
Real-time Shape Recognition of a Deformable Link by Using
Self-Organizing Map

Shan Xu1, 2, Gaofeng Li1, 2, Dezhen Song3, Lei Sun1, 2, Jingtai Liu1, 2

Abstract— Here we present a novel deformable manipulator
composed of active rigid joints and deformable links. The
deformable link consists of several passive spherical joints
articulated with each other with preload force between socket-
ball surfaces. Therefore the manipulator can reach more parts
of the task space compared with rigid-link manipulators by
bending deformable links according to different tasks. However,
frequent changes in the links’ shape lead to unknown kinematic
parameters, which bring difficulties to the planning and control
of the manipulator. In this paper, a real-time shape recognition
algorithm is proposed for the deformable link by using Self-
Organizing Map (SOM). To avoid topological error and local
convergence problem, Least Square Method (LSQ) is utilized
for initialization according to the link’s current position and
shape. The reinitialization process is added to improve the
robustness when facing noise and occlusion. To meet the
demand of real-time tracking, the GPU parallel computation
is applied for acceleration. Moreover, an error metric based
on Signed Distance Function (SDF) is presented for evaluation.
In this paper, our algorithm is implemented on a deformable
link with 11 components. Experimental results validate the
feasibility and effectiveness of this method. The processing time
descends from 700 ms/frame to 40 ms/frame by using GPU, and
the overall average of tracking errors is below 4 mm.

I. INTRODUCTION

The dexterity and safety of robot manipulator have become
increasingly important issues for multiple applications espe-
cially in home service environments, which is unstructured
with human around. Continuum manipulators or soft manip-
ulators offer a number of potential advantages over rigid-
link manipulators in safe interaction, as well as adapting to
uncertain and complex environments. However, they are often
too costly for home service robots due to special materials
or actuators.

Here we present a novel low-cost deformable manipulator,
which is composed of active rigid joints and deformable links
(See Fig. 1). The deformable link consists of passive spherical
joints articulated with each other with preload force between
socket-ball surfaces. Therefore, the link can be bent under
external forces when facing different tasks or moderating
unexpected impacts. Compared with rigid-link manipulators,
the deformable manipulator can offer extended workspace

*This work is supported by National Natural Science Foundation of China
(NSFC) under Grant No. 61573198, 61375087. Natural Science Foundation
of Tianjin under Grant No. 15JCZDJC31200.

1Institute of Robotics and Automatic Information System, Nankai Univer-
sity, Tianjin, China, 300350. 2Tianjin Key Laboratory of Intelligent Robotics,
Nankai University, Tianjin, China, 300350. 3Department of Computer Science
and Engineering, Texas A&M University, College Station, Texas, United
States, 77843.

Emails: {xu shan, gaofengli}@mail.nankai.edu.cn.
*Corresponding authors: liujt@nankai.edu.cn.

Fig. 1. The deformable manipulator of home service robot is composed
of active rigid joints and deformable links. The deformable link consists
of passive spherical joints articulated together with preload force between
socket-ball surfaces.

and be more dexterous, lower-cost and intrinsically safe. On
the other hand, it can bear heavier payload than continuum
manipulators by choosing a proper preload force.

However, the shape of the deformable link changes dras-
tically and irregularly during bending operations, making
kinematic parameters unknown for modeling. In our prior
works, the kinematic-free control framework of a deformable
manipulator is well studied [1], [2], including both position
and orientation parts. Although the effectiveness of this
method is validated, the model-based control is still necessary
especially for high accuracy demands such as button-pressing
or trajectory tracking tasks [3], [4]. Therefore, the shape
measurement of the deformable link is a critical prerequisite
for further applications.

In this paper, a real-time shape recognition algorithm is
proposed to track the deformable link based on 3D point
cloud. First, a concise model representation of the link is
built up taking advantage of the rotational symmetry of its
component. Then, parameters of the model is optimized by
using Self-Organizing Map (SOM). In order to address the
local convergence problem of SOM, Least Square Method
(LSQ) is utilized for initialization according to the link’s
current position and shape. It can also guarantee the correct
topological order of SOM mapping without reordering.
The reinitialization process is added to improve algorithm
robustness when facing noise and occlusion. The parallel
computation is applied with GPU architecture for real-time
tracking. Finally, an error metric based on Signed Distance
Function (SDF) is presented to evaluate the tracking accuracy.

II. RELATED WORK

Many related works covering shape recognition of con-
tinuum robots especially in surgical intervention field are
presented in recent years. Similar to them, the real-time
shape sensing of a deformable link is also challenging due
to the contradiction between high accuracy and deformation
along the whole length. Generally, in surgical applications,
the robot diameter is small and the working environment is
strict. System sensors are often set as X-Ray apparatus [5],
[6], [7], stereo cameras [8], [9] or strain sensors like fiber
Bragg gratings sensors (FBG) [10], [11]. In our scenario, ma-
nipulators for home service are larger-sized with no attached
surroundings. Therefore, the depth camera is chosen in this
work as well as meeting demands of low-cost and simplicity
in operation. As the shape recognition from 3D point cloud
is a nonlinear optimization problem [12], [13], some optimal
algorithms such as Gauss-Newton method [14] are presented
together with parameterization. However, the convergence
is quite limited due to the discontinuous functions. Some
others use basic geometric elements to illustrate the shape
of continuum robots, such as Bezier patches [14], manifold
surfaces [15] or B-Spline surfaces [16]. In those methods,
the irregularity of the object could bring in varying densities
when sampling. Since the correct topological order is of
vital importance in representing a manipulator link, the Self-
Organizing Map shows its unique advantage as it can preserve
the topology while mapping.

Self-Organizing Map is an unsupervised neural network
based on competitive learning proposed by Kohonen [17].
It has the property of creating organized “internal represen-
tations” from multi-dimensional inputs and can skeletonize
from sparse shapes regardless of size and connectivity [18].
Although this method is relatively robust and straightforward,
the complicated training strategy hampers it from online
applications [17], [19]. Hence, an accelerated SOM is
presented in [9], [20] by decreasing training loops. They use
all input points at the same time in every training loop instead
of one point a loop as the traditional way. The mapping results
are updated with sharp changes, which makes the algorithm
converges at an extremely high speed.

As aforementioned, SOM can preserve topology and shape
of inputs while mapping, but the point cloud is inputted in
an unorganized fashion. In some prior works, the initial order
in SOM is given by part of its training process, which is too
time-consuming for the real-time tracking [17], [19]. Another
reordering strategy is proposed to eliminate topological errors
by using adjacency matrix [9], [21]. In this method, reference
vectors as mapping results can be iteratively inserted where
the performance measurement is not satisfied. In our case,
reference vectors are chosen as positions of link components.
They are designed to be the same ones without inserting and
deleting because of a constant components number. Therefore,
the Least Square Method is utilized for correct ordered
initialization. By doing this, initial values of reference vectors
are given along the corresponding range of input point cloud
to avoid local convergence. Different from fixed objects, the

deformable link moves around during manipulation, leading
to a varying position in a large scale of 3D Euclidean Space.
Hence, LSQ is a better choice than using a straight line [9],
[18] or sampling randomly from input points [20]. Apart from
initialization process, the reinitialization step is needed to
improve algorithm robustness, since the noise and occlusion
are inevitable in practical visual sensing.

III. MODEL REPRESENTATION OF THE DEFORMABLE
LINK

The deformable link we track is a set of rigid components
articulated together as a chain. To describe the shape of the
whole body, local frames are attached to all rigid components
to represent their poses. Camera frame C is chosen here as
the reference frame. Then, every local frame can be identified
relative to frame C by a rigid body transformation matrix
C
i T ∈ SE (3) , i = 1, · · · ,M , where M is the number of
link components.

Fig. 2. Every component has a local frame attached to it with the original
point set at the center of the spherical part. The Z-axis is pointing to the
sphere center of the next component, and the directions of X and Y axes
are not settled specifically in this model representation.

Traditionally, 6 parameters are needed to define a spatial
pose, with 3 of which for position and the other 3 for orien-
tation. When it comes to the component rotational symmetric
about an axis, which is quite universal in articulated objects
such as manipulators, the constraint of orientation can be
released to some extent. Since the rotation around this axis
makes no difference, there is no need to particularly design
directions for the other two axes. On the contrary, if directions
are settled, difficulties will be brought to the calculation of
orientation parameters by redundant constraints. Taking this
favorable structure into account, a concise model using only
position parameters is proposed to represent local frames.

Fig. 2 is the illustration of local frames. The original point
of each frame is set at the center of the spherical part. The
Z-axis is pointing to the sphere center of the next component.
As known that original point together with Z-axis is the
only thing acquired to define a local frame, the parameter
is chosen as a (3M + 3) dimensional vector, which contains
only original points of local frames:

θ = [p01, p02, p03, p11, p12, p13, · · · , pM1, pM2, pM3]
T
. (1)

pM = [pM1, pM2, pM3]
T is an arbitrary point on Z-axis of

frame (M − 1) except its original point. It is used to complete
the information of the last frame (M − 1).

Here is the local frame expression relative to the reference
frame C:

C
i T =

[
C
i R pi
01×3 1

]
=

[
Xi Yi Zi pi
0 0 0 1

]
. (2)

In this matrix, pi is the original point of frame i, and the
rotation matrix C

i R can be derived from original points of
frame i and (i− 1).

First, Z-axis is the unit vector taking direction from point
pi to pi+1 :

Zi =
pi+1 − pi
‖pi+1 − pi‖

=
[
Zi1 Zi2 Zi3

]T
. (3)

Then, we utilize (3) with

d = ‖pi+1 − pi‖

=

√
(pi+1,1 − pi1)

2
+ (pi+1,2 − pi2)

2
+ (pi+1,3 − pi3)

2
,

(4)

and yield to Z1 =
pi+1,1−pi1

d , Z2 =
pi+1,2−pi2

d , Z3 =
pi+1,3−pi3

d . Next, Xi = [Xi1, Xi2, Xi3]
T can be obtained

from following equations:{
X1Z1 +X2Z2 +X3Z3 = 0

X2
1 +X2

2 +X2
3 = 1

. (5)

For the computational convenience, we set X1=0. Then the
solution goes to: X2=

Z3√
Z2

2+Z2
3

, X3=
−Z2√
Z2

2+Z2
3

. By defining

h =

√
(pi+1,2 − pi2)

2
+ (pi+1,3 − pi3)

2
, (6)

we can get X2 =
pi+1,3−pi3

h and X3 =
pi2−pi+1,2

h . Finally,
the Y-axis Yi = [Y1, Y2, Y3]

T can be given through the cross
product operation of X and Z axes:

Y = Z×X =

 −
√
Z2
2 + Z2

3

Z1Z2/
√

Z2
2 + Z2

3

Z1Z3/
√

Z2
2 + Z2

3

=

 −h/d
(pi+1,1 − pi1) (pi+1,2 − pi2) /dh
(pi+1,1 − pi1) (pi+1,3 − pi3) /dh

. (7)

Now it is easy to find that, instead of complicated matrix
computation in traditional models, local frames in our model
are derived from one transformation matrix with only 6
parameters:

C
i T = Ti (pi1, pi2, pi3, pi+1,1, pi+1,2, pi+1,3) . (8)

Although the model presented here is built up based on
the deformable link, it can be easily extended to a group
of articulated objects especially the ones with rotational
symmetric components.

IV. SHAPE RECOGNITION BY USING SOM
A. Initialization by LSQ Fitting

In this algorithm, the point cloud S ={
Pi = [xi, yi, zi]

T ∈ R3, i = 0, 1, · · ·N
}

is captured
by one fixed depth camera, and outputs L ={
Qj = [xj , yj , zj]

T
, j = 0, 1, · · ·M

}
are updated reference

vectors describing the configuration of the whole link.
As explained in modeling process, representation param-

eters are original points of all local frames, the number
of which is constant in our case. Thus, it’s much easier
to maintain the number and order of parameters by using
the same reference vectors without deleting and inserting.
Initial values of reference vectors are supposed to be set
along the corresponding range of the point cloud. That allows
data points to be properly associated with reference vectors.
Different from tracking a fixed object, the deformable link
always moves around during manipulator operations. In order
to address the link’s variable position and shape, LSQ is
utilized in this paper for initialization. The captured point
cloud S is reused as input signal of LSQ and could be thinned
for a faster calculation. In our algorithm, two polynomial
functions are fitted out separately from 3D points with the
function order set by users:{

y = a0 + a1x+ a2x
2 + · · ·+ amxm

y = b0 + b1z + b2z
2 + · · ·+ bmzm

. (9)

All parameters can be optimized by minimizing the sum of
deviation squares, such as the y-x part:

J =

N∑
i=1

[yi − (a0 + a1xi + · · ·+ amxm
i)]

2
. (10)

The proper range of two fitted curves corresponding to
the link is figured out according to marginal inputs. Then
initial reference vectors can be obtained by sampling from
two curve segments with constant intervals. It’s also easy
to index those vectors sequentially from one end to another
with the same topological order of the tracked link. That can
provide a correct order for the following SOM mapping.

Although fitting functions as polynomials aren’t accurate
enough for sketching out an arbitrary link shape, LSQ is
only served as initialization here. The accuracy of it is totally
sufficient for the request of data association and topology
preservation.

B. Iterative Training
In traditional SOM, much efforts are taken to adjust

it’s training parameters since both initialization part and
convergence part are contained. Referring to the accelerated
algorithm [9], [20], the main idea of optimization is pulling
reference vectors directly to the average location of their
neighborhood data points.

As detailed in [9], every data point Pi should be associated
to its nearest reference vector according to a distance metric,
such as the Euclidean distance used in our method:

Qc (Pi) = arg min
Qj∈L

‖Pi −Qj‖ . (11)

Algorithm 1 Shape Recognition Algorithm
1: loop
2: Get current camera frame
3: Extract link’s 3D point cloud S0 =
{Pi|i = 1, · · · , N}

4: if initialization then
5: Fit curve C0 from S0 by LSQ
6: Get reference vectors L0 by sampling C0 with

constant interval
7: end if
8: for i = 0; i < 4; i++ do
9: for all Pi ∈ S do

10: Find Pi’s associated reference vector Qc (Pi)
11: Accumulate position information of Qc (Pi)
12: end for
13: end for
14: for all Qj ∈ L do
15: Get neighborhood Nj = {Pi|Qj = Qc (Pi)}
16: if |Nj | == 0 then
17: Reinitialize reference vector L by LSQ
18: else
19: Update reference vector Q∗j =

∑
i∈Nj

Pi/ |Nj |

20: end if
21: end for
22: end loop

Following this, the neighborhood of a reference vector Qj is
defined as a 3D point set Nj = {Pi|Qj = Qc (Pi)} , which
consists of all data points whose closest reference vector
worked out to be Qj . Then, the new position of reference
vector Qj is updated by a straightforward average operation:

Q∗j =

∑
i∈Nj

Pi

|Nj |
. (12)

In order to meet the accuracy requirement, the updating
process also iterates multiple times to guarantee convergence.
Unlike the conventional one, a few loops are adequate to pull
reference vectors close enough to real positions, thus making
it particularly efficient and also simple to be applied.

C. Robustness to Noise and Occlusion

Since every captured point contributes to the output during
updating procedure, the point cloud is preprocessed to
be extremely clear. Otherwise, reference vectors may be
deviated far away from correct positions by noise points. The
preprocess is to extract the object from the whole image
using the information of color and depth. However, noise
from background is difficult to be totally removed. To address
this, the reinitialization part is added to improve robustness.
The procedure of reinitialization is exactly the same as the
initialization part, which is sampling from fitted curves of
the current link to refresh invalid reference vectors.

Another situation that matters is when some components
are blocked by obstacles or even other components of the
link. The blocked reference vectors may be miss-associated

and pulled away, which makes them extremely difficult to
be rematched in the next loop. For these two situations, the
trigger of reinitialization is set when a blank neighborhood is
observed. Algorithm 1 is the pseudocode of the entire shape
recognition algorithm.

V. GPU IMPLEMENTATION

As mentioned in Section IV, proper data association is
imperative for good recognition results. In order to use
previous outputs as initial values for the next data association,
high computation efficiency is required for little changes
between two requisite frames. Even though some acceleration
has been implemented within SOM algorithm, big amount of
data from dense point cloud still blocks the way of real-time
application. From SOM pseudocode illustrated above, simple
identical executions are applied to all points repeatedly, and
little data correlation is needed in this framework. Therefore,
the parallel computation using GPU architecture is applied
for a further speeding up.

GPU can launch thousands of threads executing the same
code at the same time. It exceeds its CPU counterpart in

Algorithm 2 GPU architecture for SOM
1: Null all the reference vectors’ neighborhood
2: Memory allocation in GPU
3: Copy data from CPU to GPU

Kernel1 // associate data point Pi to their closest reference
vector QPi

4: for thread i = 0; i < N ; i++ do
5: Give d0 a big initial value
6: for all doQj ∈ L
7: dij = ‖Pi −Qj‖
8: if dij < d0 then
9: d0 = dij

10: Qpi
= Qj

11: end if
12: end for
13: end for
Kernel2 // accumulate position information of reference

vector QPi

14: for thread i = 0; i < N ; i++ do
15: atomicAdd(X[QPi], xPi)
16: atomicAdd(Y [QPi], xPi)
17: atomicAdd(Z[QPi

], xPi
)

18: atomicAdd(num[QPi
], 1)

19: end for
20: copy results from GPU to CPU
21: if Nj = ∅,∀Qj then
22: Reinitialization
23: else
24: for all Qj ∈ L do
25: xQi

= X[Qi]/num[Qi]
26: yQi = Y [Qi]/num[Qi]
27: zQi = Z[Qi]/num[Qi]
28: end for
29: end if

computation efficiency by a large margin, and is recently
introduced into real-time tracking of complex 3D objects [14].
In our implementation, GPU operations are mainly conducted
in two kernels. The first one associates all data points to the
closest reference vector. The second one updates positions
of reference vectors according to neighborhood data points.
In both kernels, each thread is responsible for one data
point independently. Those two kernels replace massive serial
iterations in conventional CPU architecture, and the modified
algorithm structure is outlined in Algorithm 2.

In order to minimize the runtime of data transferring
between CPU and GPU, data points are first copied to
GPU memories allowing efficient reading and writing of
GPU kernels. After the computation of all data points, the
GPU outcomes are transferred back to CPU memories for
next executions. The updating of a shared data in GPU by
multiple threads can lead to a data disorder without requiring
synchronization. Hence in kernel 2, atomic operation is used
to lock the signal asserted by instructions.

VI. ERROR METRIC FOR EVALUATION

In order to evaluate the tracking accuracy, an error metric
based on SDF is utilized by importing geometrical information
of object in an implicit way. SDF can determine the distance
of a given point x to the boundary of a geometry: SDF (x) :
R3 → R, which takes on negative value inside the geometry,
positive value outside and has a value of zero at the surface. A
precomputed SDF is used to remove explicit computation of
the nearest point, replacing it with an extremely fast looking-
up [22]. In our work, SDF is generated by the combination
of some analytically simple shape functions, while it can also
be obtained through 3D scanning or so.

Referring to [14], the local version of SDF is applied for
articulated objects. Instead of describing the whole body in
one global SDF, local SDFs of rigid components are chained
together with parameters in modeling process. Therefore, the
shape changes can be symbolized by variable parameters,
with no massive recomputation of global SDF is needed. The
data association part in this metric is the same one as that in
SOM. It allows inputted 3D points transferred into associated
local frames directly by reusing current model parameters:

Qk = Qc (Pi) = arg min
Qj∈L

‖Pi −Qj‖ , (13)

kPi =
k
CT (θ)CPi. (14)

After getting distance errors from transferred points:

ei = SDFk
(
k
CT (θ)CPi

)
, (15)

the final accuracy error is defined as the mean value of the
absolute sum.

e =

∑
N

‖SDF (Pi;θ)‖

N
. (16)

VII. EXPERIMENTS

Experiments are implemented on a 3.4GHz Intel Core i7,
16GB RAM computer, with NVIDIA’s GeForce GTX 1080
to execute the parallel device codes. As illustrated in Fig. 3,
the deformable link consists of 11 identical components. The
depth camera is Intel RealSense SR300 and can be changed
to other types for different demands in depth, vision field or
resolution. Our method is compared with the accelerated SOM
presented in [9], [20]. Each experiment lasts for a period of
time including a sequence of recognition trials. Once a trial
is completed, the next will be triggered immediately using
the current camera frame.

Fig. 3. Experiment devices include the deformable link with 11 components
and the Intel RealSense SR300 as the depth camera.

Fig. 4 shows the recognition accuracy evaluated by SDF
metric. Our method can provide high quality tracking since
mean errors are generally smaller than 4 mm. Some sudden
increases as outliers refer to the noise or occlusion. And
the value can return back to normal in few loops due to the
instant error elimination. In contrast, the error of accelerated
SOM is much higher with apparent accumulation for moving
link, and the result depends heavily on the initial value.

0 20 40 60 80 100 120 140

Trial Numbers

0

20

40

60

M
ea

n
E

rr
or

 (
m

m
) Accelerated SOM Our Method

Fig. 4. Algorithm accuracy of our method and accelerated SOM method
measured by SDF error metric.

0 20 40 60 80 100 120 140 160 180 200

Trial Numbers

0

500

1000

R
un

tim
e

(m
s)

CPU GPU+CPU

Fig. 5. Time-consuming of shape recognition with and without GPU
acceleration.

Fig. 6. Online visualization of recognized 3D shapes of deformable link
together with corresponding camera images. 6 different shapes are shown here,
with the upper one the recognition result and lower one the image obtained by
depth camera. A video of shape recognition experiments by accelerated SOM
method and our method can be found at https://youtu.be/NPrLjGaDgzA.

Fig. 5 shows the time consuming of shape recognition
implemented by serial and parallel computation. It’s obvious
that parallel computation with GPU architecture can highly
improve the execution speed consistently. In our platform,
the processing time is about 40 ms, which is fast enough for
the real-time demand of manipulator operation.

Fig. 6 is the 3D visualization of recognition results
rendered by OpenGL, and images captured by camera are
also presented simultaneously for monitoring. In current
implementations, the background of the experimental scene
is set simple for a easy preprocess, thus some improvements
of obtaining a clear point cloud in varying brightness and
complex background should also be considered for further
applications.

VIII. CONCLUSION

In this paper, a real-time shape recognition algorithm using
SOM is proposed to track a deformable link in home service
environments. First, a concise kinematic model suitable for
articulated objects with rotational symmetrical components
is presented. Then in our proposed SOM algorithm, LSQ
is utilized as initialization for correct topological order and
proper data association. It is also used in reinitialization part
in order to improve the robustness to noise and occlusion. Fur-
thermore, the algorithm is accelerated for real-time demand
by applying parallel computation with GPU. The recognition
accuracy is verified by our error metric SDF together with
the online visualization.

Although this method is designed based on the deformable
link, it can be easily extended to a group of soft objects or
articulated objects. It can meet the real-time demand with
high accuracy, and experiment devices are easy to set up
for practical applications. In our future work, this method
will be extended for the kinematic calibration of the whole
deformable manipulator by dealing with multiple links in the
same frame.

REFERENCES

[1] G. Li, S. Xu, L. Sun, and J. Liu, “Kinematic-free position control for
a deformable manipulator,” in Chinese Control Conference, 2016, pp.
10 302–10 307.

[2] G. Li, L. Sun, S. Xu, D. Song, and J. Liu, “A hybrid model
and kinematic-free control framework for a low-cost deformable
manipulator using in home service,” in IEEE International Conference
on Automation Science and Engineering (CASE), 2016, pp. 1002–1007.

[3] S. Xu, G. Li, J. Liu, and J. Hao, “Inverse kinematics solution of
deformable manipulator for point touching task,” Robot, vol. 39, no. 4,
pp. 405–414, 2017.

[4] G. Li, L. Sun, X. Lu, J. Hao, and J. Liu, “A practical, fast, and low-
cost kinematic calibration scheme for a deformable manipulator by
using leap motion,” in IEEE International Conference on Robotics and
Biomimetics (ROBIO), 2016, pp. 719–724.

[5] A. Vandini, C. Bergeles, B. Glocker, P. Giataganas, and G.-Z. Yang,
“Unified tracking and shape estimation for concentric tube robots,”
IEEE Transactions on Robotics, vol. 33, no. 4, pp. 901–915, 2017.

[6] E. J. Lobaton, J. Fu, L. G. Torres, and R. Alterovitz, “Continuous
shape estimation of continuum robots using x-ray images,” in IEEE
International Conference on Robotics and Automation (ICRA), 2013,
pp. 725–732.

[7] A. Vandini, C. Bergeles, F.-Y. Lin, and G.-Z. Yang, “Vision-based
intraoperative shape sensing of concentric tube robots,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2015, pp. 2603–2610.

[8] A. Reiter, A. Bajo, K. Iliopoulos, N. Simaan, and P. K. Allen, “Learning-
based configuration estimation of a multi-segment continuum robot,” in
IEEE RAS & EMBS International Conference on Biomedical Robotics
and Biomechatronics (BioRob), 2012, pp. 829–834.

[9] J. M. Croom, D. C. Rucker, J. M. Romano, and R. J. Webster, “Visual
sensing of continuum robot shape using self-organizing maps,” in IEEE
International Conference on Robotics and Automation (ICRA), 2010,
pp. 4591–4596.

[10] S. Elayaperumal, J. C. Plata, A. B. Holbrook, Y.-L. Park, K. B. Pauly,
B. L. Daniel, and M. R. Cutkosky, “Autonomous real-time interventional
scan plane control with a 3-d shape-sensing needle,” IEEE transactions
on medical imaging, vol. 33, no. 11, pp. 2128–2139, 2014.

[11] C. Shi, S. Giannarou, S.-L. Lee, and G.-Z. Yang, “Simultaneous
catheter and environment modeling for trans-catheter aortic valve
implantation,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2014, pp. 2024–2029.

[12] J. Hoschek, D. Lasser, and L. L. Schumaker, Fundamentals of computer
aided geometric design, 1993.

[13] T. Speer, M. Kuppe, and J. Hoschek, “Global reparametrization for
curve approximation,” Computer Aided Geometric Design, vol. 15,
no. 9, pp. 869–877, 1998.

[14] T. Schmidt, R. Newcombe, and D. Fox, “Dart: dense articulated real-
time tracking with consumer depth cameras,” Autonomous Robots,
vol. 39, no. 3, pp. 239–258, 2015.

[15] B. Guo, “Surface reconstruction: from points to splines,” Computer-
Aided Design, vol. 29, no. 4, pp. 269–277, 1997.

[16] H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin, J. McDonald,
J. Schweitzer, and W. Stuetzle, “Piecewise smooth surface reconstruc-
tion,” in Proceedings of the 21st annual conference on Computer
graphics and interactive techniques, 1994, pp. 295–302.

[17] M. Eck and H. Hoppe, “Automatic reconstruction of b-spline surfaces
of arbitrary topological type,” in Proceedings of the 23rd annual
conference on Computer graphics and interactive techniques, 1996,
pp. 325–334.

[18] T. Kohonen, “The self-organizing map,” Neurocomputing, vol. 21, no.
1-3, pp. 1–6, 1998.

[19] R. M. Palenichka and M. B. Zaremba, “Multi-scale model-based
skeletonization of object shapes using self-organizing maps,” in
International Conference on Pattern Recognition, vol. 1, 2002, pp.
143–146.

[20] A. Baader and G. Hirzinger, “A self-organizing algorithm for multisen-
sory surface reconstruction,” in IEEE/RSJ/GI International Conference
on Intelligent Robots and Systems (IROS), vol. 1, 1994, pp. 81–88.

[21] J. Barhak and A. Fischer, “Parameterization and reconstruction from
3d scattered points based on neural network and pde techniques,” IEEE
Transactions on Visualization and Computer Graphics, vol. 7, no. 1,
pp. 1–16, 2001.

[22] P. Felzenszwalb and D. Huttenlocher, “Distance transforms of sampled
functions,” Cornell University, Tech. Rep., 2004.

