
Localization in Inconsistent WiFi Environments∗

Hsin-Min Cheng and Dezhen Song

Abstract As WiFi becomes more and more popular, indoor environments are of-
ten covered with access points (APs) many of which are temporarily generated by
mobile devices. On the other hand, more and more infrastructural APs are equipped
with beamforming capabilities which adjust radiation patterns according to client
locations. These APs have large variations of signal fields. The inconsistent WiFi
environments present a challenge for localization tasks when the client cannot com-
municate with APs. Here we report a new algorithm targeted at handling inconsis-
tent APs. We develop a windowed majority voting and statistical hypothesis testing-
based approach to remove APs with large displacements between reference and
query data sets. We then refine the localization by applying maximum likelihood
estimation method to the closed-form posterior location distribution over the fil-
tered signal strength and AP sets in the time window. We determine the time win-
dow length by minimizing Shannon entropy of the posterior location distribution.
We have implemented our algorithm and our method outperforms its counterparts
in physical experiments. Our method achieves a mean localization error of less than
3.7 meters even when 70% of APs are inconsistent.

1 Introduction

Indoor localization has become more important in recent years as mobile robots
and mobile device users often need to find their locations where global positioning
system (GPS) signals are unavailable. One low-cost solution is to utilize WiFi sig-
nals in the environment. The number of WiFi access points (APs) has dramatically
increased in the past few years. A large number of APs are temporarily generated
by cellphones and other mobile devices. Moreover, more and more infrastructural
APs are equipped with beamforming capabilities which adjust radiation patterns
according to client locations. These APs have large variation in their signal fields.
We name those APs as inconsistent APs. Fig. 1 shows an example of a WiFi envi-
ronment with inconsistent APs which dramatically change received signal strength
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(RSS) patterns. When the client cannot interrogate APs for their whereabouts and
signal pattern changes, the existing WiFi localization approaches cannot handle in-
consistent WiFi environments well. Their assumption of small variations in RSS
spatial distribution is broken because a majority of APs may be inconsistent.
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Fig. 1: Example of localization scenar-
ios. Left: APs and their RSS readings at
reference collection time. Right: APs and
their RSS readings at localization time.
Even though the robot’s trajectory is iden-
tical, the RSS pattern may be very differ-
ent which leads to unsatisfying localiza-
tion results.

Building on existing WiFi finger-
printing approach, our method also em-
ploys Gaussian processes (GPs) to es-
tablish belief functions from priorly
collected WiFi reference data. How-
ever, our approach utilizes two impor-
tant designs to handle inconsistent APs.
First, majority voting is introduced to
the initial matching phase which allows
us to develop a statistical hypothesis
test to filter out inconsistent APs that
are obvious out of places. Second, we
use a windowed approach by employ-
ing a window of recent RSS readings
along with relative motion information
provided by inertial measurement units
(IMU) to develop posterior distribution of location. We formally derive the condi-
tional distribution and determine the length of the time window by minimizing Shan-
non entropy. At last, we apply the maximum likelihood estimation (MLE) method
to obtain refined localization results. We have implemented our algorithm and com-
pared it with the state of the art k-Nearest-Neighbor (k-NN) approach. The exper-
imental results show that our method outperforms its counterpart in inconsistent
WiFi environments. Specifically, our algorithm achieves a mean localization error
of less than 3.7 meters when 70% of APs are inconsistent.

2 Related Work

Our work is related to the simultaneous localization and mapping (SLAM) [45] us-
ing on-board sensors. SLAM using a lidar [13] and/or a camera [4, 7, 30–32] can
be more accurate but is computation intensive and suffers from reliability issues
and specific requirements for environments. WiFi localization has its own advan-
tages when considering sensor size, power, and cost. Recently, researchers have ap-
plied the graph-SLAM structure using WiFi and other wireless signals [10, 16, 34].
These methods provide good localization results, but the inconsistent WiFi envi-
ronments have not been considered as SLAM in dynamic environments remains
a difficult problem [21, 54]. SLAM approaches usually assume stationary environ-
ment/landmark locations. The underlying assumption that WiFi APs or RSS patterns
can be treated as stationary landmarks is no longer true under inconsistent WiFi en-
vironments. In fact, inconsistent WiFi environments are highly dynamic instead of
just containing a few moving landmarks in a largely stationary background.
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Method Hardware cost Known Communications System/Solution
AP Locations b/w AP and client

Angle based (AoA) High Y Y [11, 22, 39, 50]
Time based(ToA/ TDoA) High Y Y [12, 18, 26, 33, 46]

RSS modeling based Low Y N [1, 6, 19, 20, 27, 40, 42, 43, 48]
Fingerprint based Low N N [2, 3, 10, 14, 15, 23, 28, 35, 36, 38, 47, 49]

Table 1: Overview of WiFi Indoor Localization Methods.

WiFi localization has been a popular research area [12, 14, 29]. We can classify
the existing methods into four types: angle based, time based, RSS modeling based,
and fingerprinting based approaches (see Tab. 1). Angle based approaches use AP
with multiple antennas to compute Angle of Arrival (AoA) of the multi-path sig-
nals received at each AP and localize through triangulation. Time based approaches
include time of arrival (ToA) or time difference of arrival (TDoA) relies on the
propagation time of signals traveling from a transmitter to a receiver. However, pre-
cise time synchronization is required which is not available using commodity WiFi.
Both the two methods relies on known AP locations, and the client needs to inter-
rogate APs for their locations or precise synchronization. Although more accurate
in general, these two methods bear high cost in infrastructure and are difficult to
be deployed. The RSS modeling based approaches model WiFi RSS signal propa-
gation in the space assuming known AP locations, which have advantages of low
cost and easy deployment. These methods often suffer from low accuracy because
signal attenuation is often complex and hard to be predicted. Fingerprinting based
approaches require priorly-mapped WiFi RSSs in the working space to construct a
database for localization purpose which does not require communication between
APs and the client or known AP locations. Our approach inherits the benefits with
focus on addressing the dynamic signal pattern issues.

In order to improve WiFi localization accuracy, auxiliary sensors are combined
into the above approaches, such as cameras, which are used to recognize landmarks,
and IMUs for motion estimation [3, 17, 25, 37]. The sensor configuration in our ap-
proach is the same as the latter. Existing work in the IMU-assisted WiFi localization
systems [8, 53] localize pedestrians by utilizing step count information to mitigate
IMU drifting issue. However, the step count information is not available for robots
and these methods have not explicitly consider inconsistent WiFi environments.

To deal with uncertainties in WiFi environment, existing works detect outliers
using k-NN [24, 41], penalize RSS readings from uncertain APs, and signify APs
with strong RSS readings in the k-NN method. Laoudias et al. [24] assume the
fault model of AP with on and off status and set threshold on sum of distance of k-
NN method to mitigate errors from faulty APs. These works have demonstrated the
advantages of removing outliers. However, they use only RSS at the current moment
which may be challenging for moving users who experience signal fluctuations. We
take a windowed approach by using sequence matching which greatly improves
the robustness to inconsistent APs. AP selection is not a new technique in WiFi
localization. However, the main focus is to reduce the computation cost and improve
accuracy instead of handling inconsistent WiFi environments. Existing approaches
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choose APs with the highest RSS observation [52] or select APs based on entropy-
based information gain criterion [5]. They cannot be guaranteed the selected APs
are reliable in inconsistent WiFi environments due to different design purposes.

3 Problem Formulation

3.1 Application Scenario and Assumptions

Our system extends the aforementioned fingerprinting methods, which assume that
there is a mobile robot equipped with SLAM ability to pre-scan the environment to
establish a database of WiFi RSS readings and their corresponding listening loca-
tions. The database is referred to as the WiFi reference data thereafter. It is clear that
the reference data contain inconsistent AP RSSs.

At client side, the robot also perceives WiFi signal strengths and accumulates
them over time which are referred to as WiFi query data. It is true that WiFi query
data may also contain noisy data from inconsistent APs. The focus here is the client
side localization problem in the presence of inconsistent AP signals in both query
and reference data. Each localization client is equipped with an IMU. The client
may be a mobile robot or a cellphone user. To focus on the most relevant issues, we
have the following assumptions:

1. WiFi and IMU readings have been synchronized and time-stamped.
2. The RSS reception noises are Gaussian and IMU signal noises are white.

It is also worthing noting that we do not assume that we start with a known ini-
tial position and hence our localization is a global location problem instead of an
incremental localization problem.

3.2 Notations and Problem Definition

Common notations are defined as follows,

• Reference data: D = {(zr,i,Xr,i)|i = 1, · · · ,n} is composed of n input-output pairs
where i is the index variable, Xr,i is the position in 2D or 3D Cartesian coordinate
system, and vector zr,i contains the WiFi RSS readings at Xr,i. Subscript r refers
to the reference data. zr,i’s dimension is determined by number of APs in the
environment. Let us define AP index m∈M where M := {1, · · · ,mmax} is the AP
index set. There are mmax = |M| distinct APs.

• Query data: subscript q refers to query data. Let j be the time index where j≥ 0.
Vector zq, j contains all WiFi RSS readings at time j. The sequence of WiFi query
data from the beginning to time j is denoted as

zq,0: j = {zq,0, · · · ,zq, j}. (1)

• IMU readings from the beginning to time j are denoted as a0: j and ω0: j for
accelerations and angular velocities, respectively. Note that a0: j and ω0: j contain
a lot more entries than that of query set in (1) due to high sampling frequency.
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With important notations defined, let us formulate the localization problem,

Problem 1 Given D, zq,0: j, a0: j, and ω0: j at time j, estimate location X j .

4 System Design and Algorithm

1.1) RSS Modeling
2.1) Query Data 

Trimming
2.2) EKF Motion 

Estimation 

WiFi Reference Data WiFi Query Data IMU Readings

2. Query  Pre-processing  1. Reference Pre-processing

3.1) Initial Localization 
Using Majority Voting

4.1)Maximum 
Likelihood Estimation

4.2)Determine Optimal
Window Size 

3. Query AP Selection

4. Location Refinement Using Windowed Sequence

3.2) Inconsistent AP
Removal

M j
*

i j
*

M j

X j

w

zj-w:j

z q,0:jM r
a0:jD ω 0:j

X j-w:jΔ 

Fig. 2: System Dia-
gram: the light gray
region needs only one
time computation and
all the dark gray re-
gions are computed
for each frame.

Our system architecture is illustrated in Fig. 2 which contains four main blocks
shaded in gray: 1) Reference pre-processing where we construct RSS-location belief
model using the reference data, 2) Query pre-processing where we match a time
window of query APs with reference data and reconstruct the corresponding window
of relative motion of the client using IMU inputs, 3) Query AP selection where we
match query WiFi with those in the reference data to remove unmatched query APs,
and 4) Location estimation where we fuse the recent relative motion with historical
RSS to localize the client and determine the optimal window size for next time
frame. We begin with reference pre-processing (Box 1 of Fig. 2) where we construct
an RSS-location belief model from the WiFi reference data using GPs.

4.1 Reference Pre-processing

Let Xr,i be i-th location where reference data is collected and zr,i,m be the perceived
RSS for the m-th AP at this location. Xr,i can be either 2D or 3D depending on the
environment. Let Xr := [Xr,1, · · · ,Xr,n]

T be a location matrix containing all collection
locations in the reference data D. Define zr∗,m := [zr,1,m · · · ,zr,n,m] as all RSSs for the
m-th AP in the reference data. Then the combined data set Dm := {zr∗,m,Xr} be the
training set of the m-th AP to instantiate a GP to characterize a regression model
fm(·) between Xr and zr∗,m. For each element in zr∗,m,

zr,i,m = fm(Xr,i)+ ε, (2)
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where ε ∼N (0,σ2
nm) is the observation noise and σ2

nm is the variance. For two differ-
ent locations Xr,i and Xr,i′ , we employ the kernel function km(·) in GP to characterize
the correlation between their function values, namely, fm(Xr,i) and fm(Xr,i′):

km(Xr,i,Xr,i′) = σ
2
f m exp(− 1

2λ 2
m
|Xr,i−Xr,i′ |2), (3)

where σ2
f m is the signal variance and λm is the length scale. The covariance matrix

Km is an n×n matrix with the (i, i′)-th element Km(i, i′) = km(Xr,i,Xr,i′) where i, i′ ∈
{1, · · · ,n}. For the m-th AP, the predicted function value z̃ for an arbitrary location
Xa conditioned on Xr and zr∗,m is

z̃ = KT
a (Km +σ

2
nmI)−1zr∗,m, (4)

where I is an n-dimensional identity matrix and Ka is an n× 1 vector which cap-
tures the relationship between Xa and Xr using (3), Ka(i,1) = km(Xr,i,Xa) where
i ∈ {1, · · · ,n}. The values of parameters σ2

f m, σ2
nm and λm are learned using hy-

perparameter estimation mentioned in [10]. Since GP is a zero mean process, we
subtract the mean of zr∗,m before training and add it back after to get the required z̃.

We can do this for each AP and hence we can obtain a location belief model
based on all APs in the reference data.

4.2 Query Pre-processing

Before we match query data with the reference data, we need to remove query APs
that do not exist in the reference data. It is clear that their RSSs would not assist
localization. Subsequently, we reorganize zq, j in (1) to z j by trimming out the use-
less RSSs. Define the surviving AP index set as M j. Similarly, we also update the
historic query data set z0: j := {z0, · · · ,z j} from zq,0: j. In fact, it is not necessary
to employ the entire historic query data set for localization computation. We only
need to backtrack a window of length w readings, which allow us to establish the
windowed query data set z j−w: j from time j−w to time j. We will discuss how to
determine the optimal window length in Section 4.5.

Next, we associate the relative motion from time j−w to j for the query data
z j−w: j. Although we do not know the absolute position, we can utilize IMU data to
obtain the relative motion in the time window. We define ∆Xa:b = Xb−Xa as the
travel distance between time a and time b. To get ∆Xa:b, we employ an EKF-based
approach for IMUs [9, 44, 51]. From the EKF, ∆Xa:b follows Gaussian distribution
with a mean of ∆Xa:b and a covariance of Σ∆Xa:b . Define the relative motion set
∆X j−w: j := {∆X j−k+1: j−k|k = 1, · · · ,w}, which captures the relative motion within
the time window.
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4.3 Query AP Selection

(a) (b) (c) 

Fig. 3: Sample cases of posterior condition probability of robot/client location. The
color changing from yellow to blue corresponds to high to low probability regions,
respectively. The red star is the ground truth location. The x-axis and y-axis that
span horizontal plane are 2D Cartesian coordinates, and vertical z-axis represents
probability. (a) Directly computed from GPs without removing inconsistent APs and
using windowed inputs. (b) After inconsistent AP removal. (c) After inconsistent AP
removal and location refinement.

With z j−w: j and ∆X j−w: j obtained, we can perform statistical testing to remove
inconsistent APs which refers to APs that may have changed locations or have sig-
nificant signal strength changes. If we do not remove inconsistent APs, localization
results may suffer. In fact, we can visualize this issue. We can obtain posterior dis-
tribution of X j directly using GPs in (4) based on z j which is shown in Fig. 3(a). A
desirable outcome is supposed to be a unimodal distribution with its peak close to or
overlapping with the actual location. Unfortunately, the inconsistent APs have lead
to a multimodal distribution and the ground truth position does not correspond to a
peak position which indicated localization would fail if such belief model is naively
used.

4.3.1 Initial Localization Using Majority Voting

To remove inconsistent APs, we perform an initial low resolution localization by
simply assuming current location X j is co-located at each location Xr,i in reference
set and then we can compare the sequence of RSSs. Relative motion set ∆X j−w: j
allow us to generate assumed reference location information X̃r,i = {Xr,i}∪{Xr,i−
∑

k
p=1 ∆X j−p: j−p+1|k = 1, · · · ,w} for the entire window. Plug X̃r,i into (4), we obtain

the assumed reference RSSs z̃r,i. Note that z̃r,i is of the same length as z j−w: j.
Now we find the most possible location by matching query z j−w: j to reference

z̃r,i. We find best match location from initial location candidates using majority vot-
ing over best location candidates identified by each AP.

For the m-th AP at time j− k, its query entry in z j−w: j is z j−k,m and the cor-
responding reference entry in z̃r,i is z̃i,m,k. The matching metric function fE is the
summation of the squared l2−norm over the window,
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fE(m, i) =
w

∑
k=0

(z̃i,m,k− z j−k,m)
2. (5)

The m-th AP can predict best location im by comparing fE values over the entire
reference set

im = arg min
i∈{1,···n}

fE(m, i).

Combining the best solutions for all APs, we have a candidate solution set Im :=
{im|m = 1, · · ·mmax}. We employ majority voting to find the most agreed location
index i∗j as the solution. Specifically, we define a binary ballot function bb:

bb(im, i) =

{
1, i = im,
0, otherwise.

The location with the most votes wins,

i∗j = arg max
i∈Im

mmax

∑
m=1

bb(im, i). (6)

Now we know that the actual location is close to the location at reference index i∗j .
This information can be exploited to filter out inconsistent APs.

4.3.2 Inconsistent AP Removal

We develop statistical hypothesis testing to remove inconsistent APs. To perform
the statistics testing, we begin with analyzing fE(m, i∗j) as a distribution. We would
like to derive the probability that fE(m, i∗j) is abnormally large. For the m-th AP,
have two hypotheses:

H0 : The m-th AP is an inconsistent AP vs. H1 : The m-th AP is a consistent AP

The significance level is α . We reject H0 if p−value is less than α .
Let z̃∗m,k be the reference entry for the m-th AP corresponds to location i∗j . From

the GP model, we know (z̃∗m,k − z j−k,m)/σnm ∼ N (0,1) is a random variable fol-
lowing the normal distribution with zero mean and a variance of 1. We know
that fE(m, i∗j)/σ2

nm is the sum of squares of multiple normal distributions accord-
ing to (5), fE(m, i∗j)/σ2

nm has to follow χ2-distribution with w+ 1 degrees of free-

dom. Its cumulative probability function is F(x,w+1) =
γ((w+1)/2,x/2)

Γ ((w+1)/2)
where

γ(a,x) =
∫ x

0 ta−1e−tdt and Γ (a) =
∫

∞

0 ta−1e−tdt. The probability of a value from
χ2-distribution distribution is larger than x is

P{ fE(m, i∗j)/σ
2
nm ≥ x}= 1−F(x,w+1) = α. (7)
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Setting F(x,w+1)= 1−α allows us to find threshold x=F−1(1−α) where F−1(·)
is the quantile function defined as F−1(a) = in f{y : F(y) ≥ a}. Thus we reject H0
if fE(m, i∗j) ≤ σ2

nmF−1(1−α). After the statistical testing, we remove inconsistent
APs. The remaining AP index set is defined as M∗j . We trim z j−w: j accordingly.
Fig. 3(b) illustrates how inconsistent AP removal help reshape the posterior location
distribution which has its highest peak closer to the actual AP location. However, in-
consistent AP removal cannot distinguish APs which change their positions slightly.
Therefore, we still have a multi-modal distribution with many peaks, which limits
the localization accuracy. To handle this issue, we introduce localization refinement.

4.4 Location Refinement Using Windowed Sequence

Our idea is to derive the posterior probability of X j for present time j given RSS
readings z j−w: j and relative motion information ∆X j−w: j and then apply MLE
method to obtain the location estimation (Fig. 2 Box 4).

Let P(X j|z j−w: j,∆X j−w: j) be the posterior probability of X j given z j−w: j and
∆X j−w: j. With ∆X j−w: j, the robot/client position X j−k can be obtained (see Fig. 4),

X j−k = X j−∆X j−k = X j−
k

∑
p=1

∆X j−p+1: j−p. (8)

Assuming X j = x j, then the conditional distribution of X j−k given (x j, ∆X j−k) is,

X j−k|x j,∆X j−k = x j−∆X j−k, (9)

where operator ‘·|·’ represents the condition for a random variable with conditions
at the right side of ‘|’. Since ∆X j−k is obtained from EKF based on IMU inputs,
it follows Gaussian distribution with a mean of ∆X j−k, and a covariance matrix of
Σ∆X j−k :

X j−k|x j,∆X j−k ∼N (x j−∆X j−k,Σ∆X j−k). (10)

. . .

GPsGPsGPsGPs GPs

X j-1:jΔ Xj-2:j-1Δ Xj-w:j-w+1Δ 
Xj-w Xj-w+1 X j-2 X j-1 Xj

z jz j-1z j-2zj-w+1z j-w

Fig. 4: Relationships between loca-
tions, displacements, and RSS read-
ings in the window of prior locations
and RSSs. Each prior location can be
associated to its RSS readings using
GPs.

Now let us derive the posterior probability using Bayes theorem,

P(X j|z j−w: j,∆X j−w: j) =
P(X j,z j−w: j,∆X j−w: j)

P(z j−w: j,∆X j−w: j)
. (11)

We decompose P(X j,z j−w: j,∆X j−w: j) by taking z j to the front,
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P(X j,z j−w: j,∆X j−w: j) (12)
= P(z j|X j,∆X j−w: j,z j−w: j−1)P(X j,∆X j−w: j,z j−w: j−1)

= P(z j|X j)P(X j,∆X j−w: j,z j−w: j−1).

This is because the current observation z j only depends on the current location.
Again, we decompose P(X j,∆X j−w: j,z j−w: j−1)

P(X j,∆X j−w: j,z j−w: j−1) (13)
= P(z j−1|X j,∆X j−w: j,z j−w: j−2)P(X j,∆X j−w: j,z j−w: j−2)

= P(z j−1|X j−1 = X j−∆X j, j−1)P(X j,∆X j−w: j,z j−w: j−2).

This is because z j−1 is independent of z j−w; j−2 given X j−1.
For P(X j,∆X j−w: j,z j−w: j−2), we have

P(X j,∆X j−w: j,z j−w: j−2) (14)
= P(z j−2|X j,∆X j−w: j,z j−w: j−3)P(X j,∆X j−w: j,z j−w: j−3)

= P(z j−2|X j−2 = X j−
2

∑
p=1

∆X j−p+1, j−p)P(X j,∆X j−w: j,z j−w: j−3).

X j−2 and X j are related using (8). By decomposing P(X j|z j−w: j,∆X j−w: j) itera-
tively, we rewrite (11) as

P(X j|z j−w: j,∆X j−w: j) =

P(z j|X j)
w

∏
k=1

P(z j−k|X j−k = X j−
k

∑
p=1

∆X j−p+1, j−p)

P(z j−w: j,∆X j−w: j)
.

(15)

We integrate displacement ∆X j−k: j for each term:

P(z j−k|X j−k = X j−
k

∑
p=1

∆X j−p+1, j−p) =
∫

P(z j−k|x j−k) f (∆x j−k)d(∆x j−k), (16)

where f (∆x j−k) is a Gaussian distribution function (10) obtained from EKF result.
Under the GP model, the probability distribution for the m-th AP’s RSS condi-

tioned on X j = x j is

z j,m|X j ∼N (µm(x j,D),Σm(x j,D)), (17)

where µm(x j,D) = kT
X j
(Km + σ2

nmI)−1zT
r,∗m and Σm(x j,D) = k(x j,x j)− kT

X j
(Km +

σ2
nmI)−1kX j with k(x j,x j) = σ2

f m obtained from (3). Since RSSs of all APs are inde-
pendent, we have

f (z j|X j = x j) = ∏
m∈M∗j

f (z j,m|X j = x j). (18)
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Similarly, we can obtain a probability distribution function for z j−k|X j−k. With re-
sults from (16) and (18) and the fact that z j−w: j and ∆X j−w: j are independent, we
can compute (15) to obtain P(X j|z j−w: j,∆X j−w: j). Fig. 3(c) illustrates the posterior
distribution for the windowed inputs which appears as a unimodal distribution with
its peak located close to the actual location. This significantly increases the accuracy
of the localization algorithm.

Finally, we estimate X j by applying MLE to the posterior probability in (15),

X̂ j =arg max
X j

P(z j|X j)
∫ w

∏
k=1

P(z j−k|X j−k = X j−
k

∑
p=1

∆X j−p+1, j−p)d(∆x j−k).

(19)

Note that we dropped the denominator in (15) because it is not a function of X j.

4.5 Determine Optimal Window Size

The remaining issue is how to determine the optimal window size w of RSS se-
quence. It is worth noting that increasing window size w significantly increases
computation load. Also, the relative motion information ∆X j−w: j has its variance
increasing over time due to IMU drifting and eventually becomes useless due
to its large spatial uncertainty. To choose an appropriate window size, we min-
imize the Shannon entropy over window size. Define A as a latticed set of the
localization space. The lattice resolution is 0.1 meters in each dimension in our
settings. Define H(w, j) as the Shannon entropy over the probability distribution
P(X j|z j−w: j,∆X j−w: j),

H(w, j) =− ∑
X j∈A

P(X j|z j−w: j,∆X j−w: j) logP(X j|z j−w: j,∆X j−w: j).

We choose the optimal w that minimizes H(w, j) over all possible window length
set w := {0,1, ...,wmax} where wmax is the maximum allowable window size that
covers the entire A. Then we find the optimal solution w∗,

w∗ = arg min
w∈w

H(w, j). (20)

The resulting w∗ will be used as the window size for time frame j+1.

5 Experiments

We have implemented our algorithm using MATLAB under a PC with Windows
7. We evaluate our method using real world data from physical experiments. Three
algorithms are compared in our experiment.
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Building HRBB SCTS WEB

Trajectory (meters) 96 50 80
Reference Data # of AP 252 132 159
Query Data AP # of AP 246 135 171

Shared APs between two data sets 195 130 158

Table 2: Dataset Description

Inconsistent APs

Dataset Method 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

HRBB k-NN 3.3 3.5 3.8 4.2 4.4 5.5 6.5 8.6 9.7 15.1
MLE-NS 3.2 3.4 3.9 4.2 4.3 5.6 7.0 6.7 7.3 10.0
MLE-S 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.5 4.6 9.1

SCTC k-NN 1.6 1.8 1.9 2.6 3.0 3.8 5.8 7.1 8.0 10.4
MLE-NS 2.1 2.1 2.1 2.6 2.9 3.6 6.9 6.6 6.4 6.4
MLE-S 1.7 1.6 1.7 1.7 2.1 2.0 2.4 3.1 4.9 10.1

WSB k-NN 1.2 1.3 1.3 1.5 2.1 2.9 6.2 8.9 12.7 16.3
MLE-NS 1.6 1.5 1.6 1.7 1.9 2.3 4.4 6.4 8.9 14.5
MLE-S 1.4 1.5 1.4 1.4 1.4 1.6 2.3 3.7 10.3 19.4

Table 3: Mean Localization Error (meters)

• MLE-S: Our complete method including both AP removal and MLE refinement,
• MLE-NS: our algorithm without AP removal in Section 4.3.2. We test this variant

of our method to show the benefit of inconsistent AP removal, and
• k-NN [17]: This method is chosen as the counterpart because it has ability to

handle some degrees of inconsistent WiFi environments despite it only targets at
handling RSS fluctuations. It also employs IMU to assist WiFi localization. For
brevity, we name it as k-NN method here.

Nexus 7 
tablet

lidar

(a) (b) (c) (d)

Fig. 5: (a) Our data collection robot and sensor configuration. 2D lidar maps are
used as ground truth: (b) HRBB, (c) SCTS, and (d) WEB.

Dataset: We have collected datasets from three different buildings: H. R. Bright
building (HRBB), Scoates Hall (SCTS), and Wisenbaker Engineering Building
(WEB) at Texas A&M University using a Nexus 7 tablet and a mobile robot (see
Fig. 5). Our robot is equipped with a Hokuyo UTM-30LX lidar and provides 2D
lidar map (see Fig. 5 (b)) with timestamps. The location from lidar-based SLAM is
used as a ground truth with an error of less than 10 centimeters. The dataset consists
of WiFi RSS readings collected at 1Hz and IMU readings at 100Hz. Tab. 2 describes
details of each dataset including the overall trajectory, the number of APs in refer-
ence data, and query data. We have collected the reference data and query data in
different days. Therefore, the two data sets do not share the exact same number of
APs. The shared AP number are shown in the last row of the Tab. 2.
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Evaluation Metric: The localization error at time j is defined as the Euclidean
distance between the estimation X̂ j and ground truth Xg, j: ε j = ||X̂ j −Xg, j||. The
error is measured in meters.

Tab. 3 shown the test results. The best results are highlighted in bold fonts. We
have tested all three algorithms under different percentage of inconsistent APs rang-
ing from 0% to 90% in the environment. To generate inconsistent APs, we first use
systematic random sampling on the shared APs between reference data and query
data and shift AP RSS patterns randomly to form inconsistent APs. It is clear that
our method is more robust than the counterpart under inconsistent WiFi environ-
ments. Also, the inconsistent AP removal process does help in maintain consistent
localization accuracy up to 70% inconsistent APs. Our methods achieve the best
or close to the best mean localization error as long as the inconsistent AP ratio is
less than 70%. At 80% or 90% inconsistent AP ratio, our proposed method does
not work well, this is because signal to noise ratio is too low and inconsistent AP
removal process may fail.

10 20 30 40 50 60 70 80 90
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Fig. 6: Average TP rates of selected APs
after the AP removal process.

Fig. 6 shows the effectiveness of in-
consistent AP removal scheme by illus-
trating true positive (TP) rates, which is
defined as

T P =
#consistent AP selected

#All selected APs
,

over different inconsistent AP ratios.
Our method ensures that TP rates re-
main above 0.5 under 70% inconsis-
tent APs environment among different
datasets with a mean localization error
less than 3.7 meters.

The last evaluation is runtime of our
approach. From We report the average
runtime for each time frame are 0.30 seconds on average for SCTS dataset, 0.89
seconds for HRBB dataset, and 0.63 seconds for WEB dataset. From alogithm anal-
ysis, the most time consuming operation is computing location posterior probability
which is proportional to the number of APs (Tab. 2.). Our runtime result confirm it.
Recall that the time interval for each time frame is 1 second in experiment set up,
the runtime for localization is tolerable.

6 Conclusion and Future Work

We reported a WiFi-based localization method designed to handle inconsistent WiFi
environments where mobile APs and APs with beamforming capabilities cause sig-
nificant changes in radiation patterns in RSSs. Building on the WiFi fingerpinting
method that utilizes GPs to establish a belief model from reference data, our method
employed majority voting along with embedded statistical hypothesis testing to re-
move inconsistent APs. Instead of using RSS pattern at a single time instance, we
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used a historical sequence to further improve the robustness to inconsistent APs. We
derived a posterior location distribution function for the sequence and applied MLE
to refine localization results. Our method was tested and compared to an existing
method. The results showed that our method outperforms the counterpart and our
design is effective. In the future, we will conduct more experiments and comparison
studies. We will also focus on analysis and improving computation speed.
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