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Abstract— Home service robot works in unstructured en-
vironments with various tasks, where a low-cost, dexterous,
and intrinsically safe manipulator is important. Traditionally,
a redundant manipulator with high degrees of freedom (DOFs)
is employed. However, high DOFs bring problems like high
cost, complex physical designing, and heavy weight. Here a
novel low-cost deformable manipulator for home service robot,
which is composed of rigid joints and deformable links, is
introduced. The deformable manipulator can obtain relatively
dexterous and extended workspace with fewer joints by bending
its deformable links. Considering the typical hybrid behaviors
caused by bending operation, a hybrid model and a practical
kinematic-free control framework with no prior kinematic in-
formation are proposed to describe and control the deformable
manipulator. The model and controller have been implemented
on a 4-DOF deformable manipulator with two deformable links
in simulation. The simulation results validate the proposed
deformable manipulator and kinematic-free control.

I. INTRODUCTION

A. Background

Home service robots work in unstructured environments
with various tasks. Hence a low-cost, dexterous and intrinsi-
cally safe manipulator is important for home service robots
[1]. Traditionally, the links of manipulator are designed to be
stiff to avoid kinematic error. However, stiff links result in
fixed workspace and make it difficult to adapt to various tasks
in home service. Moreover, rigid manipulators may cause
some safety issues by collisions.

The traditional approach for this case is to design a
redundant manipulator with high degrees of freedom (D-
OFs). However, high DOFs bring problems like complex
physical designing, motion planning, and cost problem. Our
manipulator is similar to continuum manipulators, such as the
Soft Robotic Octopus Arm [2]–[4], the RobotinoXT [5]–[8]
made by Festo-Didactic, the Concentric Tube Robot [9]–[12].
However, continuum manipulators also have the high cost
problem due to their special materials or special actuators.
As a result, they are not very suitable for home service.

The deformable manipulator proposed in this paper (as
shown in Fig. 1) can obtain relatively more dexterous
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Fig. 1. (a) A 4-DOF deformable manipulator with two deformable links.
(b) The components of the deformable link can be simplified as a series of
rigid spheres connected with each other.

and extended workspace with fewer joints by bending it-
s deformable links. However, frequent changes in links’
shape bring difficulties to the model and control of the
deformable manipulator. Hybrid systems are systems that
display both continuous and discrete behavior [13]–[15].
The bending operation breaks up the continuous flow of
the deformable manipulators, which is described by the
manipulator’s kinematic model, and leads to typical hybrid
behaviors. The kinematic parameters experience a drastic
change and become totally unknown. In our previous work
[16]–[18], the kinematic parameters identification algorithms
based on Denavit-Hartenber (DH) model and screw theory
model are discussed. However, the reconstructed model can
only describe the manipulator’s performance between two
adjacent bending operations. Moreover, the bending oper-
ation is frequent and it is relatively inefficient to run the
identification algorithm every time.

Here a novel low-cost deformable manipulator, which is
composed of rigid joints and deformable links, is introduced.
The deformable links can be bent according to different
tasks. One example of such material is the condenser pipe
used in numerical lathe. It is very low-cost and easy to be
obtained. Besides, the deformable links are compliant with
impedance. Therefore, it is intrinsically safe and does not
cause any damage to people and environments. Considering
the typical hybrid behaviors, a hybrid model and a practical
kinematic-free control framework with no prior kinematic
information are proposed. The kinematic-free controller is
based on the hypothesis that the Jacobian matrix is constant
in a local region. It can be estimated by moving each actuator
independently by an incremental amount and observing their
effects on the robot’s end-effector.



B. Related Work

The deformable manipulator exhibits typical hybrid behav-
iors due to the effect of bending operations. There is still little
related work in modelling a manipulator as a hybrid system.
Chareyron et al. [19] model the contacts between the robots
and their environments as discrete events that intertwine
with the continuous dynamics, namely, a hybrid system.
Ames et al. [20], [21] model the bipedal robot walking as
a hybrid model with impulse effects when the robot’s feet
contacted with ground. Nevertheless, the distinction between
our system and these hybrid systems is that the discrete
events in our system need to be determined by ourselves,
namely, when to trigger a bending operation need to be
designed in our control framework.

Another group of related work is model-free or kinematic-
free control methods. Kormushev et al. [22], [23] propose
a radically new concept for controlling robots called En-
coderless Robot Control (EnRoCo). EnRoCo uses an external
camera to perceive the effects that the actuators have on the
robot’s motion and then uses learning algorithms to decide
what actuation signals need to be sent to the actuators in
order to achieve the desired robot motions. Another model-
free controller is proposed by Yip et al. [24]. They use
an optimal control strategy to generate the control signals
and update the Jacobian matrix in each control period.
Vikas et al. [25] also present an model-free, data-driven,
reinforcement learning inspired approach. They represent the
state transitions on a directed graph and then formulate the
robot locomotion as a class of optimization problems on
directed graphs, which is very close to our work.

However, the situation that a target is unreachable is
not considered in all these model-free control methods.
Thus these control methods cannot be applied directly to
the deformable manipulator. In our control framework, the
controller can tell whether a target is unreachable or not and
trigger a bending operation without supervision.

II. PROBLEM DEFINITION

The components of a deformable link can be simplified to
a series of rigid spheres connected with each other (as shown
in Fig. 1). Deformable links have the typical property: When
the external torque is smaller than a threshold, they can be
viewed as a rigid body. Their shapes are changed when the
external torque is larger than the threshold.

Denote τi, i = 1, 2, · · · , N as the external torque exerted
to the i-th sphere, where N is the number of spheres, fs
and fd as the static and dynamic friction forces between the
adjacent spheres, respectively, and r as the radius of each
sphere. fs is the force that locks the deformable link to hold
a specific curve. Ci is the frame attached to the i-th sphere
and i−1

i T ∈ SE (3) is the transformation from frame Ci to
frame Ci−1. The aforementioned assumptions and properties
can be formulated as following:

Assumption 1: The friction torque is always opposite to
the external torque in direction. Also, we have τs,max >
τd, where τs,max = fs,maxr is the maximum static friction
torque and τd = fdr is the dynamic friction torque.
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Fig. 2. A path Ptar is given by a sequences of targets that generate a
curve in 3-D space.

Assumption 2: The i-th sphere’s motion is pure rotation
under the action of external torque and the relative position
expressed in frame Ci−1 is constant.

Property 1: If τi ≤ τs,max for all i ∈ [1, N ], i−1
i T is

constant and there is no relative motion between adjacent
spheres.

Property 2: If τi > τs,max for some i ∈ [1, N ], the i-
th sphere performs pure rotation and the resulting torque
exerted to the i-th sphere is τi − τd.

Based on Assumptions 1, 2 and Properties 1, 2, the
transformation i−1

i T can be formulated as the following:

i−1
i T =

[
Ri ri
01×3 1

]
, (1)

where Ri = rotz(αi)roty (βi) rotz (γi) is the rotation
matrix and translation ri = [0, 0, 2r]

T is constant. So
the deformable link can be described by a function:
f (· · · , αi, βi, γi, · · · ), i = 1, 2, · · · , N , where αi, βi, γi are
Euler angles.

A deformable manipulator is a manipulator with several
deformable links. For example, the deformable manipulator
shown in Fig. 1(a) has two deformable links: one is the link
between its shoulder and elbow and the other one is the link
between its elbow and wrist.

An expected path is given by a sequence of targets that
generate a curve in 3-D Euclidean space and should be
reached by the end-effector. The path can be denoted by
a queue: Ptar = {xtar1,xtar2, · · · ,xtarM}, where M is the
number of targets and xtarj , for j = 1, 2, · · · ,M , is one of
the targets. In this context, the path is specified only in the
task space and not in the time domain.

Let Xi denote the manipulator’s workspace in a specific
configuration. Ptar is classified as a long path (as shown
in Fig. 2) if it satisfies: (1) Ptar ⊆

∪
i

Xi; (2) ∀Xi, always

∃xtarj ∈ Ptar such that xtarj /∈ Xi. A long path is difficult
to be continuously tracked by traditional manipulators with
stiff links due to joint limits, self collision, etc. However, the
deformable manipulator provides a feasible scheme to track a
long path with fewer joints by bending its deformable links.
Nevertheless, the bending operation breaks up the continuous
flow and leads to hybrid behaviors. We need to address the
model and control problems in this paper.

Problem Statement: Given a long path Ptar =
{xtar1,xtar2, · · · ,xtarM}, model and design a control pol-
icy for the deformable manipulator to generate a complete
hybrid execution to track the path Ptar.
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Fig. 3. The hybrid model of the deformable manipulator is represented by
a directed graph.

III. A HYBRID MODEL AND KINEMATIC-FREE CONTROL
FRAMEWORK FOR DEFORMABLE MANIPULATOR

A. A Hybrid Model Based on Kinematic-free Control

The bending operation leads to the manipulator’s instanta-
neous change in kinematic model and makes the manipulator
exhibit hybrid behaviors. Based on the kinematic-free control
framework, the deformable manipulator is switched among
three control modes, which are Jacobian Estimation Mod-
e (JEM), Differential System Mode (DSM), and Bending
Operation Mode (BOM), according to different conditions.
In JEM, the system needs to estimate the Jacobian matrix.
In DSM, the system is governed by its kinematic model.
Therefore, the state of the deformable manipulator is changed
continuously. In BOM, the system triggers a bending opera-
tion to obtain a better workspace. The goal is to control the
deformable manipulator to accomplish a tracking task. It is
straight forward to define a hybrid model, as shown in Fig.
3, to describe this process: H = (Q,X , f, I, E ,G,R), where

• Q = {q1, q2, q3, q4, q5, q6} is a set of discrete states. q1,
q2 and q3 denote that the system is in JEM, DSM and
BOM, respectively. q4 denotes that one target is reached
by the end-effector. q5 denotes that the tracking task
is accomplished. q6 denotes that the given path is an
infeasible task for this deformable manipulator.

• X =
∪
i

Xi ⊆ R3 is a set of continuous states. In

this context, the end-effector’s position is chosen as the
continuous states.

• f (q2, x) : Q × X → R3 describes the system’s
continuous flow in DSM.

• I ⊆ Q×X is a set of initial states; Starting from a blank
state, the system firstly estimates the Jacobian matrix,
namely, I = {q1} × X .

• E = {(qi, qj)} ⊆ Q ×Q, i, j ∈ [1, 6] is a set of edges;
There are 10 edges in this graph, as shown in Fig. 3.

• G = {g (qi, qj)}, i, j ∈ [1, 6] is a set of transition
conditions corresponding to different edges; Obviously,
g (qi, ·) is disjoint for all i.

• R = {r (qi, qj ,x)}, i, j ∈ [1, 6] is a set of reset maps
corresponding to different edges. r (qi, qj ,x) = x for
all i, j except for i = 3 and j = 1. r (q3, q1,x) =
x′ because bending operation leads to instantaneous

change for continuous state. x′ can be measured.
The goal is to design g (qi, qj) , i, j ∈ [1, 6] for each edge

such that the system can reach q5 or q6 finally and this work
is done by the kinematic-free control framework.

B. Kinematic-free Control Framework

Without loss of generality, common notations and assump-
tions are defined here:

Assumption 3: The position of manipulator’s base frame
r0, position of the third joint r3, and position of the fourth
joint r4, can be measured by a camera. The maximum length
of two deformable links are known and denoted by Lmax1

and Lmax2, respectively.
This assumption is to judge whether a path tracking is

an infeasible task or not. It is not used in the kinematic-
free control process. For simiplificati, a strong condition is
defined for the deformable manipulator shown in Fig. 1:

g (q1, q6) = g (q2, q6)

= {Q × X |∥xtarj − r0∥ > Lmax 1 + Lmax 2 },
(2)

which means that a target is too far away from the base.
Whenever this condition is satisfied, the system switches to
q6 and declares that “This path is infeasible to be tracked”.

Assumption 4: The position of the end-effector xcur can
be measured and the measurement is accurate enough.

A manipulator can be described by a Jacobian model:
ẋ = Jθ̇θθ. Analysing the elements of J, it is deterministic
and unknown in a specific position. Fortunately, J can be
treated as a constant in a local region. Ji, the i-th column of
J, represents the contribution of the i-th actuator, θi, on the
end-effector position. Then J can be estimated by moving
each actuator independently by an incremental amount and
observing their effects on the robot’s end-effector.

The kinematic-free control framework can be summarized
as a three-step process: 1) Estimate the initial Jacobian matrix
Ĵ, 2) Generate control signals ∆θθθ in q2, and 3) Evaluation
of Jacobian matrix according to visual feedback.

1) Estimate the initial Jacobian matrix Ĵ:
When the system is switched to q1, J needs to be estimat-

ed. Starting from the initial set, each actuator is driven by
an incremental amount ∆θi. Then the effect on end-effector,
∆x, is measured by a camera. Thus

Ĵi = ∆x/∆θi, (3)

Ĵ =
[
Ĵ1 · · · Ĵn

]
. (4)

Ĵ can be viewed as a constant and be re-used in a local
region. Thus it is not necessary to estimate the Jacobian
matrix in every control period.

The error vector ∆x is defined as

∆x = xtarj − xcur. (5)

Theorem 1. If a target xtarj is unreachable in the current
configuration, then each row in Jacobian, Ji, is perpendicular
to the error vector ∆x at the point that is the closest to xtarj

in the current workspace.



Please feel free to contact us for the proof of Theorem 1.
According to Theorem 1, we define the condition as:

Q1 =

{Q} × X

∣∣∣∣∣∣
n∑

i=1

∣∣∣∣∣∣ Ĵi∆x∥∥∥Ĵi

∥∥∥ · ∥∆x∥

∣∣∣∣∣∣ < n cosϕmax

,

(6)

where n denotes the manipulator’s DOFs, ϕmax is a tolerable
threshold for the angle between Ĵi and ∆x.

Considering the joint limits and mechanical interface, we
define the condition as:

Q2 =

{
{Q} × X

∣∣∣∣∣∪
i

(θi > θimax ∪ θi < θimin)

}
. (7)

Hence, g (q1, q3), g (q2, q3) and g (q1, q2) are defined as:

g (q1, q3) = {{q1} × X |Q1 ∪Q2 } \g (q1, q6) ; (8)
g (q2, q3) = {{q2} × X |Q1 ∪Q2 } \g (q2, q6) ; (9)
g (q1, q2) = ({{q1} × X} \g (q1, q3)) \g (q1, q6) , (10)

where A\B is the relative complement set of B in A.
Here we can give a more precise definition for r (q3, q1,x):

r (q3, q1,x) =

{
h (· · · , θci , · · ·) g (qj , q3) ∈ Q2

x′ g (qj , q3) /∈ Q2
, (11)

where h (·) is the kinematic function which is unknown to
our controller and θci =

(θimax+θimin)
2 , in which θimax and

θimin are the maximum and the minimum allowable joint
values, respectively. This definition means that the i-th joint
is set to its middle position when the bending operation is
caused by joint limits.

If g (q1, q3) or g (q2, q3) is satisfied, namely, a target
is unreachable or a joint crosses its limits, the system is
switched to q3. In discrete state q3, the system needs to
solve the problem that what configuration the deformable
link should be bent to. In this paper, we adopt a heuristic
method to get a feasible solution for a special case, which
will be explained in Section IV.

After the bending process, the system is switched to q1
again to re-estimate the Jacobian matrix. Thus g (q3, q1) can
be defined as:

g (q3, q1) = {{q3} × X} . (12)

2) Generate control signals ∆θθθ in q2:
After the Jacobian matrix is estimated in q1, the system

is switched to q2 to generate control signals. The Jacobian
matrix estimated in the first step is only effective locally.
Therefore, the error vector ∆x cannot be used directly to
generate the control signals. Hence the key of kinematic-
free controller is to generate a tiny and temporarily desired
displacement for the end-effector in each control period.
Define ∆xd as the desired displacement:

∆xd =
a (xtarj − xcur)

∥xtarj − xcur∥
, (13)

where a =

 3 ∥∆x∥ > 10
1 5 < ∥∆x∥ < 10
0.5 ∥∆x∥ ≤ 5

is the step length.

Then the control signal is generated according to

∆θθθ = J†∆xd +
(
In − J†J

)
ννν, (14)

where J† = ĴT
(
ĴĴT

)−1

is the pseudoinverse of Ĵ, ννν =

−∂Φ (θθθ)/∂θθθ is the secondary task, In is the identity matrix.
To avoid joint limits and self collision, Φ (θθθ) is defined as:

Φ (θθθ) =
λ

2

n∑
i=1

wi
(θi − θci)

2

θimax − θimin
, (15)

where λ is the tuning coefficient, wi is the weight for each
joint.

3) Evaluation of Ĵ according to visual feedback:
The end-effector’s position, after ∆θθθ is exerted to the

system, is denoted as xcur+1. Then the actual displacement
of end-effector, ∆xk, is measured by

∆xk = xcur+1 − xcur. (16)

Then the deviation between ∆xk and ∆xd can be seen as
the evaluation of the Jacobian matrix:

ε = ∥∆x′∥ = ∥∆xk −∆xd∥ . (17)

Hence, we can define g (q2, q4), g (q2, q1), g (q4, q2),
g (q4, q5) as:

g (q2, q4) = {{q2} × X |∥xtarj − xcur+1∥ < rth }
\g (q2, q3) \g (q2, q6) ;

(18)

g (q2, q1) = {{q2} × X |ε > aεmax }
\g (q2, q4) \g (q2, q3) \g (q2, q6) ;

(19)

g (q4, q2) = {{q4} × X ∥|P ′
tar| > 0} ; (20)

g (q4, q5) = {{q4} × X ∥|P ′
tar| = 0} , (21)

where rth defines a ball region centered in the current target
and εmax is a tolerable upper bound for the inaccuracy of
Jacobian. |·| denotes the cardinality of a set.

The interpretations of these conditions are intuitive:
g (q2, q4) means that a target is reached. Then the system
checks whether g (q4, q5) is satisfied, namely, all targets
are reached. If g (q4, q5) is satisfied, the long path tracking
task is accomplished and the system is switched to q5.
Otherwise, the system comes back to q2 and tracks the next
target. g (q2, q1) means that the deviation between actual and
desired displacement is too large, namely, the Jacobian is
not accurate enough. Thus the system is switched to q1 to
re-estimate the Jacobian matrix.

Theorem 2. Given a target xtarj , the end-effector is driven
to a ball region , whose center is the target and its radius is
a, or to a point that is the closest to xtarj in the current
workspace. The distance decreases at a rate which is no
slower than |a (1− εmax)|, where εmax < 1.

Please feel free to contact us for the proof of Theorem 2.
Please note that εmax is an upper bound. Actually, we can
assign a larger value to εmax to avoid frequent re-estimation
in actual use.



IV. EXPERIMENTS IN SIMULATION

To verify the proposed model and controller, the experi-
ments in simulation are conducted on a 4-DOF deformable
manipulator with 2 deformable links. One deformable link,
which is composed of 10 sphere components, connects
the shoulder joint and elbow joint. The other one, which
is composed of 5 sphere components, connects the elbow
joint and wrist joint. The base frame of the deformable
manipulator is given by:

T0 =


0 0 −1 0
0 −1 0 200
−1 0 0 400
0 0 0 1

 . (22)

Any prior kinematic parameters are not given to the con-
troller in any way. Since the experiments are performed in
simulation, there is no need to use a camera. Instead, the end-
effector’s position is obtained internally from the simulator.

Two types of experiments are performed as follows:
1) Type 1: Simple Tracking Task. In type 1, all targets

are distributed in the current workspace of the deformable
manipulator. The deformable manipulator can track these
targets without bending operation;

2) Type 2: Difficult Tracking Task. In type 2, the targets
are distributed in a relatively big scope of the 3-D Euclidean
space. For a traditional manipulators with the same DOFs (4-
DOF in this paper) and same link lengths, its workspace is
restricted due to joint limits, self collision, etc. Therefore, it
may be impossible to design a manipulator whose workspace
can cover the whole path. However, the deformable manipu-
lator can obtain dexterous and extended workspace to track
all targets by bending operation.

The experiments and their results are explained in detail
below. The parameters of the controller used in these ex-
periments are: rth = 3.0mm, εmax = 1.5mm, θθθmin =
[−π,−π,−6π/7,−2π]

T , θθθmax = [π, π, 6π/7, 2π]
T , ϕmax =

5π/12, W = [w1, w2, w3, w4] = [1, 1, 2, 1], β = 2.

A. Type 1: Simple Tracking Task

In this experiments, a more strict threshold is given: rth =
1.5mm. The controller is given a whole reference trajectory
that needs to be tracked. The path, which is given by a set of
fuchsia points, is composed of two parts. One is the square
shape path and the other is the figure-8 shape path. The side
length of the square is 200mm. The figure-8 shape path is
composed of two circles, whose diameters are both 100mm.
The reference trajectory is specified only in the task space
and not in the time domain.

An attempt to track this trajectory is shown in Fig. 4. This
experiment demonstrates that the kinematic-free controller
can reuse the Jacobian in a big scope of the workspace which
is reflected by the reduced time of re-estimation process. This
experiment demonstrates that the controller can control the
deformable manipulator to track a desired path or target with
no prior information about the kinematic parameters, as well
as the traditional controller.
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Fig. 4. (a) The path, (b) The recorded joint positions (in radian), and (c)
The norms of error vectors of a simple tracking task

B. Type 2: Difficult Tracking Task

A given long path, Ptar = {xtar1,xtar2, · · · ,xtar20},
which is denoted by the red points in Fig. 5(a), is a line
segment whose origin is xtar1 = [−100, 200, 300]

T (mm)
and end position is xtar20 = [−500, 600, 400]

T (mm). The
targets in this path are distributed in a relatively big scope
of 3-D Euclidean space and are very difficult to be tracked
by traditional manipulators with the same DOFs.

What configuration of the deformable links should be bent
to is formulated as the following optimal problem:

Max
αi,βi,γi

L1 + L2

subject
{

L1 − L2 ≤ ∥xtarj − r0∥
αi ≤ αmax, βi ≤ βmax, γi ≤ γmax

, (23)

where xtarj is the current target, L1 = ∥r3 − r0∥ and L2 =
∥r4 − r3∥ are the effective lengths of two deformable links,
respectively, αmax, βmax, and γmax are the maximum values
for each sphere. L2 remains constant in the optimal process.

The experiment results are shown in Fig. 5. Since xtar1 is
unreachable in current configuration, the system is switched
to q3 when it reaches the point that is the closest to the target
(Q1 is satisfied). A bending operation is triggered to shorten
the length of L1. Then three bending operations are triggered
successively to elongate L1 when xtar6, xtar9 and xtar18 are
tracked, in which two times are caused by Q2 (k2, k3) and
the other one is caused by Q1 (k1, k4). It can be seen that
the end-effector’s position exhibits an instantaneous change
from x−

ki
to x+

ki
, which is a typical hybrid behavior (the time

in Jacobian estimation and bending process is neglected).
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Fig. 5. (a) The path, (b) The recorded joint positions (in radian), and (c)
The norms of error vectors to track a long path.

These simulation results demonstrate that the deformable
manipulator can obtain dexterous and extended workspace
with fewer joints by bending operations.

V. CONCLUSION

In this paper, we proposed a novel deformable manipulator
to provide dexterous workspace at low-cost. The deformable
manipulator can obtain relatively dexterous and extended
workspace with fewer joints by bending its deformable links.
A hybrid model and kinematic-free control framework were
proposed to describe and control the manipulator to track a
long path, which is usually difficult to be tracked by con-
ventional manipulators with the same DOFs. The simulation
results demonstrated that the deformable manipulator can
obtain dexterous and extended workspace with fewer joints
by bending operations.

There are still two issues remaining to be investigated
in the future work: First, what configuration should a de-
formable link be bent to; Second, how to bend it to a desired
configuration. The practical real-world implementation will
also need to be done in the future work.
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