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Abstract— We report a tunable sparse optimization solver
that can trade a slight decrease in accuracy for significant speed
improvement in pose graph optimization in visual simultaneous
localization and mapping (vSLAM). The solver is designed
for devices with significant computation and power constraints
such as mobile phones or tablets. Two approaches have been
combined in our design. The first is a graph pruning strategy
by exploiting objective function structure to reduce the opti-
mization problem size which further sparsifies the optimization
problem. The second step is to accelerate each optimization
iteration in solving increments for the gradient-based search in
Gauss-Newton type optimization solver. We apply a modified
Cholesky factorization and reuse the decomposition result from
last iteration by using Cholesky update/downdate to accelerate
the computation. We have implemented our solver and tested it
with open source data. The experimental results show that our
solver can be twice as fast as the counterpart while maintaining
a loss of less than 5% in accuracy.

I. INTRODUCTION

Visual simultaneous localization and mapping (SLAM)
algorithms allows mobile robots or devices to precisely
estimate their location and establish visual scene under-
standing. The recent fast development of augmented reality
(AR) applications on mobile devices is essentially enabled
by visual SLAM (vSLAM) algorithms. Despite real time
requirement, vSLAM algorithms face strict power and com-
putation constraints when running on mobile devices.

A significant part of vSLAM computation is pose graph
optimization. This step is also known as local bundle adjust-
ment (LBA) because it performs the optimization to refine
landmark locations and camera poses on a sliding window of
adjacent frames to avoid a large global optimization problem.
It has been widely accepted as an efficient approach because
landmarks only continuously exist in a short sequence of
adjacent frames. The short temporal dependence on land-
marks means that the optimization problem is sparse. The
optimization problem has a graph structure with landmarks
and camera poses as vertices.

To speed up the computation, we propose a tunable sparse
solver to solve the graph optimization problem with faster
speed and similar accuracy than that of the traditional solver.
Unlike the traditional solver, which usually solve the whole
graph, we concentrate the computation on partial graph with
high contribution to the cost function and the increments.
We design two algorithms to accelerate the optimization
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Fig. 1. Computation savings by updating system matrix A (top left) and its
companion lower triangular matrix L (top right) in LBA problem from one
iteration to next (i.e. the new counter part Ā (bottom left) and L̄ (bottom
right)) instead of regenerating the entire matrices. The example is generated
using data from dataset KITTI00. The non-zero (nz) entries in four matrices
are in blue. By using Cholesky multiple-rank update to update one edge,
we are able to only update the part located at the intersection of the red
columns except the upper triangular matrix in L̄.

process. First, we propose a graph pruning algorithm to
reduce the original optimization problem size by exploiting
the LBA structure. We only optimize vertices with large
errors and fix the others to generate a pruned graph. Second,
we apply a modified Cholesky factorization to speed up the
computation. In each iteration, we only update a sub graph
and then we reuse the decomposition result from last iteration
by using Cholesky update/downdate to reduce the repeated
computation (see the example in Fig. 1).

We have implemented our solver by revising g2o [1] which
is also used as our baseline. The results show that our solver
can be twice as fast as the traditional solver for the LBA
processes in vSLAM problems, when the loss in accuracy is
no more than 5% on average.

II. RELATED WORK

Our work relates to the areas of visual SLAM, optimiza-
tion solver, and incremental solver.

As a variation of the SLAM problem [2], the visual
SLAM problem is to simultaneously estimate robot pose



and landmark positions using features from one or more
cameras. Those features, with points as the most commonly
employed feature type, are extracted from video frames using
state-of-the-art feature detection methods such as SIFT [3],
SURF [4], etc. The landmark positions are often represented
as 3D positions of the feature points. The raw features have
been through a process of selection, filtering, and identifying
correspondence with features in adjacent frames using epipo-
lar geometry in computer vision, and many statistics methods
such as random sampling consensus (RANSAC) [5]. The vi-
sual SLAM process then estimates both camera poses and 3D
landmarks from 2D features by minimizing reprojection error
over the chosen set of the image frames. To solve the visual
SLAM problem, there are two dominant approaches [6]: the
filtering approaches (e.g., [7], [8]) and the bundle adjustment
(BA) approaches (e.g., [9], [10]). The former comes from
the traditional SLAM field of robotics research, while the
latter builds on the optimization framework introduced by
the structure from motion area in computer vision. We focus
on improving the latter since it gains more popularity.

An optimization solver is indispensable to reduce un-
certainty for SLAM problems. After obtaining the initial
solutions, the solutions can be further improved by formulat-
ing an optimization problem in BA approaches and solving
it using an optimization solver, such as ceres-solver [11]
or g2o [1]. Moreover, the pose graph optimization can be
applied to not only SLAM problems (e.g., [12], [13]), but
also other applications such as map fusion (e.g., [14], [15]).
However, solving pose graph optimization problems suffers
from high computational cost. For efficiency purpose, it is
common to apply LBA [16], [17] in the front end of SLAM
problems instead of using global bundle adjustments.

Incremental solvers for SLAM problems become more and
more prevalent recently since it can reduce repeated com-
putation by taking advantage of previous results to update
and solve the problems. Dellaert et al. propose

√
SAM [18]

to incrementally solve the problem by using a sparse direct
solver. Kaess et al. further improve

√
SAM by applying

incremental QR factorization in iSAM [19] and Bayes tree in
iSAM2 [20]. Polok et al. utilize incremental block Cholesky
factorization [21] to speed up the solver. Ila et al. recover
the estimation and covariance matrix in SLAM++ [22] and
present an incremental BA to update Schur complement [23].
Liu et al. further propose an incremental BA solver for
visual-inertial SLAM problems [24] Wang et al. improve
iSAM and iSAM2 by incremental Cholesky factorization and
min-heap based variable reordering [25].

Our work focus on improve LBA speed by utilizing
its structure. From the algorithm aspect, we use Cholesky
update/downdate algorithms in popular sparse matrix library
CHOLMOD [26]–[31] to solve vSLAM problems. This
approach can efficiently make use of previous results since
there is no need to reconstruct the optimization iteration
equations and recompute the Cholesky factorization.

III. ALGORITHMS

A. Graph Optimization using the Classic Solver

First, we review the background of a graph optimization
problem [1]. Let G denotes a graph, Vi denotes i-th vertex,
and Ei j denotes the edge connecting Vi and Vj. Let xvi be the
estimated parameter in Vi, and εi j be the error term in Ei j.
Let x ∈RM be the parameter vector obtained by stacking all
xv j , z ∈ RN be the measurement vector, and f : RM → RN

be a differentiable mapping. The cost function is given by

F(x) = ε
T

Σ
−1

ε, (1)

where ε = f (x)−z is the error term by stacking all εi j and Σ

is the covariance matrix of gaussian noise in measurement.
Finally, x can be solved by min

x
F(x).

To solve the optimization problem, the prevailing approach
is to start from a good initial solution, and then further refine
it iteratively by numerical approaches such as Gauss-Newton
(GN) method or its variant such as Levenberg-Marquardt
(LM) method [32]. Given an initial solution x, the goal is to
find a refined solution x̄= x+∆x, where ∆x is the increment,
such that F(x̄)< F(x). Assuming f is locally linear so it can
be approximated by first-order Taylor expansion at x as

f (x+∆x)' f (x)+J∆x, (2)

where J = ∂ f
∂x is the Jacobian matrix. By substituting (2) into

(1), the cost function F(x̄) cab be is approximated by

F(x+∆x)' F(x)+2∆xTJTΣ
−1

ε +∆xTJT
Σ
−1J∆x. (3)

Then we take the derivative of (3) and derive the normal
equation

A∆x = b, (4)

where A = JTΣ−1J is the system matrix and b =−JTΣ−1ε

is the right-hand side (RHS). Assume that the fill-reducing
permutation is already applied [33], [34], we solve the
normal equation by first performing Cholesky factorization
on A = LDLT, where L is the lower triangular matrix, and
D is the diagonal matrix. Thus (4) becomes LDLT∆x = b.
Finally, we utilize forward solve to Ly = b, where y =
DLT∆x, and apply backsolve to DLT∆x = y to obtain ∆x.
Alg. 1 summarize the approach as the classic solver. ε0 is an
empirical threshold applied when the increment is negligible.

Algorithm 1: (x̄,∆x̄,STOP)=ClassicSolver(x,G)
Input: x,G
Output: x̄,∆x̄,STOP

1 Build {A,b} from x and G ;
2 Decompose A = LDLT, and solve LDLT∆x = b ;
3 if ‖∆x‖< ε0 then
4 x̄ = x, and STOP = TRUE ;
5 else
6 x̄ = x+∆x, and STOP = FALSE ;
7 end
8 ∆x̄ = ∆x ;
9 return x̄,∆x̄,STOP



In Gauss-Newton class of optimization solvers [35], Alg. 1
is repeatedly called to generate next search starting point
because it provides the new best solution in the form of
∆x. The whole iterative process stops when the stopping
criteria is met. The process is summarized in Alg. 2. We
name it as the original solver (ORI). We use the subindex k
to indicate the frame index in algorithms. Here xk denotes
all the state variable in k-th frame before optimization, and
x̄k denotes that after optimization. As a convention, we
define the symbol bar ( ¯ ) to indicate that the object is
modified/updated in this paper. Because Alg. 2 builds the
system {Ak,bk} from xk and solves Ak∆xk = bk for each
iteration, it is massive computational and time-consuming.

Algorithm 2: Original Solver
Input: {xk|k = 1,2, . . .}, {Gk|k = 1,2, . . .}
Output: {x̄k|k = 1,2, . . .}

1 for k =StartFrame to EndFrame do
2 for Iteration = 1 to MaxIteration do
3 (x̄k,∆x̄k,STOP)=ClassicSolver(xk,Gk) ;
4 if STOP then
5 Break ;
6 else
7 xk = x̄k ;
8 end
9 end

10 end
11 return {x̄k|k = 1,2, . . .}

B. Graph Pruning

Now, let us introduce our algorithm developments to
accelerate the process. We propose two algorithms to speed
up Alg. 1 and we begin with the first one, graph pruning.

To accelerate LBA process, we use graph pruning to re-
duce the original problem by spending computational efforts
only on those vertices with high errors. For each pose vertex
in the given graph, we first search for all connected landmark
vertices, and then we keep those landmark vertices with high
errors in the graph to be optimized and fix the others. A fixed
vertex still contributes to the graph by providing constraints
but a removed vertex does not.

Let Vp and Vl be the set containing camera pose vertices
and landmark vertices, respectively. Let G and Gpruned be the
graph before and after pruning. Recall that Ei j is the edge
connecting Vj and Vi with εi j as its error. Here we denote
Vj ∈ Vp and Vi ∈ Vl in our algorithm. εχ2 is a empirical
threshold to determine if a vertex should be fixed or not. We
summarize our graph pruning in Alg. 3.

The graph pruning can significantly sparsify the problem
as shown in the example in Fig. 2. The original graph in
Fig. 2(a) is reduced to the graph in Fig. 2(b).

C. Update by Modified Cholesky Factorization

Next, we introduce the second algorithm to further accel-
erate Alg. 1 by utilizing modified Cholesky factorization.

Algorithm 3: Gpruned=GraphPruning(G)
Input: G
Output: Gpruned

1 Gpruned = G ;
2 for Vj ∈ Vp in Gpruned do
3 for Ei j do
4 if εi j < εχ2 and Vi is unfixed then
5 Fix Vi ;
6 end
7 end
8 end
9 return Gpruned
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Fig. 2. These graphs represent one LBA problem obtained by running
visual SLAM in KITTI00 dataset. The red dots on the top and bottom
indicate landmark and pose vertices, respectively. The blue edges indicate
the measurement between one pose vertex and one landmark vertex. (a) The
original graph. The traditional solver often optimizes the whole original
graph. (b) The pruned graph. We first design a graph pruning algorithm
to shrink the original graph. (c) One sub graph of the pruned graph when
applying modified Cholesky factorization.

We know more iterations in LBAs can minimize errors
for better performance, but to build and solve (4) in multiple
iterations within each LBA is often the most time consuming
part. The iteration number depends on whether the increment
is lower than a preset threshold, or the iteration number ex-
ceeds default value. Let ∆xv j be the increment for vertex Vj,
where ∆xv j is a member of ∆x. By observing the increments
of vertices ∆xv j in each iteration, we find out that only few
∆xv j have large norm, while the others are negligible. As a
result, if a preset threshold is chosen prudently, then only a
small portion of ∆x needs to updated.

Therefore, when building (4), we only update the small
portion of the increment. Besides, we reuse the decomposi-
tion solution from previous iteration and solve LDLT∆x = b
by using Cholesky update/downdate. For example, one sub
graph (Fig. 2(c)) of the pruned graph (Fig. 2(b)) is updated in
one iteration. We introduce the update strategies as follows.

1) Update x : We first check each vertex Vj to be updated
or not. Given ∆x from last iteration, we update Vj by

x̄v j =

{
xv j +∆xv j , IF ‖∆xv j‖ ≥ εv,

xv j , Otherwise,
(5)

where x̄v j is the estimation after update, and εv is the preset
threshold. This differs from Alg. 1 which updates all Vj.

2) Update A = LDLT : After obtaining x̄, we are able
to construct Ā. Instead of constructing Ā from scratch, and
then computing Ā = L̄D̄L̄T, we make use of A = LDLT



by updating from last iteration. To update x̄v j from A, we
have to update all the edges connected to Vj. The example
in Fig. 1 shows that only a very few entries are changed
when we update one edge. Since only a small portion of x̄
is updated, the updated edges are not too many so we can
obtain {L̄, D̄} from {L,D} by using Cholesky multiple-rank
update as follows

L̄D̄L̄T = LDLT+JT∆J∆, (6)

where J∆ = [. . .Jv j . . . ] is the Jacobian matrices for those
vertices Vj being updated, and Jv j =

∂ f
∂xv j

is the Jacobian
matrices of vertex Vj . This approach can save a lot of com-
putation because we only compute the updated portion and
update the system from last iteration rather than solve it from
scratch. Besides, we don’t need to factorize Ā= L̄D̄L̄T since
it is done after updating. More details regarding Cholesky
multiple-rank update/downdate can be found in [26]–[31].

3) Update b : To update b is based on the same principle:

b̄v j =

{
−JTv j

Σ−1
v j

εv j , IF ‖∆xv j‖ ≥ εv,

bv j , Otherwise,
(7)

where Σv j is the covariance matrix for xv j , and εv j is the
error term for xv j , which is the summation of εi j with all the
Vi connected to Vj.

4) Update Solver: We summarize the update strategies in
Alg. 4 as the update solver. Let Vmd f be the set containing
all vertices that need to be updated. The update solver
takes advantage of previous results to update {L̄, D̄, b̄} and
solve L̄D̄L̄T∆x = b̄, which is able to save computational
time for rebuilding the system {Ā, b̄} and re-decomposing
Ā = L̄D̄L̄T.

Algorithm 4: (x̄,∆x̄)=UpdateSolver(x,Vmd f )
Input: x,Vmd f
Output: x̄,∆x̄

1 Update x̄ by (5) ;
2 Update {L̄, D̄} by (6) ;
3 Update b̄ by (7) ;
4 Solve L̄D̄L̄T∆x = b̄ ;
5 ∆x̄ = ∆x ;
6 return x̄,∆x̄

IV. TUNABLE SPARSE GRAPH OPTIMIZATION SOLVER

So far we only introduce algorithms to accelerate Alg. 1.
Now let us expand it to the entire graph solver. We propose
our tunable sparse solver (TSS) to replace ORI in Alg. 2.

We propose our tunable sparse solver by Alg. 5. Recall
that we use εv as the threshold for all vertices in Section III-
C. Here we extend it to εp and εl , where εp is the threshold
for camera pose vertices and εl is the threshold for landmark
vertices. And let εup be the threshold satisfying 0≤ εup ≤ 1
to determine to call Alg. 1 or Alg. 4. All the thresholds are
obtained through experiments.

Algorithm 5: Tunable Sparse Solver
Input: {xk|k = 1,2, . . .}, {Gk|k = 1,2, . . .}
Output: {x̄k|k = 1,2, . . .}

1 for i =StartFrame to EndFrame do
2 OriginalGraph = TRUE ;
3 for Iteration = 1 to MaxIteration do
4 if Iteration == 1 then
5 (x̄k,∆x̄k,STOP)=ClassicSolver(xk,Gk) ;
6 if STOP then
7 Break ;
8 else
9 xk = x̄k ;

10 end
11 else
12 if OriginalGraph then
13 Ḡk=GraphPruning(G) ;
14 OriginalGraph = FALSE ;
15 end
16 Vmd f = /0 ;
17 for Vj ∈ Vp do
18 if ‖∆x̄v j‖> εp then
19 Save {Vj,∆x̄v j} to Vmd f ;
20 end
21 end
22 if |Vmd f | 6= /0 then
23 (x̄k,∆x̄k,STOP)=ClassicSolver(xk, Ḡk);

if STOP then
24 Break ;
25 else
26 xk = x̄k ;
27 end
28 else
29 for Vj ∈ Vl do
30 if ‖∆x̄v j‖> εl then
31 Save {Vj,∆x̄v j} to Vmd f ;
32 end
33 end
34 if |Vmd f |

|Vl |
> εup then

35 (x̄k,∆x̄k,STOP)=ClassicSolver(xk, Ḡk);
if STOP then

36 Break ;
37 else
38 xk = x̄k ;
39 end
40 else if |Vmd f |= /0 then
41 Break ;
42 else
43 (x̄k,∆x̄k)=UpdateSolver(xk,Vmd f ) ;

44 end
45 end
46 end
47 end
48 end
49 return {x̄k|k = 1,2, . . .}



Alg. 5 consists of four main steps: 1) initialization, 2)
graph pruning, 3) pose update, and 4) landmark update. In
initialization, we call Alg. 1 at first iteration for each frame
to obtain ∆x̄k for future use. In graph pruning, we check if
the graph has been pruned or not. If not, we run Alg. 3 to
prune the original graph.

In pose update, we check if any pose vertex Vj ∈ Vp
needs to be updated by comparing ‖∆xv j‖ with εp. If there
is at least one pose updated, we call Alg. 1. The reason
why we do not call Alg. 4 for pose update is due to the
special graph structure for visual SLAM problems. When
we update a vertex in the graph, we have to further update
all the edges connected to it. For a pose vertex, there are
typically hundreds of connected edges that also have to be
updated. But for a landmark vertex, there are typically ten or
fewer edges that need to be updated. Multiple-rank update
becomes less efficient when the number of updates is near
or larger than the number of variables, therefore, Alg. 1 is
used in pose update instead of Alg. 4.

In landmark update, we first determine how many land-
mark vertices Vj ∈ Vl need to be updated by comparing
‖∆xv j‖ with εl . We then decide to call Alg. 1, Alg. 4, or

exit the iteration according to the ratio |Vmd f |
|Vl |

, where | · |
represents the cardinality of the set. If the ratio is above
a high threshold εup, it means that most landmark vertices
need to be updated so we call Alg. 1 instead of updating
them individually. On the other hand, if there is no need to
update (ratio=0), we directly exit the iteration and go to next
frame. Otherwise, we call Alg. 4 to update those landmark
vertices with higher increment. The benefit of this strategy is
that we depend on the current condition to efficiently process
each iteration rather than blindly reconstruction or update.

It is worth noting that we design our algorithm to some-
times switch back to Alg. 1 because of two reasons. First,
Cholesky multiple-rank update/downdate will be slower
comparing to solving the problem from scratch if there are
too many updates. Second, to partially update the system will
cause accumulated error due to approximation. Hence, using
Alg. 1 can alleviate this problem.

V. EXPERIMENTS

The proposed algorithms have been validated in physical
experiments by using benchmark datasets.

A. Experiment Setup

For the optimization framework, we utilize g2o [1] as our
baseline, and extend it by adding Cholesky update and graph
pruning. For the complete visual SLAM system, we exploit
ORB-SLAM [13] to run all the datasets. For testing data, we
use KITTI datasets [36] to validate the results. We process
all the data by using C++ on a desktop PC with an Intel
Core i7-4790 CPU at 3.6GHz with 16GB RAM.

We compare our TSS with ORI. To validate our algo-
rithms, we first extract the initial values of estimations (cam-
era poses and landmark positions) with their measurements
(landmark positions in pixel coordinates) for each key frame,
and then save them as g2o files with vertices and edges

before optimization. Finally, we process the g2o files by
using ORI and TSS, and compare their performance. Since
we focus on comparing the LBA part in visual SLAM
problems, the g2o files we only save the LBA part. GBA
and loop closure features are turned off because they are not
part of the comparison.

It is worth noting that, due to the structure and the sparsity
of visual SLAM problems, it is sometimes more efficient to
solve A∆x = b using the Schur complement method rather
than applying a direct solver. According to [1], using the
Schur complement method outperforms the direct solver
when the landmark number exceeds the pose number, which
is usually the case for visual SLAM problem. Therefore, in
order to have a fair comparison, we compare our TSS with
ORI using Schur complement for runtime in this Section.

B. Accuracy Comparison

We compare the accuracy by using the cost function F(x)
values since F(x) values can describe how good the opti-
mization approaches reduce the error. Besides, we provide
the initial cost value before performing optimization to show
that our TSS can achieve the similar performance to ORI but
with less time.

Moreover, we define the cost gain for more detail com-
parison as follows. Let CINI be the cost function per frame
for initial cost, CORI be the cost function per frame for ORI,
and CT SS be the cost function per frame for TSS. We define
the cost gain C by C = (CORI −CT SS)/CINI . We show the
results for cost gain C in Tab. I. According to Tab. I, the
accuracy of using TSS slightly decreases, but no more than
6% compared with that of ORI.

C. Runtime Comparison

We compare the runtime for both ORI and TSS. The unit
of runtime is millisecond (ms). We measure the average time
processed for each frame, and define the time speedup factor
for comparison. Let TORI be the runtime per frame for ORI,
and TT SS be the runtime per frame for TSS. We define the
time speedup factor S by S = TORI/TT SS.

The time complexity of decomposing a sparse matrix
A=LDLT highly depends on the reordering result produced
by fill-reducing pivoting methods [33], [34]. These methods
mostly use heuristic to solve the NP-hard minimum fill-in
problem, which makes complexity analysis difficult without
looking into particular problem instances. Therefore, we use
experiments to compare solver performance statistically.

The results of runtime comparison are shown in Tab. I.
Tab. I indicates that our TSS can cut the runtime in half
for the LBA processes in visual SLAM problems, with
comparable accuracy.

D. Graph Pruning vs Cholesky Update

We also show the contribution of graph pruning (Alg. 3)
and Cholesky update (Alg. 4). We use KITTI00 and KITTI02
to run the experiments. Tab. II illustrates the comparison of
speedup factor (S) and cost gain (C) by using graph pruning,
Cholesky update, and their combination.



TABLE I
COMPARISON: ORIGINAL SOLVER VS TUNABLE SPARSE SOLVER

Initial Cost ORI TSS Gain(+/-)

Dataset Frames # Cost (CINI ) Time (TORI ) Cost (CORI ) Time (TT SS) Cost (CT SS) Speedup (S) Cost (C)

KITTI00 473(2-474) 10782.0 66.4 1628.1 33.1 2247.6 2.006x -5.74%
KITTI00 258(475-732) 11071.7 63.2 1472.7 30.4 1799.9 2.078x -2.95%
KITTI00 262(733-994) 10514.3 61.7 1477.8 29.9 1858.3 2.063x -3.61%
KITTI00 247(995-1241) 11413.9 71.8 1830.7 35.0 2404.7 2.051x -5.02%
KITTI02 1411(2-1412) 9774.8 63.5 1434.9 30.1 1853.6 2.109x -4.28%
KITTI02 88(1413-1500) 14025.9 62.4 1658.5 30.5 2423.9 2.045x -5.45%

Avg. 2739 10426 64.5 1518.8 31.0 1985.1 2.075x -4.47%

We are able to see that both graph pruning and Cholesky
update can achieve at around 1.3x speedup in time with
approximately 3% loss in accuracy, respectively. And the
combination of both techniques can achieve 2.0x speedup in
time with less than 5% loss in accuracy on average, which
indicates that both algorithms are complementary to each
other.

E. Tunable Analysis
We illustrate the tunable capability for our proposed solver

in Fig. 3 by using KITTI00 dataset. The tunable capability
enables us to sacrifice a little accuracy but gain much speed.
Fig. 3 shows the results of speedup versus cost for TSS
(red) in different setting and ORI (blue) as the baseline. The
different setting depends on how we tune the thresholds: εχ2 ,
εp, and εl .

As εχ2 becomes high, TSS gains the speed but loss
accuracy since the pruned graph is small. On the other hand,
when εχ2 is small, the performance gets close to that of ORI.
The same principle applied to εp and εl as well. The higher
εp and εl , the fewer vertices need to be updated, which means
it is faster but less accurate. However, it is worth noting that
if we set a low εl , then TSS would be slower than ORI
because there are too many vertices needing to be updated.
This is why we need to design εup to switch to Alg. 1
instead of Alg. 4. εup usually depends on the problems when
using Cholesky update and downdate. In our experiments,
εup = 0.1.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a tunable sparse solver that is able to solve
graph optimization problems in visual SLAM problems with
faster speed and comparable accuracy comparing with the
traditional solver. We designed a graph pruning algorithm
to reduce the original optimization problem, so we can
focus on those vertices with large errors, and ignore the
others with small errors to reduce redundant computation. We
also applied modified Cholesky factorization to update the
system of linear equations and solve the increments from one
iteration of the optimization problem to another in order to
reduce the repeated computation. We validated our algorithm
in physical experiments and the results show that our tunable
sparse solver can cut the runtime in half, compared to the
original solver, with a loss of less than 5% in accuracy for
the LBA processes in visual SLAM problems.
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Fig. 3. The illustration of time vs cost for TSS (red) in different setting
and ORI (blue) as the baseline. The experiment is done by using KITTI00
from frame 2 to frame 474.

In the future, we will first improve the tunable sparse
solver to by developing better data structure and multi-
threaded implementation. Improving parallelization and in-
corporating graphics process unit (GPU) will help improve
algorithm speed.
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