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Abstract— To develop a multi-modal in-traffic bridge deck
scanning device, we need to calibrate extrinsic parameters of a
ground penetrating radar (GPR). GPR output is in a non-
Euclidean coordinate system because it only detects under-
ground objects relative to road surface. When road surface
is non-planar, its output cannot be trivially mapped to a 3D
Cartesian system which is necessary for sensor fusion. We
design an artificial planar bridge as the calibration device to
ensure that the GPR output maintains Euclidean coordinate
property during the calibration process. The bridge also allows
us to adjust metal balls as calibration objects. We model the
GPR imaging process and extract readings from hyperbolas
generated from metal balls. We employ the maximum likelihood
estimator to estimate the rigid body transformation and provide
the closed form error analysis. We have conducted physical
experiments to validate our calibration process. Results show
that the calibrated model has an average error of 9.77 mm for
testing samples. This is satisfying because the GPR signal wave
length is 18.8 cm.

I. INTRODUCTION

We are interested in developing automatic scanning de-
vices for in-traffic bridge deck inspection, which requires us
to combine a ground penetrating radar (GPR) with a camera
to form a multi-sensor suite that is capable of simultaneously
performing both subsurface and surface inspection. Fusing
the data from different sensors is nontrivial. Unlike the
camera, the intrinsic 3D coordinate system of a GPR is not
necessarily Euclidean because its horizontal plane is assumed
to be overlapped with the road plane. When the road surface
is non-planar, its output cannot be directly aligned with Eu-
clidean 3D structure constructed from the camera. An indoor
pre-calibration that estimates GPR extrinsic parameters (i.e.
rotation and translation difference in coordinate systems) to
establish coordinate system transformation between sensors
is necessary. The first step to achieve this is to perform an
extrinsic calibration on the GPR.

Here we propose a method for the extrinsic calibration of
a GPR (see Figure 1). We design an artificial planar bridge as
the calibration device to ensure the GPR output coordinate
is Euclidean. Using metal balls as calibration objects, we
model the GPR imaging process and extract hyperbolas in
the GPR image to recover metal ball coordinates in the GPR
coordinate system. Combining with direct position measure-
ments in the world coordinate system, we can estimate the
rigid body transformation relationship between the GPR local
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Fig. 1. Extrinsic calibration of a GPR. The GPR is mounted on a tri-
wheel survey cart, and placed on the calibration platform. After moving
along a straight line, the GPR registers a radargram. The radargram and the
calibration patterns are inputs to the calibration problem. The coordinate
system mapping between the world frame {W} and the local frame {G} is
the output.

coordinate system and the world coordinate system. We also
analyze the error propagation and present the closed form
error distribution for our calibration results. We have tested
our calibration method in physical experiments and results
show that the calibrated model has an average error of 9.77
mm for testing samples. Considering the fact that the GPR
signal wave length is 18.8 cm, the result is satisfying.

II. RELATED WORK

To improve the accuracy of a mechanism or a sensor,
calibration is an indispensable technique which contains
three main components: a model, measurements, and a
parameter estimation process [1]. It begins with a closed-
form geometry and/or physical model that characterizes a
mechanism or a sensing phenomenon. A calibration process
is to collect measurements to estimate the model parameters.
The measurements are always noisy which is often described
by statistical error models. The error models can be obtained
either analytically or statistically. A Gaussian distribution
is a common error model due to its robust asymptotic
probability attributes in large populations [2]. The parameter
estimation process finds the model parameters by minimizing
an aggregated error metric function.

Mechanism calibration often solves the kinematic pa-
rameters and the inertial parameters for mechanisms with
prismatic or revolute joints. Similar to the geometry model
in the GPR extrinsic calibration problem, a kinematic model
builds on a 6 degrees of freedom (DoF) rigid body trans-
formation in a Cartesian coordinate system. In robotics and
automation, mechanism calibration can be seen everywhere:



robot manipulator calibration [3], pan-tilt robotic cameras
calibration [4], and hand-eye calibration [5].

Sensor calibration differs from mechanism calibration due
to the unique combination of intrinsic calibration and extrin-
sic calibration. While the extrinsic model is the similar 6-
DoF rigid body transformation, the intrinsic model describes
the underlying physical principles for sensing [6]. Depending
on different sensors, the corresponding calibration model
varies and leads to different calibration problem: camera
calibration [7], radio antenna calibration [8], LIDAR calibra-
tion [9], and calibration of different kinds of sensors [10].
Our problem belongs to extrinsic calibration which models
GPR imaging characteristics and outputs 6-DoF rigid body
transformation to describe its pose.

A GPR measures the time between echoes of electromag-
netic signals to survey the objects and layers beneath the
ground surface and has many important applications [11]–
[13]. A GPR can be mounted on a robotic system for
mine detection and removal [14], [15]. Also, GPRs can be
integrated with other non-destructive techniques for bridge
deck inspection and evaluation [16]. Recently, a GPR is
carried by a rover combining with additional sensors for
planetary exploration [17]. However, the interpretation of a
GPR image depends on the geometric relationship between
the GPR and its world coordinate system. While most studies
use the GPR as the only sensing modality and do not need to
address extrinsic calibration problem, it is prudent that GPR
extrinsic calibration problem should be addressed if the in-
depth fusion of GPR data and other sensors are needed.

III. SYSTEM DESIGN AND PROBLEM FORMULATION

A. Calibration System Design and Procedure

The GPR extrinsic calibration has to be conducted while
guaranteeing its output is in an Euclidean coordinate system,
which means the surface has to be planar. To satisfy the
calibration requirement, we have designed an artificial planar
bridge as the calibration device (See Figure 2). The artificial
bridge is made of wood and PVC because they do not impede
radar signals and are strong enough to support the GPR
survey cart to move on the bridge surface. Metal balls with a
1-inch (25.4 mm) diameter are chosen as calibration objects
because they are insensitive to orientations and have good
reflections to radar signals. The bridge allows us to freely
adjust metal ball positions underneath the bridge to generate
different inputs in the world coordinate system.

While the GPR moves on the platform to perform scan-
ning, it senses metal balls under the wooden board and
generates a GPR image. Each metal ball registers a hyperbola
response in the GPR image, which serve as the input GPR
measurements to the calibration problem. The calibration
procedure contains three steps:

1) estimate hyperbola vertexes for each metal ball,
2) calculate metal ball coordinates with respect to the

GPR coordinate system, and
3) estimate the rotation and the translation between the

world and the GPR coordinates.
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Fig. 2. (a) Calibration object (metal ball). (b) Calibration objects supported
by a wooden framework. (c) Calibration platform.

B. Problem Definition

Let us define common notations before introducing the
calibration problem. All 3D coordinate systems are right-
handed coordinates as shown in Figure 3.
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Fig. 3. Coordinate system relationships. Top: {W}, Middle: {G} and GPR
coordinate systems at each frame, Bottom: a sample GPR image.

1) {W} denotes the Cartesian world coordinate system.
W Xi ∈R3 represents the i-th calibration point (located
at the center of the metal ball i) with respect to
{W}. As a convention, we will use the left superscript
indicates the reference coordinate system in this paper.

2) {G} denotes a coordinate system for interpreting GPR
images and describes the GPR pose before it starts
scanning, where the direction of its Y-axis is the GPR
moving direction and its Z-axis is perpendicular to the
bridge surface plane.

3) xk,i ∈R2 denotes one point in the GPR image at frame
k that corresponds to the i-th metal ball.



4) Hi = {xk,i|0≤ k≤m} denotes a hyperbola, which is a
set of points in GPR image.

5) hi ∈ R+ denotes the vertical distance from W Xi to the
ground surface where the GPR is located.

We assume that:
a.1 In each scan, the GPR moves along Y-axis of {G}

on a planar surface during the calibration process. The
distance traveled is provided by a wheel encoder. This
guarantees {G} is Cartesian and there exists a rigid
body transform between {G} and {W}.

a.2 Each GPR scan repeats exactly the same trajectory.
This is guaranteed by forcing the survey cart to move
along a fixed rail track with mechanical stops. This
guarantees {G} is the same across different scanning
trials. Hence the data can be used together to estimate
the {G} to {W} mapping.

a.3 The dielectric material is an uniform dielectric and the
velocity of microwave is constant.

a.4 The measurement noise for metal balls and GPR
readings are Gaussian distribution with zero means.

Now we can define our calibration problem:
Definition 1: Given n metal ball coordinates W Xi with

their vertical distance hi, and their correspondence hyper-
bolas Hi in GPR images, i = 1,2, ...,n, determine rigid body
transformation from {W} to {G}.

IV. CALIBRATION MODELING

We begin with modeling how a metal ball registers a
hyperbola in the GPR image. Then we show how the metal
ball positions can be recovered from the corresponding
hyperbola. With enough corresponding metal ball positions
in both {G} and {W}, we can estimate the rigid body
transformation between {G} and {W}. We also analyze the
error propagation in the process.

A. Modeling GPR Imaging Process

A GPR antenna contains a transmitter (TX) and a receiver
(RX) as shown in Figure 4 [18]. We define {Gk} as the GPR
coordinate system at frame k, where its origin is the center of
TX, its Y-axis is pointing from the origin to the center of RX,
and its Z-axis is perpendicular to the plane where TX and RX
are horizontally located. Let Gk XkORG ∈R3 denote the origin.
We choose the GPR moving direction to the same as the Y-
axis of {Gk}. As shown in Figure 3, all {Gk},k = 0,1,2, ...
are iso-oriented and share the same Y-axis. {G} overlaps
with {G0} by design.
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Fig. 4. GPR coordinate system at frame k.

When a GPR senses the echoed pulse from the i-th metal
ball, it records two kinds of measurements. The first is GPR’s
traveled length lk measured by its wheel encoder, where
lk is a function of GPR positions at frames 0 and k. The
second is the microwave traveling time from TX to object
to RX. Based on assumption a.3, the traveling time can be
converted into the traveling distance. Besides, the TX-RX
offset is usually a known intrinsic and pre-compensated in
GPR images. Therefore, the microwave traveling time allows
the GPR to output a half traveling distance dk,i, where dk,i
is the function of the GPR and the metal ball position. We
can assemble lk and dk,i into a vector xk,i by

xk,i =

[
lk(GX0ORG,

GXkORG)
dk,i(

GXi,
GXkORG)

]
=

[
‖GX0ORG−GXkORG‖
‖GXi−GXkORG‖

]
.

(1)
As shown at the bottom of Figure 3, a GPR image uses

lk as its horizontal axis and dk,i as its vertical axis. As the
GPR moves, a hyperbola is generated. Moreover, let xvi,i =
[lvi ,dvi,i]

T be the vertex of the hyperbola Hi that corresponds
to GXi, where vi is the frame that generates xvi,i, and {Gvi} is
the GPR coordinate system at frame vi as shown in Figure 3.
We know that when the GPR is located at lvi along Y-axis,
dvi,i is the shortest distance from GPR to the i−th metal ball.
Therefore, if the GPR moves from frame vi to frame k, then
we have d2

k,i = d2
vi,i +(lk− lvi)

2, which can be described in a
hyperbola form as

x̃Tk,iQix̃k,i = 0, (2)

where x̃k,i = [lk,dk,i,1]T, and Qi =

 1 0 −lvi

0 −1 0
−lvi 0 l2

vi
+d2

vi,i

.

For a general conic equation ax2+bxy+cy2+dx+ey+ f = 0
with 5 DoFs, the DoFs in our case decreases to two because
b = 0, e = 0, and a =−c = 1. So two parameters {lvi ,dvi,i}
are sufficient to define the corresponding hyperbola.

B. Estimating Hyperbolas from GPR Images

Before estimating xvi,i = [lvi ,dvi,i]
T from hyperbola Hi =

{xk,i|0≤ k≤m}, we compensate the metal ball radius r when
computing dk,i (the reading from GPR image) by denoting
d̃k,i = dk,i + r as the real distance from GXi to GXkORG.
When the GPR moves to perform the scanning, k changes
and generates a sequence of x̃k,i as inputs. We model xk,i’s
measurement error as a zero mean Gaussian with covariance
matrix σ2

k,iI. Because r is a constant, the noise distribution
of d̃k,i is the same as that of dk,i. Stacking all measurements
together to estimate xvi,i, the overall measurement error
function is,

C(xvi,i) =

 x̃T
0,iQix̃0,i

...
x̃Tm,iQix̃m,i

 . (3)

The maximum-likelihood estimation (MLE) of xvi,i is
obtained by minimizing the following Mahalanobis Distance

x∗vi,i = argmin
xvi,i

C(xvi,i)
T

Σ
−1
i C(xvi,i), (4)



where Σi = diag(σ2
0,i,σ

2
1,i, . . . ,σ

2
m,i) is a diagonal matrix. This

problem can be solved by applying the Levenberg-Marquardt
(LM) algorithm or any nonlinear optimization solver.

We also analyze the error of the estimated hyperbola vertex
using the error backward propagation [19] under Gaussian
assumptions. The covariance matrix of x∗vi,i can be obtained
as follows,

Σvi =
(
JT

C Σ
−1
i JC

)−1
, (5)

where Jacobian matrix

JC =
∂C

∂xvi,i

∣∣∣∣
xvi,i=x∗vi,i

=

2(lvi − l0) 2dvi
...

...
2(lvi − lm) 2dvi

 .
C. Recovering Metal Ball Positions in {G}

As shown in Figure 3, the vertical component of the
hyperbola vertex in the GPR image represents the shortest
distance from the GPR Y-axis to the metal ball in {G} during
the scanning. Given the vertical height hi, the metal ball
position in {G} is given by

GXi =

xi
yi
zi

=


√

d2
vi,i−h2

i

lvi

hi

 . (6)

Since GXi is a function of [xT
vi,i,hi]

T, its uncertainty de-
pends on the noise distribution of [xTvi,i,hi]

T. The covariance
matrix of xvi,i is Σvi by (5). Let the noise distribution of
hi be a zero mean Gaussian with variance σ2

i . Because the
measurement noise of xvi,i and hi are independent, we have

cov

( lvi

dvi,i
hi

)=

[
Σvi 0
0 σ2

i

]
(7)

where cov(·) indicates the covariance matrix of a random
vector. Applying the first-order approximation of error for-
ward propagation [19], we obtain the covariance matrix G

Σi
of GXi,

G
Σi = JHcov

( lvi

dvi,i
hi

)JTH , (8)

where Jacobian matrix

JH =
∂

GXi

∂ (lvi ,dvi,i,hi)
=

0
dvi,i√

d2
vi ,i
−h2

i

−hi√
d2

vi ,i
−h2

i

1 0 0
0 0 1

 .
G

Σi characterizes the uncertainty of GXi.

D. Estimating Rigid Body Transformation from {W} to {G}
Given n correspondence points {W Xi↔ GXi|i = 1,2...n},

where W Xi is obtained through direct measurements, we are
able to estimate the rigid body transformation G

W T from {W}
to {G}. Through G

W T, GXi can be represented by

GXi =
G
W T(W Xi) =

G
W RW Xi +

G
W t, (9)

where G
W R is the rotation matrix and G

W t the translation
vector. First, the closed-form solutions of G

W R and G
W t are

computed by Horn’s method [20]. Let the covariance matrix
of W Xi be W

Σi. The parameter vector to be estimated is
defined as p = [ξT,

W X̂1
T,

W X̂2
T, · · · ,W X̂n

T]T, where ξ =

[θx,θy,θz, tx, ty, tz]T is the six-vector representation of
G
W R̂ and

G
W t̂, (θx,θy,θz) is the Euler angle representation of

G
W R̂ in the

order of Z-Y-X, and [tx, ty, tz]T =
G
W t̂. Then, we estimate

W X̂i,
G
W R̂, and G

W t̂ by minimizing the cost function

ω(p) =



W X̂1−W X1
...

W X̂n−W Xn
G
W T(W X̂1)−GX1

...
G
W T(W X̂n)−GXn


. (10)

The MLE of p is solved by minimizing the following
problem

p∗ = argmin
p

ω(p)TΣ
−1
ω ω(p), (11)

where Σω = diag(W Σ1, · · · ,W Σn,
G

Σ1, · · · ,G
Σn) is a block-

wise diagonal matrix. W
Σi is the covariance matrix of the

ground truth measurement, which is a function of ruler
resolution and material deformation. G

Σi can be obtained
from (8). This problem is then solved by LM algorithm.
Lemma 1 shows how to estimate cov(ξ ), the covariance
matrix of ξ .

Lemma 1: Under the Gaussian noise assumption, the co-
variance matrix of ξ is

cov(ξ ) = (A−BD−1C)−1 (12)

where

A =
n

∑
i=1

(
∂

G
W T(W X̂i)

∂ξ

)T(G
Σ
−1
i

)(
∂

G
W T(W X̂i)

∂ξ

)
,

B =


(

∂ G
W T(W X̂1)

∂
W X̂1

)T(G
Σ
−1
1

)(
∂ G

W T(W X̂1)

∂ξ

)
...(

∂ G
W T(W X̂n)

∂
W X̂n

)T(G
Σ−1

n

)(
∂ G

W T(W X̂n)

∂ξ

)

T

,

C =


(

∂ G
W T(W X̂1)

∂
W X̂1

)T(G
Σ
−1
1

)(
∂ G

W T(W X̂1)

∂ξ

)
...(

∂ G
W T(W X̂n)

∂
W X̂n

)T(G
Σ−1

n

)(
∂ G

W T(W X̂n)

∂ξ

)
 ,

D = diag

(
W

Σ
−1
1 +

(
∂

G
W T(W X̂1)

∂
W X̂1

)T(G
Σ
−1
1

)(
∂

G
W T(W X̂1)

∂
W X̂1

)
,

· · · ,W Σ
−1
n +

(
∂

G
W T(W X̂n)

∂
W X̂n

)T(G
Σ
−1
n

)(
∂

G
W T(W X̂n)

∂
W X̂n

))
.

Proof: From the first order approximation of error
backward propagation [19], we can obtain the covariance



matrix of p∗ by

cov
(
p∗
)
=
(
JT

ω Σ
−1
ω Jω

)−1 (13)

where

Jω =
∂ω

∂p

=



0 I3 0 0
... 0

. . . 0
0 0 0 I3

∂ G
W T(W X̂1)

∂ξ

∂ G
W T(W X̂1)

∂
W X̂1

0 0
... 0

. . . 0
∂ G

W T(W X̂n)

∂ξ
0 0 ∂ G

W T(W X̂n)

∂
W X̂n


6n×(3n+6)

where I3 is a 3×3 identity matrix, and 0 is the zero matrix.
In order to solve the covariance matrix of ξ , we need to

derive it from cov
(
p∗
)
. According to Jω in (13) and Σ−1

ω =

diag(
W

Σ
−1
1 , · · · ,W Σ−1

n ,
G

Σ
−1
1 , · · · ,G

Σ−1
n ), we have

JT
ω Σ
−1
ω Jω =

[
A B
C D

]
(14)

Through the block-wise matrix inversion, we can derive
the covariance matrix of ξ using (12).

E. Rigid Body Transformation Model Error

Let
GX̂i be the model prediction of GXi, which is ob-

tained by (12) using calibrated parameters and ground truth
measurements W Xi in {W}. To verify extrinsic calibration
results, we define the Euclidean distance between

GX̂i and
GXi as the metric function for the model prediction error εi

εi = f (
GX̂i,

GXi) = ‖
GX̂i−GXi‖. (15)

Lemma 2 shows the variance of εi.
Lemma 2: Under Gaussian noise assumption, the variance

of εi is denoted by

σ
2
εi
= JĜ

G
Σ̂iJTĜ + JG

G
ΣiJTG , (16)

where JĜ = ∂ f

∂
GX̂i

and JG = ∂ f
∂ GXi

.

Proof: Since εi is a function of
GX̂i and GXi, the

uncertainty of εi comes from their corresponding covariance
matrices G

Σ̂i and G
Σi. G

Σi is derived from GPR image
with vertical distance hi as shown in (8). G

Σ̂i is caused by
parameter uncertainty of ξ and measurement errors from
W Xi. Because ξ is obtained from the calibrating set and
W Xi is obtained separately for testing the calibration model,
there is no dependence between ξ and W Xi. Therefore,
by the forward propagation of error [19] under first-order
approximation, G

Σ̂i is obtained as follows
G

Σ̂i = Jξ cov(ξ )JT
ξ
+ JW

W
ΣiJTW (17)

where Jξ =
∂ G

W T(W Xi)

∂ξ
, JW =

∂ G
W T(W Xi)

∂ W Xi
, cov(ξ ) is the covari-

ance matrix of ξ from Lemma 1, and W
Σi is the covariance

matrix of W Xi. Because
GX̂i and GXi are independent, the

variance of εi can be obtained from (19) using the first order
approximation of error forward propagation [19].

V. EXPERIMENTS

A. Experiment Setup

The GPR system is a GSSI SIR-3000 with 1.6 GHz
antennas and is mounted on a GSSI model 623 survey
cart with a wheel encoder. The parameters are set in GPR
control unit as follows: the horizontal sample rate is 390
frames/meter, the two-way travel time is 8 ns, the sample rate
is 1024 sample/frame, and the dielectric constant is 1. The
radius of metal balls, r, is 12.7 mm. W Xi and hi are measured
manually in our laboratory. We repeat the experiment for
80 times, and each time we place one metal ball on the
pegboard in different positions W Xi. Each time the GPR
follows the same trajectory with the metal ball located at
different positions.

We use RADAN 7 from GSSI to export GPR images. In
the pre-processing stage, we collect the GPR image without
metal balls as the background. It allows us to apply the
background subtraction to obtain clearer hyperbolas. Besides,
Hi in each hyperbola are obtained first by manually selecting
a region containing the hyperbola, and then by automatic
detection through searching the peak reception for each
selected frame. Overall, we collect 80 sets and each set
consists of Hi, W Xi and hi.

To validate the calibration results, we divide the 80 sets
into two groups: half of them as the training set and the rest
as the testing set. The training set is to estimate extrinsic
parameters of the GPR and the testing set is to verify the
calibration results.

B. Calibration Results, Model Prediction Errors, and Un-
certainty Analysis Results

We estimate G
W R and G

W t by using the training set. Recall
that (θx,θy,θz) is the Euler angle representation of G

W R, the
calibration result shows that G

W t = [170.9,199.5,−342.0]T,
[θx,θy,θz]

T = [−0.0153,−0.0032,1.5589]T, and the units are
in mm and rad respectively.

In order to verify the extrinsic parameters, we take the
GPR images in the testing set to compute the i-th metal
ball coordinates GXi, and regard it as the ground truth. On
the other hand, we use G

W R and G
W t from the training set to

compute
GX̂i based on W Xi in the testing set using (12). As

shown in Figure 5, the red points represent
GX̂i and the blue

points represent GXi. The mean and the standard deviation
(SD) of errors for the testing set are 9.77 mm and 2.94 mm,
respectively. Testing results are also shown in Figure 5 and
Table I. Considering the fact that the GPR signal wave length
is 18.8 cm, the result is satisfying.

We also evaluate if our uncertainty analysis in Section IV-
E can capture the prediction error of the calibrated model.
We have the error and the predicted SD from Lemma 2 for
the 40 testing samples listed in Table I. More specifically,
the measurement errors for metal ball position measurements
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have a variance of 12 mm2 in each dimension. This is caused
by limited resolution of our ruler and structural deformation
under weight. Thus for all i, W

Σi = 12I3, and σ2
i = 12 for hi.

Besides, the variance for the points on GPR image is set to
σ2

k,i = 1. The results agree with our analysis as 70% errors
fall in the 1-σ range of the calibrated model prediction.

TABLE I
THE PREDICTED SD OF εi VS ITS ACTUAL VALUE

i σεi (mm) εi(mm) i σεi (mm) εi(mm)

1 9.08 6.41 21 9.56 7.81
2 8.24 3.89 22 8.46 8.34
3 12.26 9.46 23 10.33 8.53
4 7.82 7.90 24 7.60 9.96
5 8.50 8.63 25 6.87 13.77
6 29.49 9.75 26 35.68 9.22
7 26.53 9.34 27 18.36 2.41
8 23.49 7.34 28 11.79 4.17
9 47.46 9.64 29 13.16 6.53
10 42.16 14.44 30 16.56 5.53
11 24.09 12.95 31 47.49 11.89
12 28.22 10.34 32 21.05 13.22
13 22.27 10.27 33 14.01 17.32
14 26.65 8.96 34 14.75 12.38
15 25.25 10.39 35 12.06 9.84
16 20.66 11.58 36 7.10 12.34
17 19.02 9.13 37 6.78 10.82
18 13.82 11.66 38 6.04 11.15
19 12.39 12.59 39 7.32 9.40
20 10.19 11.46 40 7.21 9.79

VI. CONCLUSIONS AND FUTURE WORK

We proposed system design, procedure and models for
the extrinsic calibration of a GPR. We designed an artificial
planar bridge as the calibration device. Using metal balls as
calibration objects, we modeled the GPR imaging process
and extracted hyperbolas in the GPR image to recover metal
ball coordinates in the GPR coordinate system. The MLE
is employed to estimate the rigid body transformation. We
provided the closed form error analysis for our calibration
models. The physical experiments confirmed our results.

In the future, we will develop algorithms to calibrate
a GPR and a camera simultaneously. We will fuse the
data from different senors for automatic in-traffic bridge
inspection.
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