
Vision-based Camera/Robot Pose Estimation using Both Semantic and Geometric
Features on LEGO Baseplates

Shu-Hao Yeh, Shuangyu Xie, Wei Yan, and Dezhen Song

Abstract— We are exploring the possibility of using LEGO
baseplate as artificial landmarks (ALs) for robots and cameras
in calibration, navigation or Augment Reality (AR) applications.
LEGO baseplates are rigid, widely-available, low-cost, and
precisely-manufactured and appear to be great candidate for
ALs. However, they are also monochromatic with low contrast
and easily affected by lighting. To overcome those issues, we
utilize geometric and semantic information in our algorithm
design by leveraging grid pattern, circle stud shapes, and text
patterns. Our algorithm has extensively utilized the information
for cross validation in noise filtering and position refinement
using robust estimation methods. We have implemented and
successfully tested our algorithm. The results show that our
algorithm can recover more than 95% stud centers as feature
points which ensures pose estimation accuracy. Our experi-
ments also show that LEGO baseplate produces significantly
more accurate camera pose estimation results than that of
existing state-of-the-art counterpart when both methods are
deployed by users with no computer vision background.

I. INTRODUCTION

Artificial landmarks/visual fiducial markers such as
checkerboards, quick response (QR) codes, AprilTag [1] are
often used in assisting precise pose estimation for robots or
cameras in applications such as calibration, indoor navigation
or Augmented Reality (AR). Despite being a low-cost, high-
precision, and robust solution, deployment of such artificial
landmarks still requires customized fabrication, extensive
setup, and calibration, which requires computer vision exper-
tise that an average person may not have. Inspired by the fact
that LEGO baseplates are rigid, widely-available, low-cost,
and precisely-manufactured, we are interested in developing
algorithms to enable them as artificial landmarks in vision-
based camera/robot pose estimation, which can take those
advantages to reduce barriers in deploying such systems.

Fig. 1 shows that our algorithm takes advantage of both
geometric and semantic information from a LEGO baseplate
which has a rectangle baseboard with a grid of studs and
“LEGO” text engraved on top of each stud. We extract four
baseplate corners, apply circle detection for stud centers, and
employ a deep learning approach to extract bounding boxes
and classify 4 types of text patterns. The latter also allows
us to detect LEGO baseplate orientation. We exploit the grid
pattern by applying robust estimation method on stud center

S. Yeh, S. Xie, and D. Song are with Computer Science and Engineering
Department, Texas A&M University, College Station, TX 77843, USA.
Emails: ericex1015@tamu.edu, sy.xie@tamu.edu, and dzsong@cs.tamu.edu.

W. Yan is with Architecture Department, Texas A&M University, College
Station, TX 77843, USA. Email: wyan@tamu.edu.

This work was supported in part by National Science Foundation under
IIS-2119549 and NRI-1925037, and TAMU Presidential Transformational
Teaching Grants (PTTG).

(a)

{W}

ϒ

,1

W

V
X

W
X ,4

W

V
X

,1

W

S
X

,2

W

S
X

,

W

S j
X

W
Y

,2

W

V
X

.3

W

V
X

(b)

LEGO Baseplate Corner Vertex Estimation

1(b). Vertex estimation

1(d). Area(Xv)≥εA?

1(c). |XV|=4?
1(a). Baseplate edge

detection

1(e). Top-down image

rectification

2(a). Stud circle detection
2(b). LEGO text

detection

LEGO Baseplate Stud Estimation + Camera Pose Estimation

*

*

XV

XS

XV

Fail
No

Yes

No

Yes

I

R,C C

W W
t

s

2(e). 2D grid refinement
2(f). Camera pose

estimation

2(c). 1D grid-pattern

filtering
2(d). Bias correction

(c)

Fig. 1. (a) A LEGO baseplate in a rectified top-down view. (b) An
illustration of LEGO baseplate with geometric features (circles and corner
vertices) and semantic features (i.e. “LEGO” text on each circle). (c) LEGO
baseplate feature estimation diagram.

points obtained by using both rectified circle centers and
text bounding box centers. Finally, we estimate camera pose
using a Maximum Likelihood Estimation (MLE) approach.
We have implemented and successfully tested our algorithm.
The results show that our algorithm can recover more than
95% stud centers as feature points which ensures pose
estimation accuracy. Our experiments also show that LEGO
baseplate produces significantly more accurate camera pose
estimation results than that of state-of-the-art AprilTag [1]
when both methods are deployed by users with no computer
vision background.

II. RELATED WORK

Vision-based camera pose estimation is a fundamental
problem that enables localization in robotics [2] and 3D re-
construction in computer vision [3]. When a LEGO baseplate
is used as an artificial landmark, the closely related areas are
pose estimation fundamentals, features types, and approaches
that use both semantic and geometric landmarks.

A camera pose estimation problem takes different forms
with different inputs. If the input includes a single perspec-
tive image with known camera intrinsic parameters and a
given set of 2D image points with known positions of the
corresponding 3D points, this problem becomes Perspective-
n-Point (PnP) problem [4]. If all 3D points are coplanar,

then the camera pose can be solved using homography
estimation and decomposition [5]. If the corresponding 3D
points positions are not known but we have multiple perspec-
tives, then this becomes 3D reconstruction that constructs
both camera poses and 3D point positions [3]. Moreover,
if the correspondence between 2D and 3D points are not
known, then robust estimation method such as random sam-
ple consensus (RANSAC) [6] or its variation [7] can help
establish the correspondence in any of the above scenarios.
Our problem employs the PnP framework by focusing on
challenges brought by LEGO baseplate landmarks.

Obtaining a set of 2D image points and their corresponding
3D points is nontrivial. These points are named as feature
points because they are often distinctive points across views
that can be easily detected and matched. They are also
referred to as landmarks when used in robot navigation.
We can classified them as two types: natural features and
artificial landmarks. Natural features are distinctive geo-
metric shapes or mathematical singularities such as cor-
ners [8]–[10], edges [11], circles, scale-invariant feature
transforms [12], speeded up robust feature [13], ORB [14],
planes [15], or feature combination [16]. The pros of natural
features are that there is no need to modify environment
which simplifies deployment. The cons are that indoor scenes
often cannot ensure feature distribution uniformity which
cause the algorithm to be unstable or infeasible.

Therefore, artificial landmarks or visual fiducial markers
are often employed to increase localization or pose esti-
mation robustness [17], [18]. The artificial landmarks must
contain the distinguishable appearance to assist detection
and position estimation [1], [19], [20]. To give the distinct
identification of every artificial landmarks, a common design
is to encode the identification into the QR code style “tag”.
ARToolKit [19] is the first visual tag system designed for
the AR application. ARTag [20] is also a popular visual
tag system, and utilizes the image gradient in the detection
scheme to improve the marker detection. ARToolKitPlus [21]
is the successor to the ARToolKit and extends the application
to the mobile devices. AprilTag [1] is one of the state-of-the-
art visual fiducial system.

However, printing and deploying exiting visual fiducial
tags still require computer vision expertise which makes
them less accessible to an average user. Our approach is
to employ LEGO baseplate as a landmark to ease the de-
ployment difficulty. Recently, LEGO baseplate has received
attention in camera calibration [22] and AR [23]–[25]. On
the other hand, we can learn from the recent progress made in
nature feature detection to deal with the difficulty brought by
LEGO baseplate. To be more specific, nature feature recogni-
tion has made good progress in combining semantic feature
recognition using deep learning with traditional geometric
feature recognition. Taira et al. [26] and Merrill et al. [27]
combine the appearance, geometric and semantic features
to assist in pose verification to enhance the localization
accuracy and improve the robustness in the loop closure,
respectively. Inspired by the existing works, our work also
combine the geometric and semantic features to increase the

detection rate of studs on the LEGO baseplate and improve
the camera pose estimation accuracy.

III. PROBLEM DEFINITION

When a LEGO baseplate is in a camera field of view with
sufficient resolution, we can use it to estimate camera pose.

A. Assumptions and Nomenclature

We have the following assumptions,
a.1 The camera is pre-calibrated and its lens distortion is

removed from images.
a.2 Position noises of the points follow zero-mean Gaussian

distribution with known variance σ2 in each dimension
and the noise in each dimension is independent.

Common notations in this paper are defined as follows.
K the intrinsic matrix of the camera.
I input image with its 2D coordinate system {I}.
{W} 3D world coordinate system (Fig. 1(b)), {W} is de-

fined on the LEGO baseplate with its origin located
at the top-left corner of the LEGO baseplate, its X-
axis aligned with the top edge (red arrow), and its
Y-axis aligned with the left edge (green arrow).

{C} 3D camera coordinate system (CCS) for I where
its origin is at the camera center, and its X-axis and
Y-axis parallel to the horizontal and vertical axes
of {I}, respectively.

x is a homogeneous vector describing a 2D point
position in {I}, x ∈ P2, 2D projective space.

X is a 3-vector describing a 3D point position, X ∈
R3.

C
W R rotation matrix from {W} to {C}, C

W R ∈ SO(3).
C
W t translation vector from {W} to {C}, C

W t ∈ R3.
All 3D coordinate systems are right-handed system. Symbol
˜ on a variable means that it is in inhomogeneous coordinate.

B. LEGO Baseplate

A LEGO baseplate is usually used as the base for LEGO
building and widely-available in common household. It is
a precisely-manufactured rectangle with a known size of
lbaseplate × wbaseplate, where lbaseplate is length and wbaseplate is width.
They are rigid, flat, and monochromatic. On top of the base,
it contains short cylinders which are called studs. Each stud
has a radius of r = 4.80 mm. The studs form a grid/lattice
pattern. There is a “LEGO” text on the top surface of each
stud. The identification of LEGO baseplates can be easily
encoded by its size and color. Fig 1(a) is a 16×32-stud gray
baseplate. All these characteristics make it an ideal artificial
landmark.

1) Geometric Features: There are two types of geometric
features points and a grid pattern. First, the four vertexes
of rectangular baseplate are robust features. Denote the i-th
vertex as WXV,i, where i ∈ {1, 2, 3, 4}, and WXV,i resides
on the X-Y plane of {W}. These features can be detected
even at a distance. Second, the centers of top circular surface
of studs are abundant. Denote the j-th stud center feature as
WXS,j . The stud centers WXS,j are coplanar and the plane
is parallel to X-Y plane of {W} but with a height of 3.10

mm. We name this plane as stud plane. The grid-pattern has
an equal distance of δ = 8.00 mm between adjacent stud
centers in both vertical and horizontal directions.

2) Semantic Features: Recall that there is a “LEGO” text
on the top surface of each stud. It is worth noting that
the center of the “LEGO” text co-locates with the center
of the stud (e.g. red dot in the stud image in Fig. 1(b))
and is also located on the stud plane which provides a
great semantic feature that can be translated to geometric
coordinates. Denote the k-th text center location as WXS,k.

To summarize, a LEGO baseplate provides feature sets:
{WXV,i,

WXS,j ,
WXS,k},∀i, j, k, and a grid pattern.

C. Problem Definition

Our problem is defined as,
Definition 1: Given the input image I and LEGO base-

plate parameters, estimate the camera pose C
W R and C

W t.

IV. ALGORITHM

Our algorithm consists of two main blocks: (1) LEGO
baseplate feature extraction (Fig. 1(c)) and (2) camera pose
estimation. We begin with the former.

A. LEGO Baseplate Feature Extraction

1) LEGO Baseplate Corner Vertex Detection: The four
corners of a LEGO baseplate provides a good starting set
of features which can be detected as a distance. Since a
LEGO baseplate is monochromatic, we can apply color-
based segmentation to extract its silhouette. We then find
the 4 edges of the LEGO baseplate by using the line fitting
with RANSAC. Denote the j-th edge as le,j , where le,j ∈ R3

is the line model. The vertices are obtained by intersecting
the line edges. Denote the i-th vertex as xv,i. Let le,i1 and
le,i2 be the edges intersecting at xv,i. The vertex set XV can
be obtained by

XV := {xv,i : le,i1 × le,i2} . (1)

The uncertainty of the vertex depends on the error dis-
tribution of edges, and is propagated through the edge
intersection. We utilize the first order approximation of the
covariance matrix [3] to estimate the covariance matrix of
the vertex xv,i ∈ XV . Denote the covariance matrix of
xv,i ∈ XV as Σv,i. The first order approximation of Σv,i

is
Σv,i = Je,i1Σe,i1J

T
e,i1 + Je,i2Σe,i2J

T
e,i2 , (2)

where Je,i1 =
∂xv,i

∂le,i1
, and Je,i2 =

∂xv,i

∂le,i2
. Σe,i1 and Σe,i2 are

denoted as the covariance matrices of le,i1 and le,i2 . Σe,i1

and Σe,i2 are directly related to the accuracy of the color-
based segmentation and chosen empirically.

We know that a minimum solution for estimating camera
pose requires

|XV | = 4. (3)

If not satisfied, we report a failure case. Otherwise, we then
verify if the area of the baseplate in the image is bigger than
an empirical threshold εA,

area(XV) ≥ εA, (4)

where area(·) computes area of the polygon. If true, the
image is sufficiently detailed for stud feature detection. XV

tells us the dimension and size of LEGO baseplate and
allows us to estimate a homography transformation H , using
Direct Linear Transform (DLT) algorithm in [3], to rectify
the baseplate region into a top-down view (e.g. Fig. 1(a))
which is defined as I ′,

I ′ := {Hxi : ∀xi ∈ I} . (5)

Only using the four LEGO baseplate corner vertices is
often not accurate enough because boundary segmentation
using edge detection often has large error due to baseplate
thickness and shadow. Since image resolution is sufficient,
we use more features from studs. With LEGO baseplate
image rectified as a rectangle, we can partition each stud
by using the known geometry of the stud distribution on
the baseplate. For j-th stud, its segmented image is defined
as I ′j . The stud images in Fig. 2 show examples of the
segmented studs. We apply circle detection and perform text
recognition on each I ′j to extract geometric features and
semantic features, respectively.

(a) (b) (c)

Fig. 2. (a) and (b) LEGO text detection using 4 classes of patterns in
different colors. (c) Illustration of bias induced from the stud height. The
red circle is the false detection affected by the shadow while the light blue
circle is the correct stud detection.

2) Stud Circle Detection: For circle detection, we apply
Canny edge detector [11] to obtain the circular edges and
apply circle Hough Transform (CHT) algorithm on the edge
image to detect circles. Since each stud is a cylinder, which
can create the shadow with circular shape. The shadow may
cause CHT algorithm to detect false circles which usually
have random radius. Since that I ′ is up to scale s of the
physical LEGO baseplate, we can use the scale s and radius
r to filter the false detection. Denote the j-th stud center
detected from CHT in I ′j as x′j with the radius rj . The filtered
stud set from CHT of all studs can be defined as

Xcircle :=
⋃
j

{
x′j : |rj − sr| ≤ εr

}
, (6)

where εr is the empirical radius difference threshold.
3) LEGO Text Detection: We apply convolutional neural

network (CNN) based object detection to detect the semantic
features from the “LEGO” text. We consider the “LEGO”
text as a complete pattern instead of using 4 separate
characters since the low contrast and poor lighting condition
pose challenges in directly adopting the text recognition
method such as optical character recognition. To enhance
the robustness of the detection, we add additional “EG”
class since “L” and “O” in “LEGO” may not be eligible
due to wear and tear in LEGO usage. We also consider
orientation of the “LEGO” text. There are 2 orientations

because “LEGO” text is along vertical direction, and the
baseplate may be flipped upside-down in the rectified view.
Therefore, we define 4 classes (Figs. 2(a) and 2(b)), and train
a state-of-the-art level CNN object detection model Yolov4-
tiny [28] as our detection algorithm. The center of output
bounding box is the corresponding stud center.

Due to the monochromatic LEGO baseplate and poor
lighting conditions, false detection is inevitable. Falsely
detected text patterns have random width to height ratio for
text bounding boxes. Therefore, we can use the scale s and
the ratio of width to height of “LEGO” ρ to filter out false
detections. Again, stud centers detected by Yolov4-tiny from
I ′j are x′j with the “LEGO” bounding box ratio of width to
height ρj . For “EG” detection, we can scale the bounding
box to obtain “LEGO” bounding box since “LEGO” and
“EG” are co-centered, and their dimension is known. The
filtered stud center set from Yolov4-tiny is defined as

Xtext :=
⋃
j

{
x′j : |ρj − sρ| ≤ εb

}
, (7)

where εb is the empirical ratio difference threshold. The
classes identification can help us identify the orientation of
the LEGO baseplate by voting.

4) 1D Grid-Pattern Filtering: After we obtain Xcircle and
Xtext, we enforce the grid-pattern to filter out the falsely-
detected features. The grid-pattern is composed by vertical
and horizontal lines. We first validate the vertical lines and
the horizontal lines, respectively.

Recall that the distance δ between the adjacent stud centers
in LEGO baseplate and the scale s defined for I ′ are known.
Since we compute vertical and horizontal lines separately, we
perform 1-D lattice pattern fitting for each line group. Define
(·)n as the n-th element of vector. We apply RANSAC on
(x̃′j)1 to find the vertical lines in the 1D grid-pattern.

Assume that x′p ∈ Xcircle ∪ Xtext is the point selected by
RANSAC with the most inlier support, and the corresponding
1D lattice pattern set can be represented by

X :=
{
x = (x̃′p)1 + snxδ : x/s ∈ [0, lbaseplate], nx ∈ Z

}
, (8)

where nx ∈ Z is an integer multiplier for lattice vertices.
The 1D lattice pattern X is considered as high quality when
the inliers are sufficient∑

x∈X

{ ∑
x′
j∈Xcircle∪Xtext

1X(x′j , x)
}
> ηg, (9)

where ηg is the number threshold, 1X(x′j , x) is an inlier
indicator function to determine if x shares the same vertex
with (x̃′j)1,

1X(x′j , x) :=

{
1, if ‖(x̃′j)1 − x‖22 ≤ εg
0, otherwise,

(10)

‖ · ‖2 is the L2 norm, and εg is a distance error threshold.
Similarly, we can find the 1D lattice pattern for horizontal

lines, and validate the lattice pattern by using the inlier
number. Assume that x′q ∈ Xcircle∪Xtext is the point selected by

RANSAC with the most inlier support. Define the validated
1D lattice pattern for horizontal line as set

Y :=
{
y = (x̃′q)2 + snyδ : y/s ∈ [0, wbaseplate], ny ∈ Z

}
,

(11)
where ny ∈ Z is an integer multiplier for lattice vertices.
Similarly, we have an inlier indicator function 1Y (x′j , y), and
the thresholding function for determining inlier sizes which
shares the same format as (9).

We use the two 1D lattice sets X and Y to filter the false
studs. A stud is considered to be in the grid-pattern only if
the stud center is the inlier for both X and Y. Define sX
and sY as inlier scoring functions

sX(x′j) =
∑
x∈X

1X(x′j , x) and sY (x′j) =
∑
y∈Y

1Y (x′j , y).

(12)
The grid-pattern stud center sets are defined as follows

Gcircle :=
{
x′j ∈ Xcircle :

(
sX(x′j) = 1

)∧(
sY (x′j) = 1

)}
,

(13)
and we can define Gtext similarly. Note that we still separate
the grid-pattern studs to Gcircle and Gtext. The reason behind that
is that the stud x′j ∈ Gcircle may contain positional bias which
is introduced from the shadow caused by directional lighting
conditions. The bias detection and correction are necessary.

5) Bias correction for Gcircle: It is necessary to detect and
correct the the bias in Gcircle because the bias can violate
the assumption a.2 of the zero-mean of the measurement
error and cause the later MLE in the camera pose to output
biased estimation. We employ Gtext to assist in detecting the
bias since the “LEGO” texts are on stud surface and do not
suffer from the bias caused by lighting and shadow. Fig. 2(c)
illustrates how bias is caused by stud shadow.

In an ideal scenario, the stud centers x′j ∈ Gcircle and x′j ∈
Gtext should share the same mean x̄′j representing the true
stud center position. However, the mean of x′j ∈ Gcircle may
not be equal to x̄′j if a bias exists. Define IG = {jg : g =
1, · · · , ng} as the index set of the common studs between
Gcircle and Gtext, where jg is the stud index of the g-th common
stud, and ng = |Gcircle ∩ Gtext| is the number of the common
studs. To detect the bias, we design the following hypothesis
testing based on Hotelling’s T 2 test:

H0 : µ′circle = µ′text vs. H1 : µ′circle 6= µ′text, (14)

where µ′circle = 1
ng

∑
x′
j∈Gcircle

j∈IG

x′j and µ′text =

1
ng

∑
x′
j∈Gtext

j∈IG

x′j . Denote the error vector between the

studs x′jg ∈ Gcircle and x′jg ∈ Gtext as e′jg . The test statistic can
be calculated by T 2 = ngē

′T
g Σ−1eg ē

′
g, where

ē′g =
1

ng

∑
jg∈Ig

e′jg and Σeg =

∑
jg∈Ig

(e′jg − ē′g)(e′jg − ē′g)T

ng − 1
.

(15)
Define Fa,b(x) as the cumulative distribution function of
the F-distribution at value x with a numerator degree of
freedom (DoF) and b denominator DoF. By setting the

significance level α, the p-value is obtained by F−1a,b (1−α).
We consider that the bias b′ exists by rejecting H0 when
T 2 >

2(ng−1)
ng−2 F−12,ng−2(1− α).

If the hypothesis test confirms the existence of bias, we
remove bias as follows,

x′j = x′j − ē′,∀x′j ∈ Gcircle. (16)

6) 2D Grid Refinement: So far, we estimate two 1D lattice
sets X and Y separately. For better accuracy, we want to re-
estimate the stud centers by simultaneously using the both
vertical and horizontal lines in the grid-pattern. Define the
inlier sets of x ∈ X and y ∈ Y as Gx := {x′j ∈ Gcircle ∪ Gtext :
1X(x′j , x) = 1} and Gy := {x′j ∈ Gcircle ∪ Gtext : 1Y (x′j , y) =
1}. The grid-patterns X and Y are refined by

min
∀x∈X
∀y∈Y

∑
x∈X

∑
x′
j∈Gx

‖(x̃′j)1 − x‖22 +
∑
y∈Y

∑
x′
j∈Gy

‖(x̃′j)2 − y‖22.

(17)
After obtaining the refined X and Y, we map the stud

centers back to I by using inverse homography H−1. Denote
the j-th stud on the grid-pattern in I as xs,j . The stud center
set on the grid can be obtained by

XS :=

xs,j = H−1

xy
1

 : ∀x ∈ X and ∀y ∈ Y

 .

(18)
If the lattice vertices are too few |XS | < ηS for a given
threshold ηS due to insufficient features, we discard them
and only use (1) to estimate camera pose. The uncertainty
of the stud xs,j ∈ XS depends on the two 1D lattice patterns
and the homogrpahy H, and is propagated through the grid-
pattern estimation. We utilize the first order approximation
of covariance matrix [3] to estimate the covariance matrix
of xs,j ∈ XS . Denote the covariance matrix of xs,j ∈ XS as
Σs,j . Lemma 1 details covariance matrix Σs,j .

Lemma 1: Under the Gaussian noise assumption, the co-
variance matrix Σs,j is

Σs,j = JhΣhJ
T
h + σ2

xJxJ
T
x + σ2

yJyJ
T
y , (19)

where Jh =
∂xs,j

∂h , h ∈ R9 =
[
h1 h2 h3

]T
is the vector-

format of H =
[
hT
1 hT

2 hT
3

]T
, and Σh is the covariance

matrix of h. σ2
x is the variance of x ∈ X, and Jx =

∂xs,j

∂x .
σ2
y is the variance of y ∈ H, and Jy =

∂xs,j

∂y .
Proof: H is estimated by the vertices xv,i ∈ XV . The

covariance matrix Σh can be obtained by using backward
propagation of covariance [3]

Σh =

(∑
i

JT
v,iΣ

−1
v,iJv,i

)+

, (20)

where Jv,i =
∂x̂v,i

∂h and x̂v,i = Hx′v,i.
x ∈ X and y ∈ Y are estimated from x′j ∈ Gcircle ∪ Gtext.

Define Gcircle,x as Gcircle,x := {x′j∈Gcircle
: 1X(x′j , x) = 1}. We

also define Gtext,x as Gtext,x := {x′j∈Gtext
: 1X(x′j , x) = 1}.

Assume that the covariance matrices of x′j ∈ Gcircle and
x′j ∈ Gtext are Σc and Σt, where Σc and Σt can be estimated

empirically. The variance σ2
x can be obtained by using

backward propagation of covariance

σ2
x =

 ∑
x′
j∈Gcircle,x

JT
x,jΣ

T
c Jx,j +

∑
x′
j∈Gtext,x

JT
x,jΣ

T
t Jx,j

−1 .
(21)

Denote the error between (x̃′j)1 and x as ex,j = (x̃′j)1 − x.
Jx,j =

∂ex,j

∂x′
j

. Similarly, we define subsets Gcircle,y and Gtext,y ,
and we can obtain σ2

y by using backward propagation of
covariance

σ2
y =

 ∑
x′
j∈Gcircle,y

JT
y,jΣ

T
c Jy,j +

∑
x′
j∈Gtext,y

JT
y,jΣ

T
t Jy,j

−1 .
(22)

Denote the error between (x̃′j)2 and y as ey,j . Jy,j =
∂ey,j

∂x′
j

.
Because H, x and y are independent, the covariance matrix
of xs,j can be obtained from (19) by using the propagation
of covariance.

B. Camera Pose Estimation

With the stud centers in {I} and the associated covari-
ance matrices derived, we are ready to utilize the 2D and
3D LEGO feature correspondences {xv,i ↔ WXV,i} and
{xs,j ↔ WXS,j} to estimate the camera pose. We estimate
the initial camera pose C

W R and C
W t by using PnP method [4].

We then employ the MLE to refine C
W R and C

W t. Define the
measurement vector as

e :=

(̃x̂v,1)− x̃v,1

...

(̃x̂v,4)− x̃v,4

...

(̃x̂s,j)− x̃s,j

...

∈ Rm, (23)

where m = 2|XS | + 8, x̂v,i = K
(
C
W RWXV,i + C

W t
)
,

x̂s,j = K
(
C
W RWXS,j + C

W t
)
, ˜[x, y, z]T = [x/z, y/z]T is

vector de-homogenizing, and x̃v,1, x̃v,4, and x̃s,j are de-
homogenized versions of xv,1,xv,4, and xs,j , respectively.
The MLE solves C

W R and C
W t by minimizing

min
C
WR,CW t

eTΣ−1e e. (24)

Σe ∈ Rm×m is the covariance matrix of e, where Σe =
Diag(Σṽ,1, · · · ,Σṽ,4, · · · ,Σs̃,j , · · ·). Σṽ,i ∈ R2×2 is the
covariance matrix of x̃v,i, and can be obtained by using
forward propagation of covariance [3] from Σv,i in (2) by
dehomogenising. Σs̃,j ∈ R2×2 is the covariance matrix of
x̃s,j , and can be obtained by using forward propagation of
covariance from Σs,j in (19) by dehomogenising.

For uncertainty analysis, let us denote the unit quaternion
vector of C

W R as C
Wq ∈ R4. We define the camera pose

by a 7-vector p =
[
C
Wq

T C
W t

T
]T

in SE(3) which consists

of the unit quaternion vector C
Wq and the translation vector

C
W t. The covariance of p is denoted as Σp. The first order
approximation of Σp is

Σp =

 ∑
xv,i∈XV

JT
v,iΣ

−1
ṽ,iJv,i +

∑
xs,j∈XS

JT
s,jΣ

−1
s̃,jJs,j

−1 .
(25)

Denote the error vector (̃x̂v,i)−x̃v,i as ev,i. Denote the error
vector (̃x̂s,j)− x̃s,j as es,j . Jv,i =

∂ev,i

∂p , and Js,j =
∂es,j

∂p .
To quantify the uncertainty of the estimate camera pose,

we use the maximum eigenvalue of Σp. The maximum
eigenvalue of Σp is

λmax = max
i
λi(Σp), (26)

where λi(Σp) is the i-th eigenvalue of Σp.

V. EXPERIMENTS

We have implemented our system in Matlab and Python.
We first analyze the working distance for LEGO baseplate
feature detection, and then evaluate the camera pose accu-
racy. In the experiments, we use the Do3Think industrial
camera with a result of 2200 × 2200 pixels. For the exper-
imental setup, we choose the LEGO 8× 16-stud gray plate
(See Fig. 3(a)) which can be used not only as the baseplate
but also as the LEGO brick with a taller height of the stud
plane 5 mm.

A. Features and Algorithm Setup in Comparison

We have 5 different feature setups in our experiments as
detailed below.
• G: Only use circle centers, the geometric features with

the 1D grid-pattern filter in Sec. IV-A.4.
• S: Similar to “G”, but we use the semantic features

returned from the text detection instead.
• GS: We combine “G” with “S” and apply the 1D grid

pattern filtering in Sec. IV-A.4.
• GS+B: We run GS with the bias correction after the

stud features obtained in “GS”.
• GS+BG: We run GS+B with the 2D grid refinement in

Sec. IV-A.6.

B. LEGO Baseplate Working Range Tests

In the tests, we want to find the LEGO baseplate working
distance. We fix the LEGO baseplate on the vertical surface,
and make the camera look perpendicular to the LEGO
baseplate. We choose 6 different distance positions to show
the change in the feature detection rate according to our
experiment setup. The distance here is the perpendicular
distance between camera center and the LEGO stud plane
and calculated by the estimate camera pose. We begin with
the distance 17.5 cm away from the LEGO stud plane since
the LEGO 8×16 baseplate can not be included completely in
the image when we move the camera closer than 17.5 cm.
Every two positions are 2.5 cm apart to show the change
of feature detection rate. In every position, we collect 20
images. We also ensure that the LEGO baseplate in the

image is always close to the image center when we move the
camera. For the feature setups used in the tests, we consider
G, S and GS+BG here since G and S are the basis of all
other three feature setups, and GS+BG is the final feature.

1) Evaluation Metric: Two metrics have been introduced
to evaluate the LEGO baseplate working distance. i) First,
we use the feature detection rate γ to track how many stud
centers have been successfully recognized

γ =
|XS |
nS

, (27)

where nS = 8×16 is the number of the studs on the LEGO
baseplate. ii) We also use the standard reprojeciton error ε
in computer vision [3]. We calculate the reprojection error
of stud centers using the estimated camera pose.

2) Experimental Results: Tab. I shows the experimental
results under 6 different distance. We also provide the
average stud circle radius rs since the distance determines the
pixel resolution of the studs, and affects the average detection
rate. In the Tab. I, the average detection rate Avg(γ) of S is
always higher than G. It is expected since the edge of the
“LEGO” text is sharper than the stud circular edge. It is clear
that the LEGO baseplate feature detection works more stable
when the average stud circular radius is larger than 24.71
pixels, and in our case the perpendicular distance between
the camera and the LEGO baseplate is smaller or equal to
25.0 cm. When the average stud circular radius is smaller
than or equal to 22.50, the average reprojection error of
stud centers increases significantly, which is directly affected
by the insufficient feature detection of both geometric and
semantic features with lower than 10% of Avg(γ) in both G
and S.

Keep in mind that the actual working distance may vary
for different camera lenses. The more important indicator is
the average stud radius in pixel rs.

TABLE I
EXPERIMENTAL RESULTS OF WORKING DISTANCE TESTS. rs AND ε ARE

IN PIXELS.

Distance 17.5 20.0 22.5 25.0 27.5 30.0

Avg(rs) 36.31 31.37 27.81 24.71 22.50 20.64

Avg(γ)%
G 69.4 54.2 53.2 54.4 29.6 6.7
S 95.0 92.3 94.6 76.3 39.5 8.8
GS+BG 99.5 99.0 98.9 95.3 74.1 42.2

Avg(ε) GS+BG 0.73 0.61 0.58 0.85 1.47 2.08

C. Camera Pose Estimation Tests
We are interested in whether the using of geometric and

semantics features makes a difference in motion estimation
accuracy and feature detection rate in our setup. In addition
to 5 feature setups: G, S, GS, GS+B and GS+BG (See Sec. V-
A), we also compare with the AprilTag [1] which is one of
the state-of-the-art artificial landmark (See Fig. 3(b)), and the
detail setup is described in Sec. V-C.1. We include another
camera into our tests, the iPhone 12 Pro camera with a result
of 1440 × 1080 pixels, to show the wide adaption of using
the features of the LEGO baseplate in motion estimation for
different cameras.

(a) (b)

Fig. 3. Experiment setups for (a) LEGO 8 × 16-stud gray plate and (b)
AprilTag [1].

1) AprilTag Setup in Comparison: The dimension of the
AprilTag is 9 cm in each dimension, which makes it same
area size with the LEGO 8 × 16-stud gray baseplate. We
have 3 different deployment setups of the AprilTag in our
experiments and summarize details in Tab. II. AprilTag?

is the ideal setup with the high quality printing (laser
printing on adhesive sheet) and the high rigidity deployed
surface (mirror planar surface) to ensure the flatness. We
also calibrate the dimension of the AprilTag in AprilTag?

to increase the precision since cameras have higher preci-
sion in measuring compared with printing. This calibration
only can be done if the flatness and rigidity of artificial
landmark are satisfied, and it requires the computer vision
expertise. In addition to the ideal setup, we also include
another two setups: AprilTag1 and AprilTag2 to imitate how
regular users without computer vision expertise construct
the artificial landmarks in reality. For example, using plastic
planar surface is common since it is easily accessible and
its light weight can be easily adopted in different tasks. It is
also common that the users print the AprilTag by themselves
and adhere it on the targeted surface using tape or glue. It is
worth noting that dimension calibration cannot be performed
in this both setups since the flatness is not guaranteed, and
regular users also do not have calibration knowledge.

TABLE II
APRILTAG SETUPS.

Printing Deployment Surface material
AprilTag? Laser (2400× 2400 dpi) Adhesive sheet Mirror

AprilTag1 Laser (2400× 2400 dpi) Adhesive sheet Plastic
AprilTag2 Inkjet (1200× 600 dpi) Tape + printing paper Plastic

2) Evaluation Metrics: Three metrics have been intro-
duced to measure our algorithm perform. i) The first is the
feature detection rate γ in (27). ii) The second is the standard
reprojection error ε of stud centers using the estimated
camera pose. For the AprilTag, we calculate the reprojection
error of the 4 corners using the estimated camera pose. iii)
The third is λmax, the maximum eigenvalue of camera pose
matrix (26).

3) Experimental Results: We have collected 100 images
for both the LEGO baseplate and the AprilTag on each
camera. Tab. III shows the experimental results. The upper
part of the table are the results using Do3Think camera,
and the lower part of the table are the results of the iPhone

TABLE III
EXPERIMENTAL RESULTS OF STUD FEATURE TESTS. ε IS IN PIXELS.

Device Feature Avg(γ)% Std(γ)% Avg(ε) Std(ε) Avg(λmax)

Do3Think

G 63.3 7.8 1.41 0.85 2.95× 10�3

S 77.0 25.3 1.07 0.60 1.53× 10�3

GS 83.5 13.0 1.43 0.85 1.11× 10�3

GS+B 85.5 13.3 1.22 0.72 1.11× 10�3

GS+BG 89.0 10.9 0.75 0.51 2.15× 10�4

AprilTag? — — 0.30 0.32 6.01× 10�4

AprilTag1 — — 2.29 2.01 3.26× 10�2

AprilTag2 — — 3.81 3.77 1.28× 10�1

iPhone

G 81.1 12.1 1.13 0.69 2.58× 10�3

S 83.1 14.3 0.68 0.37 1.15× 10�3

GS 93.2 11.0 1.29 0.73 1.49× 10�3

GS+B 93.5 11.7 0.88 0.60 1.58× 10�3

GS+BG 95.0 11.7 0.48 0.33 2.49× 10�4

AprilTag? — — 0.18 0.17 1.40× 10�3

AprilTag1 — — 1.25 1.08 1.76× 10�2

AprilTag2 — — 1.72 1.66 4.26× 10�2

camera. In both cameras, the average of γ, Avg(γ), shows
that combining geometric features with semantic features
(GS, GS+B and GS+BG) significantly increases feature
detection rate. Also, our bias removal step and utilizing grid
structure to remove noise have been very effective, which can
be shown from the reduce of the average reprojection error.
The accuracy of camera pose estimated using the iPhone
camera is better than the results of the Do3Think camera.
It is expected since mobile phone cameras these days often
have strong edge sharpening feature, which can benefit the
LEGO baseplate feature detection. The overall algorithm
design (GS+BG) can detect 95.0% stud centers when using
the iPhone camera. The same trend is carried over to average
reprojection error, standard deviation of reprojection error
and λmax in both cameras, which is not surprising because
the number of features recovered almost directly impact
estimation algorithm accuracy.

For the AprilTag, we only consider the reprojection error
and the maximum eigenvalue of camera pose matrix since
the AprilTag is composed by black and white squares,
which makes the detection less challenging. The average
reprojection error of the ideal setup: AprilTag? performs
slightly better than our GS+BG in both cameras. This is
expected since we are limited by LEGO manufacturing
accuracy and the 4 corners are well-defined by the boundary
of the AprilTag, which provides good point configuration for
the camera pose estimation.

In fact, AprilTag1 and AprilTag2 which represent the reg-
ular scenarios of AprilTag usage by users without computer
vision background or lack of precise printing and mounting
methods. The pose estimation results cannot achieve that
accuracy of AprilTag? due to tag deformation caused by
printing and deployment defects. The average reprojection
error of AprilTag1 and AprilTag2 is significantly larger than
the average reprojection error of GS+BG in both cam-
eras: Avg(ε) of GS+BG is about 20% of AprilTag2 in the
Do3Think camera and about 28% of AprilTag2 in the iPhone
camera. In fact, 0.48 pixels in reprojection error means 0.044
mm in our experiment setup, and it also shows that our
algorithm has performed well in camera pose estimation.

The results show that the benefits of using LEGO baseplate

as the artificial landmark since we do not need to concern
the printing and deployment due to high precision in manu-
facturing and high rigidity of LEGO baseplate.

VI. CONCLUSION

We reported a camera/robot pose estimation algorithm
design based on the LEGO baseplate recognition. The design
attempts to enable the usage of widely-available LEGO
baseplate as artificial landmarks in robotic or AR appli-
cations. Our algorithm leveraged both geometric features,
e.g. circular stud centers, and semantic features, “LEGO”
text on each stud, exploited the grid pattern, to recover
features and estimate camera poses. The experimental results
confirmed that our design was successful. Our experiment
results confirmed that our methods produce significantly
more accurate camera pose estimation results when deployed
by users without computer vision background.

ACKNOWLEDGMENT

We thank Z. Shaghaghian for her insightful discussion. We are
also grateful to D. Wang, A. Kingery, A. Angert, F. Guo, Y. Jiang,
and C. Qian for their inputs and feedback.

REFERENCES

[1] J. Wang and E. Olson, “Apriltag 2: Efficient and robust fiducial
detection,” in 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2016, pp. 4193–4198.

[2] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press,
2005.

[3] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, 2nd Edition. Cambridge University Press, 2004.

[4] V. Lepetit, F. Moreno-Noguer, and P. Fua, “Epnp: An accurate o (n)
solution to the pnp problem,” International journal of computer vision,
vol. 81, no. 2, p. 155, 2009.

[5] E. Malis and M. Vargas, “Deeper understanding of the homography
decomposition for vision-based control,” Research Report, 2007.
[Online]. Available: https://hal.inria.fr/inria-00174036

[6] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381–395, 1981.

[7] S. Yeh, Y. Lu, and D. Song, “Model quality aware ransac: A robust
camera motion estimator,” in IEEE/RSJ International Conference on
Intelligent Robots (IROS), Las Vegas, NV, Oct. 2020.

[8] C. Harris, M. Stephens et al., “A combined corner and edge detector,”
in Alvey vision conference, vol. 15, no. 50. Citeseer, 1988, pp. 10–
5244.

[9] J. Shi et al., “Good features to track,” in 1994 Proceedings of IEEE
conference on computer vision and pattern recognition. IEEE, 1994,
pp. 593–600.

[10] E. Rosten and T. Drummond, “Machine learning for high-speed corner
detection,” in European conference on computer vision. Springer,
2006, pp. 430–443.

[11] J. Canny, “A computational approach to edge detection,” IEEE Trans-
actions on pattern analysis and machine intelligence, no. 6, pp. 679–
698, 1986.

[12] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” International Journal of Computer Vision, vol. 60, no. 2, pp.
91–110, 2004.

[13] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust
features,” in European Conference on Computer Vision. Springer,
2006, pp. 404–417.

[14] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An
efficient alternative to sift or surf,” in 2011 International Conference
on Computer Vision. IEEE, 2011, pp. 2564–2571.

[15] Y. Lu, J. Lee, S.-H. Yeh, H.-M. Cheng, B. Chen, and D. Song, “Sharing
heterogeneous spatial knowledge: Map fusion between asynchronous
monocular vision and lidar or other prior inputs,” in Robotics Research.
Springer, 2020, pp. 727–741.

[16] Y. Lu and D. Song, “Visual navigation using heterogeneous landmarks
and unsupervised geometric constraints,” in IEEE Transactions on
Robotics (T-RO), vol. 31, no. 3, June 2015, pp. 736 —- 749.

[17] I. Loevsky and I. Shimshoni, “Reliable and efficient landmark-based
localization for mobile robots,” Robotics and Autonomous Systems,
vol. 58, no. 5, pp. 520–528, 2010.

[18] G. Jang, S. Lee, and I. Kweon, “Color landmark based self-localization
for indoor mobile robots,” in Proceedings 2002 IEEE International
Conference on Robotics and Automation (Cat. No. 02CH37292),
vol. 1. IEEE, 2002, pp. 1037–1042.

[19] H. Kato and M. Billinghurst, “Marker tracking and hmd calibration for
a video-based augmented reality conferencing system,” in Proceedings
2nd IEEE and ACM International Workshop on Augmented Reality
(IWAR’99). IEEE, 1999, pp. 85–94.

[20] M. Fiala, “Artag, a fiducial marker system using digital techniques,”
in 2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’05), vol. 2. IEEE, 2005, pp. 590–596.

[21] D. Wagner and D. Schmalstieg, “Artoolkitplus for pose tracking on
mobile devices,” 2007.

[22] L. Baronti, M. Dellepiane, and R. Scopigno, “Using lego pieces
for camera calibration: a preliminary study.” in Eurographics (Short
Papers). Citeseer, 2010, pp. 97–100.

[23] T. V. Do and J.-W. Lee, “A multiple-level 3d-lego game in augmented
reality for improving spatial ability,” in International Conference on
Human-Computer Interaction. Springer, 2009, pp. 296–303.

[24] T. Engelke, S. Webel, and N. Gavish, “Generating vision based lego
augmented reality training and evaluation systems,” in 2010 IEEE
International Symposium on Mixed and Augmented Reality. IEEE,
2010, pp. 223–224.

[25] W. Yan, “Augmented reality applied to lego construction: Ar-based
building instructions with high accuracy & precision and realistic
object-hand occlusions,” arXiv preprint arXiv:1907.12549, 2019.

[26] H. Taira, I. Rocco, J. Sedlar, M. Okutomi, J. Sivic, T. Pajdla,
T. Sattler, and A. Torii, “Is this the right place? geometric-semantic
pose verification for indoor visual localization,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2019, pp.
4373–4383.

[27] N. Merrill and G. Huang, “Calc2. 0: Combining appearance, semantic
and geometric information for robust and efficient visual loop closure,”
in 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2019, pp. 4554–4561.

[28] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Op-
timal speed and accuracy of object detection,” arXiv preprint
arXiv:2004.10934, 2020.

