
Dynamic Intrinsic Parameter Rectification Network for Cameras with
Optical Image Stabilization in Desktop Augmented Reality Applications

Shuangyu Xie, Di Wang, Shu-Hao Yeh, Wei Yan, and Dezhen Song

Abstract— Optical Image Stabilization (OIS) system in mo-
bile devices reduces image blur by steering lens to compen-
sate for hand jitters. However, the OIS dynamically changes
the intrinsic camera matrix, affecting the accuracy of the
camera pose or the 3D reconstruction. Here, we propose a
novel multilayer perceptron-based approach that estimates the
intrinsic matrix in real time. Our network design takes the
gridified projection model discrepancy feature and 3D point
positions as input to approximate the intrinsic manifold. We
also design a unique training scheme for this network by
introducing a backpropagated perspective-n-point layer so that
the reprojection error can be adopted as the loss function. The
training process utilizes precise calibration patterns, but the
trained network can be used anywhere. We name the proposed
Dynamic Intrinsic Manifold Estimation network as DIME-Net
and implement and test it with three different mobile devices.
DIME-Net can reduce the reprojection error by at least 71%
and the 3D reconstruction error by 53%, indicating that our
design is successful.

I. INTRODUCTION

Fig. 1a illustrates how typical OIS functions. When a
camera on a mobile device looks at a point in the scene
and the camera-held hand jitters, the image blurs because
the point is imaged as a short trajectory instead of a point.
To mitigate this effect, the camera is often equipped with
a motion sensor to sense hand/camera motion. The sensed
motion is used to generate a countering motion to actuate
camera lens or part of lens array so that the imaged point
remains at the same 2D location in the imaging sensor and
the stationary part of image remains sharp.

Unfortunately, OIS dynamically changes the intrinsics of
the camera, making it difficult to accurately estimate the
pose of the camera or perform scene reconstruction. Such
applications are often seen in Augmented Reality (AR),
which is enabled by handheld mobile devices. The existing
practice opts to reduce the resolution of the camera so that
the intrinsic matrix K can be approximated by an averaged
value, which clearly sacrifices accuracy.

It is worth noting that existing calibration methods cannot
be directly applied to our problem because 1) camera intrin-
sics are dynamic, which break the assumption of constant
intrinsics in calibration, and 2) there may not be enough

S. Xie, D. Wang, and S. Yeh are co-first authors of this paper. S. Xie,
D. Wang, and D. Song are with Department of Computer Science and
Engineering, Texas A&M University. D. Song is also with Department
of Robotics, Mohamed Bin Zayed University of Artificial Intelligence
(MBZUAI) in Abu Dhabi, UAE. Corresponding author: Dezhen Song.
Email: dezhen.song@mbzuai.ac.ae

This work was supported in part by National Science Foundation under
IIS-2119549 and NRI-1925037, and by GM/SAE Autodrive Challenge II.

OIS moves lens

Image
sensor

Image blurring
removal

(a)

i. Initial pose estimation

ii. Camera intrinsic
parameter rectification

iii. Pose refinement

O
IS

 In
tr
in
si
cs

 R
ec
tifi
ca
tio
n

Kc and 2D/3D correspondence

Camera pose

(b)

Fig. 1: (a) Illustration of OIS working principle. (b) Pipeline of the OIS
intrinsic rectification algorithm.

corresponding features in a single frame to recover intrin-
sics accurately. Therefore, we propose a novel multilayer
perceptron (MLP)-based approach to predict the matrix K
for desktop AR applications where camera poses are often
estimated from 2D and 3D point correspondences, which is
just the Perspective-n-Point (PnP) problem [1]. Our network
estimates K in real time to cope with the dynamic nature
of K under the OIS effect. As a result, downstream tasks,
such as camera pose estimation and scene reconstruction
algorithms, can achieve higher accuracy. For network input,
we propose a gridified project model discrepancy feature.
We also design a unique training scheme for this network
by introducing a backpropagated PnP (BPnP) layer [2] so
that the reprojection error can be adopted as a loss function.
Training can be done using precise calibration patterns in
laboratory settings, which builds manifold approximation
using carefully collected data to ensure good knowledge
embedding. Network inference does not require a large
number of high-quality features and can be applied to natural
objects. We name the dynamic intrinsic manifold estimate
network as DIME-Net and have implemented and tested it
on three different mobile devices. DIME-Net can reduce both
the reprojection error and the 3D reconstruction error by at
least 71% and 53%, respectively, indicating that our design
is successful.

II. RELATED WORK

In a nutshell, our approach is to train a neural network
to track dynamic intrinsic camera parameters. It is related
to camera projection modeling, calibration, and a geometry-
guided neural network.

The perspective projection model [3], [4], also known
as the pinhole model, is the most widely adopted camera

model for intrinsics. For a fixed lens camera, its intrinsics
are a constant matrix. Of course, this is not true for an
OIS-activated camera. Cameras with alterable optical con-
figurations such as a telephoto lens exist and have variable
intrinsics [5]–[7]. To model this type of camera, control
parameters of optical settings become inputs to intrinsic
functions. Similarly, camera developers can obtain OIS servo
actuator measurement to estimate intrinsics, such as CIP-
VMobile [8]. For most cameras in mobile devices, man-
ufacturers often do not provide lens motion measurement.
These factors make it difficult to directly model intrinsics as
a function of lens motion, so we have to resort to a hardware-
independent approach.

If we know the geometry property of the observed object,
we can recover all camera parameters using an estimation
method. This is often known as camera calibration. Such
methods require a large number of features and are often
assisted with carefully designed calibration patterns [9]–[13]
to increase accuracy. Among existing calibration methods,
self-calibration [14] (or auto-calibration) does not rely on
calibration pattern, and finds the camera intrinsics through
projective geometry properties existing in image sequences
(e.g. absolute conic [3]). However, all of these methods
assume constant intrinsics.

Recent research explores the transfer of knowledge in the
geometry domain into the design of network architecture for
geometry-related problems such as pose estimation [15]–
[17] and 3D reconstruction [18], [19]. In the estimation
of camera poses, PoseNet [15], [16] uses CNNs and fully
connected layers to solve camera pose regression. These
works focus on camera extrinsics. Although different from
intrinsic parameter estimation, their methods that enforce
geometric constraints (e.g., reprojection error [16] along with
positional and orientational error [15], [20]) into the loss
function for training shed light on how to approach our
problem. We employ the reprojection error as a loss function,
which is enabled by building on the recent progress on the
PnP [1], [2], [21] problem. BPnP [2] considers optimization
as a layer and allows for backpropagation of the network
as a whole with the help of the implicit theorem [22]. This
eventually enables us to employ the reprojection error as our
loss function in the DIME-Net training design.

In our design, DIME-Net uses MLP to approximate the
manifold that characterizes dynamic intrinsics. There are
existing methods that use the learning-based approach for
the approximation of the manifold and distance field [23],
[24]. Specifically, a previously made effort to use MLP to
represent the manifold field. For example, Moser Flow [25]
uses MLP to represent a geometry manifold such as Torus.
Pose-NDF [26] designs a generative model with an implicit
geometry function representing as a feature to create a human
pose sequence in a manifold.

III. PROBLEM DEFINITION

Let us first introduce the imaging process and analyze
why the existing OIS effect mitigation scheme is problematic
before defining the problem.

A. Perspective Projection under OIS

Frequently used coordinate systems and variables are
defined as follows.

{C} 3D camera coordinate system (CCS), where its
origin is at the camera center, and its X and Y
axes parallel to the horizontal and vertical axes of
its image 2D coordinate {I}, respectively.

{W} is a fixed 3D world coordinate system with its
origin at the designated checkerboard’s top left
vertex and its X and Y axes corresponding to the
horizontal and vertical directions of the checker-
board, respectively.

x is a 2D point in {I} as a homogeneous 3-vector
x ∈ P2 which is the 2D projective space.

X is a 3-vector describing a 3D point position. By
convention, we use left superscript to indicate the
reference frames of 3D points (e.g. WX is a point
in {W}).

All 3D coordinate systems are right-handed. For a regular
camera that follows the perspective projection model [3], it
projects a 3D point WX to a 2D image point x as follows.

x = λK[CWR C
W t]

[
WX
1

]
, (1)

where λ is a scalar and matrix K =

fx 0 cx
0 fy cy
0 0 1

 is the

intrinsic matrix of the camera, fx and fy are focal lengths
in pixel counts using pixel width and height, respectively,
and (cx, cy) is principal point location on the image. Note
that this is a 4-Degrees of Freedom (DoFs) intrinsic matrix
model which fits most cameras. We also call K intrinsics for
brevity. Similarly [CWR, C

W t] ∈ SE(3), is called extrinsics.
If 3D points live in {C}, then C

WR = I3 becomes an identity
matrix and C

W t = 03, a zero vector in R3.
When the OIS is activated, both the relative orientation and

the distance between the lens and the 2D imaging sensor
varies dynamically. From Fig. 1a, each element in K is a
function of the lens pose [Rlens, tlens] ∈ SE(3). Therefore, it
can be written in function format K(Rlens, tlens). An imme-
diate thought would be if it is possible to directly model
the function K(Rlens, tlens) based on lens motion (Rlens, tlens).
Unfortunately, it is very difficult to do so due to the lack
of information about the design of the OIS system for each
mobile device. Depending on how sophisticated an OIS is, its
lens may have up to 5 DoFs, although a typical mobile device
camera may only has 2 rotational DoFs due to cost and size
concerns. The lack of detailed information on the mechanism
is not the only issue. Also, we do not have access to the lens
motion feedback since most device software development
kits (SDKs) do not provide it. Finally, we do not know
to which time epoch the OIS aligns frames. These factors
determine that modeling OIS is not a viable approach, and
we have to opt for a data-driven approach that can be used
in a wide range of devices or OIS types.

B. Existing OIS Effect Mitigation Scheme

The dynamic intrinsics immediately lead to a problem for
any vision algorithm that requires a constant or known K
matrix. More specifically, any 3D reconstruction or camera
pose estimation algorithms would be severely impacted.
Existing practices adopted by cellphone manufacturers such
as Apple™ or Google™ often resort to a prior approximated
intrinsics denoted as Kc on reduced resolution images in
their SDKs. Such a Kc is often obtained by averaging
a large number of K’s at different OIS states or at its
neutral stationary positions. For Kc, we can associate it with
extrinsics which defines a unique camera frame {C0}.

In fact, we have also tested the previous Kc in our experi-
ment setup using the PnP problem as an example [1]. Denote
the i-th 2 D point by xi. The 2D-3D point correspondences
are defined as {xi ↔ WXi : i = 1, · · · , n}, where n is
the total number of point correspondences. PnP algorithm
computes camera pose using the 2D-3D correspondences by
minimizing reprojection error

[CWR, C
W t] = argmin

∑
i

∥∥λiK(CWRWXi +
C
W t)− xi

∥∥2
Σ
,

(2)
where ∥ · ∥Σ is the Mahalanobis norm with the covariance
matrix Σ for pixel location distribution.

In real-world applications, the average reprojection error
would be much higher because the pixelization error from
the real scene is much higher than the precise and sharp
inputs from the calibration pattern. Higher error would cause
the algorithm to struggle to converge under noisy input.
Consequently, existing practices are to lower the image
resolution to increase the pixel size. This approach is to
sacrifice image resolution and camera pose accuracy for
algorithm stability, which is not ideal because we cannot
fully utilize the true potential of the camera resolution.

C. OIS Intrinsics Rectification Framework

It is necessary to rectify Kc. If a precise K can be obtained
in some way in real time, then the problem is solved. Again,
let us use PnP as an example, since it is the most typical
scenario in desktop AR applications. A quick thought would
be if we could add K as an additional decision variable
in the estimation problem in (2) to address the problem.
Unfortunately, this would not work because the number of
point correspondences in an application is usually insufficient
or unevenly distributed, which cannot guarantee K’s quality.
Since we do not have a clear path to estimate K analytically,
the idea becomes if we could find a data-driven approach.
The general framework is shown in Fig. 1b with three main
blocks as follows. The first step (Box i) is the initial estimate
of the pose using the previous Kc. We know that this pose
estimation will not be accurate enough, but its residual errors
are caused by the discrepancy between Kc and the actual K
and hence are important input for the next step. The second
step (Box ii) is to recover the K and the third step (Box iii) is
pose refinement with the newly obtained K which is simply
to re-solve the PnP problem with the new K. It is clear that

the second step is the key problem here. Let us define this
problem,

Definition 1: Given the Kc and n point correspondences
{xi ↔ C0Xi}ni=1, design and train DIME-Net to represent
the fK manifold that can be used to predict the dynamic
intrinsic camera matrix K.
Here we assume that non-linear lens distortion has been
removed from images. Cameras with OIS usually have non-
linear lens distortion removed to facilitate OIS.

IV. DIME-NET DESIGN AND TRAINING

The K variation caused by the OIS effect can be con-
sidered as a fK manifold despite the fact that we do not
have a close form representation of K(Rlens, tlens). In fact, the
pose of the lens [Rlens, tlens] is just the extrinsics of the camera
[CWR, C

W t] in a different reference system under the actual K.
Therefore, we know that these point correspondences have
to satisfy (1). On the other hand, the first step of Sec. III-C
also produces projected points.

xc = λcKc

[
C0

W R C0

W t
] [WX

1

]
, (3)

where corresponding variables with subscription c indicate
that they are estimated based on Kc. Define ∆x = xc − x.
We know that

∆x =
{
λcKc

[
C0

W R C0

W t
]
− λK

[
C
WR C

W t
]} [

WX
1

]
. (4)

With the same point correspondences, keep in mind that the
extrinsics [C0

W R, C0

W t] and [CWR, C
W t] are functions of the

corresponding intrinsics Kc and K, respectively. This means
that (4) defines an input-dependent fK manifold:

fK(K,Kc, {∆xi,Xi,∀i}) = 0. (5)

It is not difficult to see that fK becomes less dependent on
the individual {xi,Xi} as i grows large. At this stage, fK
can be used to predict K for a small number of correspon-
dences. This inspires us to develop a data-driven approach to
represent the fK manifold using our DIME-Net. Construction
of the approximated vector field fK, Kc and {∆xi,Xi,∀i},
mapping from the input feature vector to the dynamic K is
the DIME-Net training process. It can be done with carefully
collected data under different OIS states with calibration
patterns under laboratory settings. Later in the application,
this DIME-Net can be used as a K predictor.

Fig. 2 shows our DIME-Net architecture. We first design
the input for DIME-Net which converts the point corre-
spondences and the prior camera matrix into the 1D OIS
discrepancy feature. Given the 1D OIS discrepancy feature,
DIME-Net utilizes the MLP to rectify the intrinsics. We will
explain how we design DIME-Net with its unique feature,
network structure, and network loss function.

A. OIS Discrepancy Feature

Denote the 3D position C0Xi := [Xi, Yi, Zi]
T ∈ R3 and

the corresponding 2D pixel position x̃i := [xi, yi]
T ∈ R2

where symbol ˜ on a variable means that it is in inhomo-
geneous coordinate. Note that 3D points are in {C0} that

∆K=K-Kc

BPnP Layer

.𝑪𝟎 𝑿" ↔ 𝒙" .

MLP

"
!𝑅, "!𝒕 𝐿$%&

OIS discrepancy feature map
Flatten 1D feature

∆�̅�
∆'𝑦

'𝑋
'𝑌
1/𝑍
∆�̅�
∆'𝑦

'𝑋
'𝑌

1/𝑍
∆�̅�

∆'𝑦

(𝑢, 𝑣, 𝑑)

(1,1,1)

5 ∗ 𝑢 ∗ 𝑣	 ∗ 𝑑

'𝑋
'𝑌

…
…

DIME-Net
1
𝑍

.𝑾 𝑿" ↔ 𝒙" .

2D image and 3D camera
point correspondence

𝒙𝒊
Camera
w. OIS

.𝑪𝟎 𝑿#

𝒀

One slic
e ∗ 𝑑

𝑢 ∗ 𝑣	

Fig. 2: DIME-Net architecture and training scheme. This pipeline reflects the process of training the DIME-Net. In the inference stage, the user only needs
the gray box to estimate K and the pose can be calculated using the standard PnP algorithm [1]. For illustration purposes, the 3D feature map only shows
one slice.

the manifold will be defined in {C0} instead of {W} as
(4). This change makes the neural network not sensitive
to the choice of world coordinate system. There are 3
steps to obtain the input feature of the neural network: (1)
point-based OIS discrepancy feature conversion, (2) grid-
based OIS discrepancy feature conversion and (3) 1D OIS
discrepancy feature flattening.

1) Point-Based OIS Discrepancy Feature: Each point-
based OIS discrepancy feature is composed of two main
components: (1) the inhomogeneous representation of ∆x
which is named the projection model discrepancy feature
(PMD) because it is the 2D reprojection error between the
observed image points and their re-projected points using
Kc, and (2) 3D point positions in {C0}. The PMD is the
direct OIS effect on the K [27] when the 3D point position
is given in {C0}.

Denote the PMD of xi ↔ C0Xi as
[
∆xi,∆yi

]T ∈ R2

[
∆xi

∆yi

]
=

[
k1
c

k2
c

]Xi/Zi

Yi/Zi

1

−
[
xi

yi

]
, (6)

where kj
c is the j-th row of Kc. It is worth noting that (6)

is the simplification of (4) in {C0}. We then concatenate the
PMD and the 3D point position in {C0} to form the point-
based OIS discrepancy feature. Denote the point-based OIS
discrepancy feature of xi ↔ C0Xi by fi which is defined as

fi :=
[
∆xi,∆yi, Xi, Yi, 1/Zi

]T ∈ R5. (7)

It is worth noting that the inverse depth 1/Zi is used since
the inverse depth is linear to k1

c and k2
c in (6) making the

model more linear and fits better to the neural network.
2) Grid-Based OIS 3D Feature Map: However, there are

two remaining issues when using point-based features: 1) the
point-based feature number is not fixed because it is input-
dependent, and 2) the order of features should be irrelevant.
In fact, the features should be related to the 2D position
in the image. If we blindly feed the point-based features
into a neural network, we would run into issues because
1) the neural network would need a fixed input dimension
and 2) the neural network would inevitable learn the order

of inputs instead of the spatial location in the image. To
address these issues, we convert point-based features into
grid-based features by using grid cells and merging feature
information within each grid cell. This approach fixes the
input dimension and order issues since there is a constant
number of grid cells, and we can arrange the grid feature
using the lexicographic order of cells.

First, we create a 2D feature map which has the same
size as the original image but with 5 channels that contains
a point-based OIS discrepancy feature fi for each point
correspondence. Next, we divide the 2D point-based feature
map into a 2D grid pattern consisting of u × v equal-sized
square grid cells. To further encode the depth information to
the network and reduce the network’s sensitivity to 3D noise,
we discretize the depth space as the third dimension into d
slices, and the feature map becomes 3D. For each cell in the
3D feature map, we average the point-based features in the
cell to be the corresponding grid-based features. The feature
is indexed by its 2D point position (xi, yi) and its depth Zi

on the 3D feature map. Let
[
ak, bj , cl

]T
be the bottom-right

corner point pixel position of the grid in the j-th row, the k-
th column, l-th slice of the 3D grid pattern. The point-based
feature set that reside in the grid in the j-th row, the k-th
column, and the l-th slice is defined as

Fj,k,l :=
{
fi : xi ∈ [ak−1, ak) ∧ yi ∈ [bj−1, bj) ∧ Zi ∈ [cl−1, cl)

}
. (8)

Denote the grid-based OIS discrepancy feature of the grid
in the j-th row, the k-th column and l-th slice as yj,k,l. The
grid-based OIS discrepancy feature yj,k,l is defined as

yj,k,l :=
1

|Fj,k,l|
∑

fi∈Fj,k,l

fi

=
[
∆xj,k,l,∆yj,k,l, Xj,k,l, Y j,k,l, 1/Zj,k,l

]T
∈ R5,

(9)
where | · | is the set cardinality and symbol − on a variable
indicates the average value.

3) 1D OIS Discrepancy Feature Flattening:: We flatten
the grid-based features to one dimension as the final input for
the MLP in the next step. Denote the flattened feature vector

as y. The flattened vector y can be obtained by concatenating
the grid-based features,

y :=
[
yT
1,1,1,y

T
1,1,2, . . . , yT

1,2,1, . . . , yT
u,v,d

]T
∈ Rmy , (10)

where u, v and d are the numbers of the grid cells in row,
column and slice, respectively, and dimension my = 5uvd.

B. DIME-Net Architecture and Loss Function

Fig. 2 shows that we employ a multilayer perceptron
network to learn the fK manifold to generate dynamic K
from y. We employ geometric error as a loss function to link
the network’s performance to the camera projection model.

1) Multilayer Perceptron: Recall that y is the feature
vector of the point correspondence that describes the OIS
effect. Our goal is to generate K from y. From the per-
spective of the OIS feature, the intrinsic value K is a latent
variable that directly describes the camera model. We design
an MLP to be an antoencoder-style mapping from a high-
dimensional feature variable y to a low-dimensional latent
variable K. Specifically, we employ a fully connected 3-layer
perceptron to generate K. We design the network output to be
∆K = K−Kc. The output layer has 4 nodes that represent
four components of ∆K: ∆fx, ∆fy , ∆cx, and ∆cy . This
design helps regulate the network. In the special case when
input vector y = 0my

, the network should output 04 so that
∆K = 03×3 and K = Kc due to lack of information, which
also ensures the stability of the network.

2) BPnP Layer in Training and Loss Function Design:
For the network training, we use the reprojection error as
a loss function. This directly ties network performance to
model quality. Given the predicted intrinsics K and extrinsics
C
WR and C

W t and the point correspondences {xi ↔ WXi},
the loss can be calculated by

Lrep =
∑
i

∥∥λiK(CWRWXi +
C
W t)− xi

∥∥2
Σ
. (11)

Note that we would need extrinsics [CWR,CW t] to compute
the loss function. To obtain extrinsics and enable end-to-
end training of the network, we connect the network with
a BPnP layer [2] to estimate [CWR,CW t] from the predicted
K. Compared to the general PnP solver, BPnP considers
optimization as a layer and enables the backpropagation
of the network as a whole with the help of the implicit
theorem [22]. Using the reprojection error [3] as our loss
function makes the overall model like a maximum likelihood
estimator. Common loss functions like the L1 or L2 norm
are algebraic distance which is not robust and can lead to
a spurious solution since it does not contain the geometric
meaning. The reprojection error, on the other hand, is a
geometric distance. Therefore, the loss function in (11) can
guide the network in learning the fK manifold.

C. Training and Inference Using DIME-Net

To gather good training samples, as shown in Fig. 3a, we
have designed a calibration rig. It contains a 4-checkerboard
pattern located at four different planes placed on a planar

(a) (b)

Fig. 3: (a) Example image of the training inputs for DIME-Net using the
calibration rig. (b) Example image of natural object feature test setup where
two LEGO buildings are the natural objects.

glass to ensure flatness, each of which contains inner vertices
of 8 × 10. The side length of each cell is 22.0 mm. The
positions of the 3D points are computed in {C0}, and the
2D points are read from the vertex coordinates in the image.
It should be noted that the 4-checkerboard rig design allows
us to directly obtain K for each image using a calibration
procedure because there are enough inputs to estimate both
K and extrinsics. This is very important in training and
verification because it provides the ground truth. With this
setup, we can obtain a set of 2D-3D correspondences with
a moving camera at different perspectives that covers the
normal working range of the camera.

The coverage of the training data is designed for desktop
AR applications. The configuration ensures that our neural
network can approximate fK manifold with good accuracy.
With a trained network, our DIME-Net has the ability to
predict ∆K given the input feature vector in (10) converted
from the 2D-3D point correspondence set.

V. EXPERIMENTS

We have implemented our DIME-Net1 using PyTorch [28].
First, we perform an ablation study of our DIME-Net.
Then we evaluate the inference accuracy of our DIME-Net
using both the calibration rig and the natural object. Let us
introduce our OIS datasets.

1) Calibration Rig OIS Datasets: We have collected data
under the OIS effect using the aforementioned calibration rig
in Sec. IV-C. To activate the OIS, we hold the camera and
capture images with different poses. We use three different
cameras as detailed in Tab. I. For each camera, we collect
a data set and split it into a training set and a testing set
(shown as #images in the columns “Train” and “Test”).

For each device, we obtain Kc according to the method
in Sec. III-C. In addition, for each image, we also use the
4-board as input to estimate K⋆ using the camera calibration
method in [29] by solving the following nonlinear optimiza-
tion,

min
C
WR,CW t,K

∑
i∈N

∥∥λiK(CWRWXi +
C
W t)− xi

∥∥2
Σ
, (12)

where we use all the point correspondence in one image
N = 320 to obtain the K∗.

1Code will be released after review period to respect the conference
anonymous rule.

The calibration process method produces a reprojection
error e⋆. The average reprojection errors are shown in the
Avg(e⋆) column in pixels which provide a baseline for the
best possible performance for the reprojection error.

TABLE I: Calibration rig OIS image datasets

Device Resolution Train Test Avg(e⋆)
Samsung Galaxy S8 4032× 3024 185 47 0.45
iPhone 12 Pro 4032× 3024 164 42 0.46
iPad mini 6 4032× 3024 224 57 0.32

A. DIME-Net Ablation Study

Next we test the impact of different feature setups for
DIME-Net performance using Samsung Galaxy S8 data from
Tab. I.

1) Grid Resolution and Occupancy Tests: Now we test
how grid resolution and grid cell occupancy can affect
DIME-Net performance under reprojection error e. Define
the average reprojection error as Avg(e) which is used as
a primary metric. The resolution of the grid u × v × d
determines the number of points-based OIS discrepancies
in each cell and affects the uncertainty of the points-based
OIS discrepancies, which are the direct input of the DIME-
Net. The grid occupancy, on the other hand, indicates the
distribution of the preserved OIS information. As shown
in Tab. II, we have chosen 4 different grid resolution:
16 × 12 × 1, 12 × 9 × 1, 8 × 6 × 1 and 8 × 6 × 3. To
simulate occupancy, we uniformly sample cells and empty
the 2D and 3D point correspondences in the cells. The empty
cell ratio is measured by η = 1 − m′

p

mp
, where mp and m′

p

are the number of cells with non-zero OIS features before
and after sampling, respectively. The grid occupancy then is
measured by γ =

mp

uvd .

TABLE II: Avg(e) in pixels vs. grid resolution and occupancy in different
η and γ. Smaller is better. Best results are in boldface.

Grid resolution
16× 12× 1 12× 9× 1 8× 6× 1 8× 6× 3

η% γ% Avg(e) γ% Avg(e) γ% Avg(e) γ% Avg(e)
0 64.5 0.73 78.6 0.75 96.4 0.68 24.2 0.77
20 52.1 0.87 62.6 0.97 79.3 0.92 23.9 0.77
40 38.9 1.29 46.0 1.33 57.7 1.45 23.6 0.80
60 26.6 1.77 30.5 1.88 36.6 2.05 22.0 0.85
80 13.4 2.47 14.8 2.49 19.7 2.52 16.9 1.10

Tab. II shows that the grid resolution with 8 × 6 × 1
can achieve the lowest Avg(e). The size of the cell and the
number of point-based OIS discrepancy features are expected
to increase as the grid resolution reduces. The average in (9)
reduces the noise of the features when there are more points
in each cell. The lowest Avg(e) of 0.68 pixels is close to
the calibration accuracy of Avg(e⋆) = 0.45 in Tab. I which
confirms that our DIME-Net works effectively in learning
the fK manifold. Meanwhile, the 8×6×3 setup shows high
stability during point reduction because the explicit depth
feature makes the model more robust, and the initial model
is trained on low density, so reducing the point does not
affect the performance. This is a more preferable setup in

the application. The results show the effective design of
the DIME-Net feature because it is capable of predicting
intrinsics even when the grid occupancy is extremely low.

2) OIS Discrepancy Feature Tests: Next, we examine the
components of the OIS discrepancy feature in (6). Again,
Avg(e) in pixels is used as a metric. We choose 8 × 6 × 1
as grid resolution. We compare five different setups.
A. Complete OIS discrepancy feature in (9) using both PMD and 3D

point positions.
B. Only use PMD in (6).
C. Combine PMD with inverse depth 1/Z.
D. Similar to “C”, but we combine PMD with X and Y positions of 3D

points.
E. Only use 3D point positions.

Tab. III shows that option A achieves the lowest Avg(e)
which means that all features are necessary to achieve the
best result. This is not surprising since (4) has told us that.
What is interesting is that the performance of options B-D
is slightly worse than that of A, which indicates that PMD
is the dominating feature.

TABLE III: Avg(e) in pixels under different feature combination

A B C D E
Avg(e) 0.68 0.78 0.78 0.75 2.58

B. Inference Accuracy Comparison

After knowing the best setup for DIME-Net, we are
ready to test its accuracy in inference test. Initially, we use
Avg(e) as basic performance metric and we will add the
3D reconstruction error Avg(e3D) later in the comparison for
natural objects.

From Sec. III-B, we know that the popular existing ap-
proach is to employ the prior Kc that is obtained when
the camera is stationary or by averaging a large number of
K’s under different OIS states. Let us define Avg(ec) as its
average reprojection error when only using Kc.

We also set a baseline for comparison. The baseline is
characterized by K⋆ which is the best intrinsics that can
be obtained for the test case. Recall that Avg(e⋆) is its
reprojection error. Avg(e⋆) reflects noises in pixels which
is the level of noise that cannot be canceled by adjusting the
intrinsics without overfitting.

It is not difficult to see that Avg(e⋆) ≤ Avg(ec) given a
reasonable large population of point correspondences. It is
also clear that if our design is effective, then Avg(e) should
fall between the two. The closer Avg(e) is to Avg(e⋆), the
better it is. This can be measured by a new metric: the av-
erage reprojection error reduction ratio, ρ = Avg(ec)−Avg(e)

Avg(ec)−Avg(e⋆) .
Higher ρ is more desirable. Now we are ready to compare
the inference quality in different datasets.

1) Calibration Rig Inference Accuracy Tests: The first test
is performed with the data shown in Tab. I based on the
calibration rig data.

2) Point Dropping and Noise Injection Tests: We want to
test the inference accuracy of DIME-Net after we decrease
the number of point correspondences and/or inject noise to
2D and 3D points. This is important because real-world

applications do not always have ample features at the calibra-
tion board point accuracy. To generate the testing condition
of decreased point numbers, we uniformly sample the point
correspondences to be dropped. For noise injection, we inject
random zero-mean Gaussian noise with standard deviation
σ+
x and σ+

X into the 2D point and the 3D point, respectively.
It should be noted that the injected noise σ+

x and σ+
X are

the additional noise added to the checkerboard vertices. The
units of σ+

x and σ+
X are pixels and mm, respectively. In this

test, we used the Samsung Galaxy S8 camera with a grid
resolution of 8× 6× 3 for DIME-Net.

Tab. IV shows the results. Note that in our experimental
setup 1 mm means about 5.45 pixels (px). The upper half
of the table is the result when zero injected noise is added
(σ+

x =0 px , σ+
X=0 mm), and the lower half of the table is the

result when σ+
x = 3 px and σ+

X = 0.15 mm. The average
ratio of reduction of the reprojection error, ρ, shows that our
DIME-Net is insensitive to injected noise and the low number
of point correspondences. It remains close to or above 84%
in all settings. Our design has been shown to be effective
and robust against point dropping and noisy inputs.

TABLE IV: Inference accuracy measured by average reprojection error in
pixels and reduction ratio under different sample sizes: upper half setting
is σ+

x = 0 px & σ+
X = 0 mm, and lower half setting is σ+

x = 3 px &

σ+
X = 0.15 mm.

#Samples Avg(ec) Avg(e) Avg(e⋆) ρ(%)
320 3.44 0.77 0.45 89.3
256 3.34 0.77 0.45 87.9
192 3.43 0.80 0.45 88.3
128 3.45 0.85 0.46 87.0
64 3.40 0.93 0.45 84.0
320 5.28 3.34 3.16 91.5
256 5.27 3.36 3.14 89.7
192 5.28 3.37 3.13 88.8
128 5.31 3.42 3.11 85.6
64 5.56 3.46 3.14 86.7

3) Multi-device tests:: We repeat the tests for all three
devices using data in Tab. I with the same settings as in the
upper half of Tab. IV. The results in the upper half of Tab. V
are consistent with previous tests: our DIME-Net achieves
over 91% in ρ in all cases.

TABLE V: Inference accuracy measured by the average reprojection error
in pixels and reduction ratio. The Scene-Device column beginning with
B indicates the results from the checkerboard-based tests, while those
beginning with N indicate the results from the natural object-based tests.
S8 stands for Samsung Galaxy S8.

Scene-Device Avg(ec) Avg(e) Avg(e⋆) ρ(%)
B-Samsung Galaxy S8 3.44 0.68 0.45 91.7
B-iPhone 12 pro 2.36 0.61 0.46 92.3
B-iPad mini 6 1.61 0.36 0.32 96.8
N-S8 (8×6×1) 4.26 3.74 3.21 49.5
N-S8 (8×6×3) 4.26 3.51 3.21 71.7

4) Natural Object Inference Accuracy Tests: We also
perform an inference accuracy comparison test on natural
objects, since this indicates its performance in real-world sce-
narios where the points are not from the precise calibration
pattern. Here, we employ two LEGO buildings as natural
objects (see Fig. 3b). We manually select/label the features

of the LEGO buildings to ensure perfect correspondence,
where there are 47 features on the left side LEGO building
and 19 features on the right side LEGO building. Using
LEGO models allows us to have 3D points from their CAD
models as ground truth. In fact, the ground-truth 3D points
are the collection of the 3D natural points and those from
the checkerboard in the middle. We have collected 34 images
with different poses with a handheld camera to activate OIS
during image capture. For network setup, we chose grid
resolutions of 8 × 6 × 1 and 8 × 6 × 3 because they have
performed better than other configurations in previous tests.
We first have used the calibration rig dataset trained network
to predict K from the 34 images. The last two rows of Tab. V
show that DIME-Net has achieved at least 71% in reducing
the reprojection error.

In addition to the previous comparison based on the
reprojection error, we have employed the 3D reconstruction
error, since the former may be biased by overfitting. We have
performed a 3D reconstruction of the entire scene using the
network output K and compared it with Kc and K⋆. From
the collected images, we have selected two-view pairs with
at least 64 point correspondences as the test data, which
result in 289 image pairs. We have conducted two-view-
based 3D reconstruction on them. Specifically, we first use all
point pairs to solve the fundamental matrix. Then the relative
pose of the cameras can be decomposed from the two-view
intrinsics. Based on the poses and intrinsics, the 3D points
are obtained from the triangulation. We estimate a similarity
transformation by aligning the checkerboard points from the
reconstruction to their counterparts in {W}. The similarity
transformation is then used to transfer all n points on the
natural objects to {W} as WXi for comparison purposes.
The average 3D reconstruction error Avg(e3D) is calculated as
Avg(e3D) =

1
n

∑n
i=1

√
∥W X̄i −W Xi∥22, where W X̄i is the

ground truth points. Recall that Avg(e3D) is calculated from
the rectified network K, Avg(ec3D) from Kc, and Avg(e⋆3D))
from K⋆. We define the average reduction ratio for the
reconstruction error as ρ3D =

Avg(ec3D)−Avg(e3D)

Avg(ec3D)−Avg(e⋆3D)
. It is worth

noting that we only rely on points from the LEGO buildings
for K inference, and checkerboard points are used as part
of the validation for the full scene reconstruction. Tab. VI
shows the results in the 3D construction. DIME-Net has
achieved 53% reductions in the 3D reconstruction error. In
fact, the accuracy improvement results from natural object
feature-based inference also show that our training scheme
design using the calibration rig successfully learns the fK
manifold, since the setups between the LEGO OIS dataset
and the calibration rig OIS dataset are very different.

TABLE VI: Average 3D reconstruction error in mm.

Scene-Device Avg(ec3D) Avg(e3D) Avg(e⋆3D) ρ3D(%)
N-S8 (8×6×1) 8.63 7.61 5.48 32%
N-S8 (8×6×3) 8.63 6.94 5.48 53%

VI. CONCLUSIONS AND FUTURE WORK

To deal with the camera intrinsics variation caused by
OIS system, we presented our new DIME-Net, a multilayer

perceptron network designed to rectify camera intrinsics
in real time. We analyzed the OIS system and proposed
to use a gridified PMD feature set along with 3D point
positions to train DIME-Net using calibration patterns. The
trained network became an approximation of the intrinsics
manifold that can predict rectified intrinsics in desktop AR
applications. We have implemented and extensively tested
our design. The experimental results confirmed that our
design was robust and effective and can significantly reduce
the reprojection error and the 3D reconstruction error. In
the future, we will improve our design with better geometry
insights for more applications.

ACKNOWLEDGMENT

We thank Y. Xu and Z. Shaghaghian for their insightful discus-
sions. We are also grateful to A. Kingery, F. Guo, C. Qian, and Y.
Jiang for their inputs and feedback.

REFERENCES

[1] V. Lepetit, F. Moreno-Noguer, and P. Fua, “Epnp: An accurate o (n)
solution to the pnp problem,” International journal of computer vision,
vol. 81, no. 2, p. 155, 2009. 1, 2, 3, 4

[2] B. Chen, A. Parra, J. Cao, N. Li, and T.-J. Chin, “End-to-end
learnable geometric vision by backpropagating pnp optimization,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 8100–8109. 1, 2, 5

[3] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision. Cambridge Univ Pr, 2003. 1, 2, 5

[4] J. Kannala and S. S. Brandt, “A generic camera model and calibration
method for conventional, wide-angle, and fish-eye lenses,” IEEE
transactions on pattern analysis and machine intelligence, vol. 28,
no. 8, pp. 1335–1340, 2006. 1

[5] J.-M. Lavest, G. Rives, and M. Dhome, “Three-dimensional recon-
struction by zooming,” IEEE Transactions on Robotics and Automa-
tion, vol. 9, no. 2, pp. 196–207, 1993. 2

[6] G. Simon and M.-O. Berger, “Registration with a zoom lens camera for
augmented reality applications,” in Proceedings 2nd IEEE and ACM
International Workshop on Augmented Reality (IWAR’99). IEEE,
1999, pp. 103–112. 2

[7] J. Miura, T. Kanda, and Y. Shirai, “An active vision system for real-
time traffic sign recognition,” in ITSC2000. 2000 IEEE Intelligent
Transportation Systems. Proceedings (Cat. No. 00TH8493). IEEE,
2000, pp. 52–57. 2

[8] L. Jin, H. Zhang, and C. Ye, “Camera intrinsic parameters estimation
by visual–inertial odometry for a mobile phone with application
to assisted navigation,” IEEE/ASME Transactions on Mechatronics,
vol. 25, no. 4, pp. 1803–1811, 2020. 2

[9] R. Tsai, “A versatile camera calibration technique for high-accuracy 3d
machine vision metrology using off-the-shelf tv cameras and lenses,”
IEEE Journal on Robotics and Automation, vol. 3, no. 4, pp. 323–344,
1987. 2

[10] R. G. Willson, “Modeling and calibration of automated zoom lenses,”
in Videometrics III, vol. 2350. SPIE, 1994, pp. 170–186. 2

[11] M. Li and J.-M. Lavest, “Some aspects of zoom lens camera cali-
bration,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 18, no. 11, pp. 1105–1110, 1996. 2

[12] J. Heikkila and O. Silvén, “A four-step camera calibration procedure
with implicit image correction,” in Proceedings of IEEE computer
society conference on computer vision and pattern recognition. IEEE,
1997, pp. 1106–1112. 2

[13] Z. Zhang, “A flexible new technique for camera calibration,” IEEE
Transactions on pattern analysis and machine intelligence, vol. 22,
no. 11, pp. 1330–1334, 2000. 2

[14] O. D. Faugeras, Q.-T. Luong, and S. J. Maybank, “Camera self-
calibration: Theory and experiments,” in European conference on
computer vision. Springer, 1992, pp. 321–334. 2

[15] A. Kendall, M. Grimes, and R. Cipolla, “Posenet: A convolutional
network for real-time 6-dof camera relocalization,” in Proceedings
of the IEEE international conference on computer vision, 2015, pp.
2938–2946. 2

[16] A. Kendall and R. Cipolla, “Geometric loss functions for camera pose
regression with deep learning,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2017, pp. 5974–5983. 2

[17] C. M. Parameshwara, G. Hari, C. Fermüller, N. J. Sanket, and Y. Aloi-
monos, “Diffposenet: Direct differentiable camera pose estimation,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2022, pp. 6845–6854. 2

[18] A. Boulch and R. Marlet, “Poco: Point convolution for surface recon-
struction,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2022, pp. 6302–6314.
2

[19] Y. Ding, W. Yuan, Q. Zhu, H. Zhang, X. Liu, Y. Wang, and X. Liu,
“Transmvsnet: Global context-aware multi-view stereo network with
transformers,” in Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2022, pp. 8585–8594. 2

[20] S. Brahmbhatt, J. Gu, K. Kim, J. Hays, and J. Kautz, “Geometry-
aware learning of maps for camera localization,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2018,
pp. 2616–2625. 2

[21] D. Campbell∗, L. Liu∗, and S. Gould, “Solving the blind perspective-
n-point problem end-to-end with robust differentiable geometric opti-
mization,” in ECCV, 2020, ∗ equal contribution. 2

[22] S. G. Krantz and H. R. Parks, The implicit function theorem: history,
theory, and applications. Springer Science & Business Media, 2002.
2, 5

[23] J.-Y. Zhu, P. Krähenbühl, E. Shechtman, and A. A. Efros, “Generative
visual manipulation on the natural image manifold,” in Computer
Vision – ECCV 2016, B. Leibe, J. Matas, N. Sebe, and M. Welling,
Eds. Cham: Springer International Publishing, 2016, pp. 597–613. 2

[24] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoor-
thi, and R. Ng, “Nerf: Representing scenes as neural radiance fields
for view synthesis,” in ECCV, 2020. 2

[25] N. Rozen, A. Grover, M. Nickel, and Y. Lipman, “Moser flow:
Divergence-based generative modeling on manifolds,” Advances in
Neural Information Processing Systems, vol. 34, pp. 17 669–17 680,
2021. 2

[26] G. Tiwari, D. Antic, J. E. Lenssen, N. Sarafianos, T. Tung, and
G. Pons-Moll, “Pose-ndf: Modeling human pose manifolds with neural
distance fields,” in European Conference on Computer Vision (ECCV),
October 2022. 2

[27] S.-H. Yeh, D. Wang, W. Yan, and D. Song, “Detection of camera
model inconsistency and the existence of optical image stabilization
system,” in IEEE International Conference on Automation Science and
Engineering (CASE), Mexico City, Mexico, August 2022. 4

[28] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32. Curran Associates, Inc., 2019, pp. 8024–8035.
5

[29] Z. Zhang, “A flexible new technique for camera calibration,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 22,
no. 11, pp. 1330–1334, 2000. 5

