

and TF δm

m = βδm
m +

∑cm

l=1 αml. If ∃i such that
bi /∈ ΛP

i , then the term RCT 0(Pibi
) in Kij becomes

max
{

RCT 0(Q) : Q ∈ {
PikL(Pibi

), PikR(Pibi
), Ri

}}
, where

PikL(Pibi
) and PikR(Pibi

) have the similar definition as in
Theorem 2.

For a 2-cluster tool C1 and C2, when the buffer is double-
space, there could be three possible cycle times that are given
in the following theorem.

Theorem 3: For a 2-cluster tool consisting of single-
cluster tools C1 and C2 connected by a double-space buffer
P1b1 and under schedule π = (π1, π2), the three possible
cycle times are, respectively,

(i) T1,2(π1, π2;n1 − 1, n2) is the same in Theorem 2.
(ii) T1,2(π1, π2;n1, n2) = max{T 0

1 (π1;n1), T 0
2 (π2)};



(iii)

T1,2(π2, π2;n1 + 1, n2) = max{T 0
1 (π1;n1), T 0

2 (π2),RR12}
,

where RR12 = RCT (R1) + RCT (R2) + 2(ε1 + ε2) −
(RCT 0(P1b1) + RCT 0(P20)).

From Theorem 3, we conclude that given a schedule
π = (π1, π2), the optimal job distribution is (n1, n2) if the
buffer is double-space and (n1−1, n2) if the buffer is single-
space, where n1 and n2 are determined by Lemma 1. One
main reason for deriving the closed form expression for the
minimal cycle time is that the closed form expression reveals
the structural properties of the cycle time, and thus allows
us to develop efficient algorithms to finding the optimal
schedule. The following theorem states that the optimal
schedules for a 2-cluster tool can be found in polynomial
time. The results derived for scheduling branch-cluster tools
can be extended to find the smallest cycle time of an M -
cluster tool [8].

Theorem 4: Finding an optimal schedule for a 2-cluster
tool can be solved in polynomial time.

IV. EFFICIENT SCHEDULING OF MULTI-CLUSTER TOOLS

In this section, we develop conditions under which a multi-
cluster tool can be decoupled such that existing efficient
algorithms for single-cluster tools can be used to find the
optimal schedules. We also derive optimality conditions
under which the pull schedule is optimal.

Lemma 4: For a 2-cluster tool with a single-space buffer,
the two dependency terms RCT 0(P1b1) + tS1 and K12 in
Theorem 2 are minimized under the pull schedule (πp

1 , πp
2),

(πp
1 , πp

2) = arg min
(π1,π2)

{RCT 0(P1b1) + tS1}, (3a)

(πp
1 , πp

2) = arg min
(π1,π2)

{K12}. (3b)

We define the concept of decoupling equivalence (DE)
is a property of an M -multi-cluster tool with which the
throughput of the tool is equal to the maximum throughput
of the M decoupled single-cluster tools,

T1,...,M (π1, . . . , πM ) = max
{

max
i∈ΩD∪L

T 0
i (πi), max

i∈ΩS

T tS
i (πi)

}
,

where T 0
i (πi) = Ti(π)|tibij

=0, j ∈ ΦD
i , i ∈ ΩD, T 0

i (πi) =
Ti(π), i ∈ L (index set of leaf clusters), T tS

i (πi) =
Ti(π)|tibij

=td
Sρ(ibij)

, j ∈ ΦS
i , i ∈ ΩS , tdSρ(bij)

= 4ερ(bij) +

3δρ(bij), and ΩS (ΦS
i ) and ΩD (ΦD

i ) denote the index sets
of clusters (buffers) with a single-space buffer module and a
double-space buffer module, respectively.

By Theorem 3, a 2-cluster with double-space buffer mod-
ules can be decoupled because it possesses the DE property.
However, if the buffer module is single-space, the existence
of the DE property depends on the timing data and the
robot schedules. We thus consider the DE property under
the single-space buffer case. Moreover, we only provide the
conditions for bi ∈ ΛP

i . The conditions for bi ∈ ΛR
i can be

obtained in a similar fashion.

Proposition 1: Under schedule π = (π1, π2), a 2-cluster
tool with a single-space buffer module possesses the DE
property iff maxi=1,2

{
RCT (Pijmax

i
), RCT (Ri))

} ≥
max

{
RCT 0(P1b1) + tS1 ,K12

}
, where jmax

i =
argj �=bi

max RCT (Pij), i = 1, 2.
We next focus on the DE property under the pull schedule.
Proposition 2: Under the pull schedule, a 2-cluster tool

with a single-space buffer module possesses the DE property
iff (1) at least one of the conditions (i) and (ii) is satisfied,
and (2) at least one of the conditions (iii) and (iv) is satisfied:

(i) max
{
t1jmax

1
, 2(c1 − 1)ε1 + (2c1 − 1)δ1

} ≥ 4ε2 + 3δ2;
(ii) max

{
t2jmax

2
, 2(c2 − 1)ε2 + (2c2 − 1)δ2

} ≥ 4ε1 + 3δ1;
(iii) c2 max

{
(c1 + 1)β1, β1 + α1jmax

1

} ≥ β1 +βδ1
1 +βδ2

2 +∑c2
l=1 α2l; and

(iv) c2 max
{
(c2 + 1)β2, β2 + α2jmax

2

} ≥ β1 +βδ1
1 +βδ2

2 +∑c2
l=1 α2l.

Roughly speaking, Conditions (i) or (ii) in Proposition 2
imply that to satisfy the DE property, either the time for R2

to return a job to the buffer is smaller than at least one of the
processing times at C1; or the time for R1 to return a job to
the buffer is smaller than at least one of the processing times
(or robot cycle time) at C2. We can interpret Conditions (iii)
or (iv) similarly. Therefore, in order to decouple a 2-cluster
tool C1 and C2 under the pull strategy, the cluster tool should
have one long processing time (or robot cycle time) in either
C1 or C2, and a short total processing and moving times at
C2.

Proposition 3: If the pull schedule minimizes the cycle
time expression in Eq. (3), then the pull schedule is optimal.

Proposition 3 implies that the decomposition approach
in [6] indeed leads to optimal schedules because the pull
schedule minimizes the decoupling single clusters when the
moving time is zero. Moreover, Proposition 3 also general-
izes the results given by Theorem 3 in [1] to multi-cluster
tools.

In practical applications, the robot moving time among
PMs is relatively small. When the robot moving time is
smaller than the processing times, namely, tij ≥ δi, j =
1, . . . , ci, there is a high incentive for keeping the robots Ri

moving rather than waiting at any particular PM for the sake
of a shorter cycle time. This intuition has been verified in [1]
and summarized as follows.

Proposition 4: The pull schedule (πp
1 , πp

2) is optimal for a
2-cluster tool when tij ≥ δi, j = 1, . . . , ci, j �= b1, i = 1, 2,
and 4ε2 + 3δ2 ≥ δ1.

V. AN INDUSTRIAL EXAMPLE

Fig. 3 shows a schematic of a chemical-mechanical pla-
narization (CMP) polisher used in semiconductor manufac-
turing. CMP is widely used to planarize the wafer surface
and to enhance the photolithograph process performance.
The CMP polisher can be modeled as a 4-cluster tool
with four single-blade robots Ri, i = 1, . . . , 4. A similar
system was studied in [5] under an assumption of zero robot
moving times. Here we relax such an assumption. The wafer
processing times are shown in Table II. The wafers pass



TABLE I

CYCLE TIME CALCULATION FOR THE CMP POLISHER

Time T 0
1 (π1) T

tS2
2 (π2) T

tS3
3 (π3) T 0

4 RCT (P23) RCT (P31) K23 K34 K24 T1234(π)
s 35 125 11 64 45 11 45 65 77 125

through the cluster tool as the following flow chart:

C1
R1−−→ P11

R2−−→ P21
R2−−→ P22

R2−−→ P23
R3−−→ P31

R4−−→ P41

R4−−→ P42
R4−−→ P43

R4−−→ P40
R3−−→ P30

R2−−→ P24
R1−−→ C2.

Cluster #1

Cluster #2

Cluster #4

modules
Cassette

Cluster #3

C1 C2

P22

P21 P43

P42

P41

P31(P40)

P11(P20) P24

P23(P30)

R1

R2

R3

R4

Fig. 3. A schematic of the 4-cluster CMP polisher layout.

From Corollary 1, under schedule π = (π1, π2, π3, π4),
we obtain the cycle time of the polisher as

T1234(π1, π2, π3, π4) = max
{
T 0

1 (π1), T234(π2, π3, π4)
}

=

=max{T 0
1 (π1), T

tS2
2 (π2), T

tS3
3 (π3), T 0

4 (π4),K23,K34,K24},
The optimality conditions specified in Proposition 4 are
easily verified. The robot pull schedules are optimal and the
resource cycle times are listed in Table I. The final one-unit
cycle time for the polisher is 125 s. For the given data, the
n-unit job-resource cycle (here n = 3) and the two buffer
resource cycles do not dominate the cycle time, and this
cluster tool possesses the DE property.

TABLE II

CLUSTER TOOL TIMING PARAMETERS

Clusters εi (s) δi (s) tij (s)
C1 5 5 N/A
C1 5 5 t21 = 90, t22 = 30
C1 1 1 N/A
C1 1 0 t41 = t42 = t43 = 60

We perform a large number of Monte Carlo simulations
to examine the effect of the uncertainties in processing,
loading/unloading, and moving times to the DE property and
the optimality of the pull schedule. Each simulation includes
1,000,000 replications, all following the same distribution.
In all experiments, εi, δi ∼ U(0.1, 10), i = 1, 2 and
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Fig. 4. Sensitivity analyses of DE property and pull optimality versus the
variation of robot moving and load/unload time.

εi, δi ∼ U(0.1, 1), i = 3, 4. Fig. 4 shows that when both
the robot moving and load/unload times change, the average
percentages that the DE property holds and the pull schedule
is optimal decrease quickly at the beginning but very slowly
at around 68% and 47%, respectively.

VI. CONCLUSION

This paper presented the k-unit optimal scheduling prob-
lem for multi-cluster tools with single-blade robots. The
inter-cluster interactions among multiple clusters create
the phenomena of k-unit job-resource cycles. We used a
resource-based method to analytically capture the dependen-
cies among clusters. A closed-form cycle time expression
was obtained for multi-cluster tools and a polynomial-time
algorithm to finding the optimal schedule was also pro-
vided for 2-cluster tools. Decoupling conditions and optimal
conditions of the robot pull strategy were also established
for a multi-cluster tool. A CMP polisher in semiconductor
manufacturing production is used as an example to illustrate
the proposed formulation and algorithms.
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