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Abstract— To develop a multi-modal in-traffic bridge deck
scanning device, we need to estimate the relative pose between
a ground penetrating radar (GPR) and a camera. Unlike
camera images, GPR output is in a non-Euclidean coordinate
system because it only detects underground objects relative
to road surface. When road surface is non-planar, its output
cannot be trivially mapped to a 3D Cartesian system which is
necessary for sensor fusion. Since there is no joint coverage
between two sensors due to mounting requirements, we design
an artificial planar bridge assisted by a planar mirror as
the calibration rig. We combine the pinhole camera model
with mirror reflection transformation and model the GPR
imaging process. We estimate the camera and mirror poses and
extract readings from hyperbolas generated from metal balls.
We employ the maximum likelihood estimator to estimate the
rigid body transformation between the two sensors and provide
the closed form error analysis. We have conducted physical
experiments to validate our calibration process and shown the
average error of 6.67 mm for our calibration model. The result
is satisfying considering the GPR signal wave length is 18.75
cm.

I. INTRODUCTION

We are interested in developing automatic scanning de-
vices for in-traffic bridge deck inspection, which requires us
to combine a ground penetrating radar (GPR) with a camera
to form a multi-sensor suite that is capable of simultaneously
performing both subsurface and surface inspection. Fusing
the data from different sensors is nontrivial. Unlike the
camera, the intrinsic 3D coordinate system of a GPR is
not necessarily Euclidean because its horizontal plane is
assumed to be overlapped with the road plane. When the road
surface is non-planar, its output cannot be directly aligned
with Euclidean 3D structure constructed from the camera.
Moreover, due to the fact that the field of view (FOV) of
the camera is facing forward while the sensing direction of
the GPR is downward to the ground, the sensing regions of
the two sensors do not overlap, which makes the calibration
more challenging. Therefore, before fusing camera and GPR
sensory data, we have to design a calibration rig and scheme
to estimate the relative pose (i.e. rotation and translation
difference in coordinate systems) between the GPR and the
camera in the sensing suite.

Here we propose a calibration process and a method to
estimate the relative pose between a GPR and a camera.
As illustrated in Fig. 1 top, we design an artificial planar
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Fig. 1. Top: The artificial planar bridge with a planar mirror is served
as the calibration platform for the camera and the GPR. Bottom left: The
camera image shows the mirror checkerboard attached on the mirror and
the ball checkerboard reflected by the mirror. Bottom right: The GPR image
shows a hyperbola response which is generated by GPR sensing the metal
ball.

bridge with a planar mirror as the calibration rig to ensure
the GPR output coordinate is Euclidean and both sensors can
detect the calibration object simultaneously, where a metal
ball and a checkerboard have been combined as a combo
calibration object. Both GPR data, which is in the form
of hyperbolas (see Fig. 1 bottom right) and camera images
(see Fig. 1 bottom left) are synchronized by the mechanical
stops and guard rails on the calibration rig. To process the
calibration data, we first estimate camera and mirror poses
using checkerboards which provide an initial solution for
camera extrinsic parameters. Second, we perform extrinsic
calibration for the GPR to obtain its initial pose. The initial
solutions from both sensors are then fed into a Maximum
Likelihood Estimator (MLE) for refinement. We formulate
this MLE problem and provide the closed form analysis for
the error distribution of calibration results. We have tested
our calibration method in physical experiments and results
show that the calibrated model has an average error of 6.67
mm for testing samples. Considering the GPR signal wave
length is 18.75 cm, the results are satisfying.



II. RELATED WORK

Calibration is an important technique to improve the
accuracy of a mechanism or a sensor. It usually contains
three main components: a model, measurements, and a
parameter estimation process [1]. It begins with a closed-
form geometry and/or physical model that characterizes a
mechanism or a sensing phenomenon. A calibration process
is to collect measurements to estimate the model parameters.
The measurements are always noisy which is often described
by statistical error models. The error models can be obtained
either analytically or statistically. A Gaussian distribution
is a common error model due to its robust asymptotic
probability attributes in large populations [2]. The parameter
estimation process finds the model parameters by minimizing
an aggregated error metric function.

Mechanism calibration often solves the kinematic pa-
rameters and the inertial parameters for mechanisms with
prismatic or revolute joints. In robotics and automation,
mechanism calibration can be seen everywhere: robot manip-
ulator calibration [3], pan-tilt robotic cameras calibration [4],
and hand-eye calibration [5]. Sensor calibration differs from
mechanism calibration due to the unique combination of
intrinsic calibration and extrinsic calibration. While the ex-
trinsic model is the similar 6 degrees of freedom (DoFs)
rigid body transformation, the intrinsic model describes the
underlying physical principles for the sensing [6] process.
For example: a camera [7], [8], a radio antenna [9] and a light
detection and ranging sensor (LIDAR) [10], [11] are common
sensors that need to be calibrated. Moreover, sensor calibra-
tion is indispensable for sensor fusion such as the extrinsic
calibration of a camera and a 2D LIDAR [12]–[14]. Our
problem is to model camera and GPR imaging characteristics
and outputs the 6-DoF rigid body transformation to describe
their relative pose.

A GPR measures the time between echoes of electromag-
netic signals to survey the objects and layers beneath the
ground surface and has many important applications [15]–
[17]. A GPR can be mounted on a robotic system for mine
detection and removal [18]. Also, GPRs can be integrated
with other non-destructive techniques for bridge deck in-
spection and evaluation [19]. Recently, a GPR is carried
by a rover combining with additional sensors for planetary
exploration [20]. However, the interpretation of a GPR image
depends on the geometric relationship between the GPR and
its world coordinate system. Thus in order to effectively
make use of GPR data or even properly combine GPR data
with other sensory data, extrinsic calibration of a GPR is
necessary [21].

To calibrate a camera and a GPR is nontrivial due to
different sensing modalities and mounting requirements. The
camera has to face the object and remain a certain distance
away to ensure FOV for surface inspection while a GPR
has to be downward facing and close to the ground for
subsurface inspection. Because the sensing regions of both
sensors do not overlap, we employ a planar mirror to ensure
overlapping sensing region in the calibration process. This

design is inspired by many existing mirror-assisted camera
pose estimation approaches [22]–[28].

In this paper, we focus on estimating the relative position
and orientation of the camera and the GPR. Built on our pre-
vious work [21] which only focuses on extrinsic calibration
of a GPR, we design a new calibration process and propose
a dual modal calibration optimization method to solve the
relative pose between the camera and the GPR.

III. SYSTEM DESIGN AND PROBLEM FORMULATION

Let us begin with introducing the sensing suite and calibra-
tion rig designs to facilitate the understanding of this unique
calibration problem.

A. Sensing Suite Design

To inspect bridge deck, we design a sensing suite by
combining a camera and a GPR as shown in Fig. 2. The
camera is used to scan/inspect surface cracks and the GPR
is used to detect subsurface cracks in bridge decks. Due to the
coverage requirement, the camera has to be mounted at least
1 meter above the ground. On the other hand, the GPR needs
to be placed close to the ground to ensure good radar signal
penetration to the concrete bridge deck. To merge the surface
scanning results with subsurface data, we need to calibrate
the relative pose between the camera coordinate system and
the GPR coordinate system. However, the disjoint coverage
and the different sensory modality make this calibration
process nontrivial.
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Fig. 2. The sensing suite and the calibration rig design.

B. Calibration Rig Design

To obtain the relative pose between the GPR and the
camera, we design a calibration rig to cope with challenges
brought by the two different modalities and their disjoint
coverages.



1) Ensure Euclidean property for the GPR: The first chal-
lenge arises from the fact that a GPR is a terrain following
sensor which does not necessarily output sensory data in
Euclidean coordinates. If we calibrate the GPR traveling
in an arbitrary surface, we cannot obtain proper coordinate
system transformation from a non-Euclidean system to the
camera coordinate system. To ensure Euclidean sensory data,
a GPR must move on a planar surface along a straight
trajectory. This determines that our calibration rig must be
a planar artificial bridge with two guard rails (one for each
rear wheel) to ensure that the mounting cart travels in straight
line during GPR scanning process (see Fig. 2).

2) The joint coverage and dual modality signal regis-
tration for both sensors: To obtain the relative pose, it is
necessary for the two sensors to detect the collocated cali-
bration objects in the joint coverage space. For the collocated
calibration objects, we place a metal ball on top of a wooden
checkerboard pattern because the camera and the GPR can
detect them respectively. The metal ball is insensitive to
orientations and has good reflections to radar signals. The
wooden checkerboard pattern can be easily perceived by the
camera but not interfere radar signals. Also, we place only
one metal ball at one corner of the checkerboard pattern at
a time to avoid GPR signal interference. We can adjust the
metal ball position for each corner to repeat experiments
for more inputs. This “ball-checkerboard” combo is the
unique calibration object in our design. We place the combo
underneath the artificial bridge where the depth is close to
the deck scanning depth. To ensure joint coverage of the two
sensors, we install a planar mirror in front of our artificial
bridge to create the joint coverage. Also, we attach another
checkerboard on the mirror to estimate the mirror pose.
Therefore, there are two checkerboards in camera image as
shown in Fig. 1 bottom left. We refer to the checkerboard on
the mirror as the mirror checkerboard and the checkerboard
with the metal ball as the ball checkerboard.

3) Ensure repeatability and data synchronization: After
placing the metal ball at a corner on the ball checkerboard,
we can push the sensing suite to scan the calibration object.
A complete scan/trial allows the GPR to generate a hyperbola
response in a GPR image (see Fig. 1 bottom right). We
adjust the metal ball’s position on the ball checkerboard and
repeat the process for each metal ball position. We repeat
the process for n trials for n positions of the metal ball. The
repeatability of each trial is important because we assume
GPR follow the same trajectory in the same GPR coordinates.
Our guard rails are equipped with N mechanical stops to
ensure the repeatability for both sensors to collect data at
each stop. This also means that each trial/scan comprises of
N data points, each of which includes N camera images and
N points in the GPR image. By taking a camera image and
recording the GPR position in the GPR image at each stop
(see Fig. 1 bottom left and Fig. 3), these N mechanical stops
guarantee the data synchronization between the camera and
the GPR.

C. Problem Definition

To focus on the calibrating the relative pose, we assume,
a.1 The camera intrinsic parameters are pre-calibrated.

GPR intrinsic parameters are also pre-calibrated by the
GPR manufacturer.

a.2 The measurement noises follow Gaussian distribution
with zero means.

All 3D coordinate systems are right-handed coordinates
(except virtual coordinate systems in the mirror) as shown
in Fig. 3.
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Fig. 3. An illustration of the 3D coordinate systems during a single
scan which involves N stops. Frames {C1}, ...{Ck}, ...{CN} are iso-oriented.
Frames {G1}, ...{Gk}, ...{GN} are iso-oriented.

Then let us define common notations before introducing
the calibration problem.

1) {W} and {M} denote the world and the mirror co-
ordinate system, respectively. We interchangeably use
“frame” and “coordinate system” throughout this pa-
per. W Bi ∈R3 denotes the coordinates of i-th metal ball
center position with respect to {W}, and W Xi ∈ R3

denotes its corresponding point in the checkerboard.
Without loss of generality, we assume the checkerboard
plane is Z = 0 in the world frame, and thus derive
W Bi =

W Xi+[0,0,r]T, where r is the metal ball radius.
MXp ∈R3 denotes the coordinates of p-th point on mir-
ror checkerboard with respect to {M}. As a convention,
we will use the left superscript indicates the reference
frame in this paper.

2) {Gk} denotes the GPR frame at stop k, where its origin
is at the GPR antenna center, its Y-axis is parallel to
the GPR moving direction, its Z-axis is perpendicular
to the surface plane pointing up, and its X-axis is
perpendicular to the GPR moving direction.

3) {Ck} denotes the camera frame at stop k, where its
origin is at the camera optical center, its Z-axis is
coinciding with the optical axis and pointing to the
forward direction of the camera, and its X-axis and Y-
axis are parallel to the horizontal and vertical directions
of the CCD sensor plane, respectively.

4) Di denotes the GPR image which is generated by GPR
scanning the i-th metal ball. For each Di, we collect



N camera images at each mechanical stop, and denote
Ik,i as the k-th camera image.

5) Gk
Ck

T denotes the rigid body transformation from {Ck}
to {Gk}. Since both sensors are fixed firmly on the
sensing suite, G1

C1
T, ..,Gk

Ck
T, ...,GN

CN
T are identical. Let

G
CT =

Gk
Ck

T. As a convention, we use left subscript and
superscript to indicate frames in the transformation
mapping, and left superscript is the final reference
frame.

Now we define our calibration problem:
Definition 1: Given metal ball coordinates W Bi, i =

1,2, . . . ,n, where each W Bi has a corresponding GPR image
Di and N camera images Ik,i, k = 1,2, . . . ,N, and mirror
checkerboard points MXp with their corresponding feature
points in Ik,i, determine the rigid body transformation G

CT.

IV. CALIBRATION METHOD

Now let us solve this calibration problem. The compu-
tation flow diagram summarizes the calibration pipeline in
Fig. 4, which contains three main steps: 1) camera and
mirror pose estimation, 2) GPR calibration, and 3) dual
modal calibration optimization. The first two steps provide
initial solutions for the third step. And we also provide error
analysis for our calibration results.

2. Extrinsic Calibration of a GPR
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Fig. 4. Calibration computation flow diagram.

A. Camera and Mirror Pose Estimation

As shown in Fig. 4, we want to find the closed-form
solution for the frame mapping from world frame to each
camera frame Ck

W T and mirror plane in the world frame W π .
1) Camera pose estimation from 2D/3D points: Before

estimating camera pose, we introduce the camera model. For
the mirror checkerboard point MXp, the corresponding 2D
image point Ik,ixp in Ik,i can be described by the camera
projection model [29] as[Ik,ixp

1

]
= λK

[
I3 03×1

]Ck
MT
[MXp

1

]
, (1)

where λ is a scalar, K is the camera calibration matrix and
Ck
MT is the rigid body transformation from {M} to {Ck}.

Similarly, for the ball checkerboard point W Xi, the cor-
responding 2D image point Ik,ixi in Ik,i through the planar
mirror can be described by the camera projection model as[Ik,ixi

1

]
= λK

[
I3 03×1

]C′k
W T
[W Xi

1

]
, (2)

where
C′k
W T represents the mapping from {W} to virtual

camera frame {C′k} and the apostrophe ′ indicates the virtual
frame in the mirror. It is worth noting that the frames are
right-handed coordinates in the real world, but are left-
handed in the mirrored space.

Based on the camera model and the 2D/3D corresponding
points, we can estimate the rigid body transformation be-
tween the reference frame and the camera frame by solving
the perspective-n-point (PnP) problem [30], [31]. Therefore,
given MXp and Ik,ixp, we can estimate Ck

MT; given W Xi and
Ik,ixi, we can estimate

C′k
W T .

2) Mirror pose and reflection transformation estimation
w.r.t. {Ck}: Let Ck π = [Ck nT,Ck c]T be the parameters for
the planar mirror in {Ck}, where Ck n is the normal vector
of the mirror surface and Ck c is the orthogonal distance
from the camera origin to the mirror surface. Similarly,
W π = [W nT,W c]T represents the planar mirror in {W}.

After receiving Ck
MT from IV-A.1, the mirror parameters

Ck π can be obtained by the plane equation

Ck nTCk X = Ck c, (3)

where Ck X denotes any point on the mirror plane. Let Ck
MT =[Ck

MR Ck
Mt

01×3 1

]
and MXp be on the plane Z = 0 in mirror frame

{M}, then Ck n equals to the third column of the rotation
matrix Ck

MR and Ck c = −Ck nT(
Ck
MRTCk

Mt). Finally, the mirror
reflection transformation in {Ck} is obtained by

Ck S =

[
I3−2Ck nCk nT 2Ck cCk n

01×3 1

]
. (4)

3) Camera and mirror pose estimation w.r.t. {W}: In this
section, we want to solve Ck

W T and W π . First, according to
the camera projection model with mirror reflection transfor-
mation [22]–[28],

C′k
W T can be represented by

C′k
W T = Ck SCk

W T. (5)

Thus based on
C′k
W T from IV-A.1 and Ck S from IV-A.2, we are

able to obtain Ck
W T. To increase the accuracy, we average Ck

W T
over all metal ball center positions i, where i = 1,2, . . . ,n.

Let Ck
W T=

[Ck
W R Ck

W t
01×3 1

]
be the final transformation we want

to estimate and let Ck
W Ti =

[Ck
W Ri

Ck
W ti

01×3 1

]
be the measurements

with respect to i-th metal ball. We use rotation averaging
[32] to find the optimal rotation matrix Ck

W R by minimizing
the following cost function

C(
Ck
W R) =

n

∑
i=1
‖Ck

W Ri−Ck
W R‖2

F =C1−2
〈 n

∑
i=1

Ck
W Ri,

Ck
W R
〉
, (6)



where ‖·‖F is the Frobenius matrix norm,
〈
·, ·
〉

is the Frobe-
nius inner product, and C1 is a constant. Thus to minimize
(6) becomes

max
Ck
W R∈SO(3)

〈 n

∑
i=1

Ck
W Ri,

Ck
W R
〉
= min

Ck
W R∈SO(3)

‖
n

∑
i=1

Ck
W Ri−Ck

W R‖2
F . (7)

As a result, the closed-form solution for Ck
W R is given

by Ck
W R = USVT, where U and V are obtained from sin-

gular value decomposition of ∑
n
i=1

Ck
W Ri = UΣVT, and S =

diag(1,1,−1) if det(UVT)≥ 0, otherwise S = I3×3 because
Ck
W R is an improper rotation (det(Ck

W R) = −1). Also, we
estimate the average translation vector by Ck

W t = ∑
n
i=1

Ck
W ti/n.

Second, we show how to derive W π . Based on the camera
projection model with mirror reflection transformation [22]–
[28], the mirror reflection transformation in {W} is given
by

W S =
Ck
W T−1 Ck SCk

W T =

[
I3−2W nW nT 2W cW n

01×3 1

]
. (8)

Once W S is known, W π can be obtained by decomposing W S.
Also, to improve the accuracy, we average W S over all metal
ball center positions i and all stops k, where i = 1,2, . . . ,n
and k = 1,2, . . . ,N.

Let W S =

[W R W t
01×3 1

]
be the mirror reflection transforma-

tion we want to estimate and let W Sk,i =
Ck
W Ti

−1 Ck Si
Ck
W Ti =[W Rk,i

W tk,i
01×3 1

]
be the mirror reflection transformation with

respect to i-th metal ball at stop k. We decompose W tk,i
into W ck,i and W nk,i by W nk,i =

W tk,i/‖W tk,i‖ and W ck,i =
‖W tk,i‖/2. Finally, we can obtain W π = [W nT,W c]T by

W n =
n

∑
i=1

N

∑
k=1

W nk,i

‖∑n
i=1 ∑

N
k=1

W nk,i‖
, W c =

n

∑
i=1

N

∑
k=1

W ck,i

nN
. (9)

B. Extrinsic Calibration of a GPR

Now we focus on GPR calibration. We want to find metal
ball center positions Gk Bi and the frame mapping from {W}
to each GPR frame Gk

W T. We adopt the GPR model based
on our previous work [21]. For completeness, we repeat
information at high level. For detailed information, please
refer to [21].

Let us introduce the GPR imaging process before ex-
plaining the calibration process. Given a GPR image Di =
{D j,i| j = 1,2, · · · ,m}, which consists of m scans. Let x j,i =
[l j,d j,i]

T be a point on the hyperbola in Di, where l j is the
distance GPR traveled from first to j-th scan and d j,i is the
distance between the GPR at j-th scan and the metal ball.
Let Hi = {x j,i| j = 1,2, · · · ,m} denotes all the points on the
hyperbola corresponding to i-th metal ball, the hyperbola
equation is given by

x̃Tj,iQix̃ j,i = 0,∀x j,i ∈Hi, (10)

where x̃ j,i = [xT
j,i,1]

T, Qi =

 1 0 −l j∗

0 −1 0
−l j∗ 0 l2

j∗ +d2
j∗,i

, and l j∗

and d j∗,i are the parameters of the hyperbola equation, which
also indicate the hyperbola vertex x j∗,i = [l j∗ ,d j∗,i]

T.
To calibrate the GPR, there are three steps: 1) hyperbola

vertex estimation, 2) metal ball center position estimation,
and 3) rotation and translation estimation. First, we model
x j,i’s measurement error as a zero mean Gaussian with
covariance matrix σ2

j,iI, and estimate the hyperbola vertex
for each GPR image by the overall error function

φ(x j∗,i) =

 x̃T1,iQix̃1,i
...

x̃T
m,iQix̃m,i

 . (11)

The MLE of x j∗,i is obtained by minimizing

min
x j∗ ,i

φ(x j∗,i)
T

Σ
−1
i φ(x j∗,i), (12)

where Σi = diag(σ2
1,i,σ

2
2,i, . . . ,σ

2
m,i). This nonlinear optimiza-

tion problem can be solved by LM algorithm.
Second, let hi be the vertical distance from i-th metal ball

center position to the bridge surface, and its noise distribution
be zero mean Gaussian with variance σ2

hi
. Let lk be the GPR

traveled distance from {G1} to {Gk} during the scan. Given
{x j∗,i, lk,hi}, we can compute the metal ball coordinates Gk Bi
and its covariance matrix Gk Σi by

Gk Bi =


√

d2
j∗,i−h2

i

l j∗ − lk
−hi

 ,Gk Σi = JG

[Dk,iΣ 03×1
01×3 σ2

hi

]
JTG , (13)

where JG = ∂
Gk Bi

∂ (x j∗ ,i,lk,hi)
is Jacobian matrix, Dk,iΣ =(

JT
φ

Σ
−1
i Jφ

)−1 is the covariance matrix of {x j∗,i, lk}, and
Jφ = ∂φ

∂ (x j∗ ,i,lk)
is Jacobian matrix.

Finally, after obtaining the metal ball coordinates of {Gk}
and {W}, we can compute the closed-form solution of Gk

W T
and refine the result by MLE.

C. Dual Modal Calibration Optimization

With the initial calibration results from both the camera
and the GPR, we can formulate an overall optimization
problem to estimate G

CT, W π , {Ck
W T|k = 1, . . . ,N}, {W Xi|i =

1, . . . ,n}, and {W Bi|i = 1, . . . ,n} based on all the measure-
ments. The relationship of the coordinates systems is given
by [Gk Xi

1

]
=

Gk
W T
[W Xi

1

]
= G

CTCk
W T
[W Xi

1

]
. (14)

Let Ck
W T =

[Ck
W R Ck

W t
01×3 1

]
and let the 6-vector representation

of Ck
W R and Ck

W t be ξk = [θx,k,θy,k,θz,k, tx,k, ty,k, tz,k]T, where
(θx,k,θy,k,θz,k) is the Euler angle representation of Ck

W R in
the order of Z-Y-X, and Ck

W t = [tx,k, ty,k, tz,k]T. The initial
value of G

CT can be obtained by G
CT =

Gk
W TCk

W T−1. Let η

be the 6-vector representation of G
CT, where the notation

definitions are similar to ξk. Let
W X̂i and

W B̂i be the



estimator of W Xi and W Bi, respectively. We also define the
camera parameterized function according to (2) and (8) as

Ik,ixi = f (W π,ξk,
W Xi), (15)

and the GPR parameterized function according to (14) as

Gk Bi = g(η ,ξk,
W Bi). (16)

Finally, let p = [ηT,ξT,W πT,XT
c ,XT

g ]
T be the estimated

vector, where ξ = [ξT
1 , . . . ,ξT

N ]T, Xc = [
W X̂1

T, . . . ,
W X̂n

T]T,
and Xg = [

W B̂1
T, . . . ,

W B̂n
T]T. The cost function is given by

ω(p) =
[

ω1
ω2

]
, (17)

where ω1 =



W X̂1−W X1
...

W X̂n−W Xn
ψ1
...

ψN


, ω2 =



W B̂1−W B1
...

W B̂n−W Bn
ρ1
...

ρN


, ψk =

 f (W π,ξk,
W X1)− Ik x̄1
...

f (W π,ξk,
W Xn)− Ik x̄n

 is the camera reprojection error at

stop k, and ρk =


g(η ,ξk,

W B̂1)−Gk B1
...

g(η ,ξk,
W B̂n)−Gk Bn

 is the metal ball

center position estimation error at stop k. And Ik x̄ j is denoted

by Ik x̄ j =
∑

n
i=1

Ik,i x j
n . The MLE of p is solved by minimizing

min
p

ω(p)TΣ
−1
ω ω(p), (18)

where Σω = diag(Σω1 ,Σω2), Σω1 =
diag(W Σ1, . . . ,

W
Σn,Σψ1 , . . . ,ΣψN ), Σω2 =

diag(W Σ1, . . . ,
W

Σn,Σρ1 , . . . ,ΣρN ), Σψk = diag(Ik Σ1, . . . ,
Ik Σn),

Σρk = diag(Gk Σ1, . . . ,
Gk Σn). W

Σi and Ik Σi are obtained
by direct measurement; Gk Σi is obtained from (13). The
problem can be solved by LM algorithm. Lemma 1 shows
the covariance of η and ξ .

Lemma 1: Under the Gaussian noise assumption, the co-
variance matrix of η and ξ is given by

Ση ,ξ = (A−BD−1C)−1, (19)

where A, B, C, D are defined in (21).
Proof: From the first order approximation of error

backward propagation [29], we can obtain the covariance
matrix of p by

Σp =
(
JTω Σ

−1
ω Jω

)−1
, (20)

where Σ−1
ω =

[
Σ−1

ω1
0

0 Σ−1
ω2

]
and Jacobian matrices

Jω =
∂ω(p)

∂p
=


0 0 0 I 0
0 Jξ 1 Jπ Jx1 0
0 0 0 0 I
Jη Jξ 2 0 0 Jx2

 ,
Jη =

[
∂ρT

1
∂η

,
∂ρT

2
∂η

, . . . ,
∂ρT

N
∂η

]T
,

Jξ 1 = diag

(
∂ψ1

∂ξ1
,

∂ψ2

∂ξ2
, . . . ,

∂ψN

∂ξN

)
,

Jξ 2 = diag

(
∂ρ1

∂ξ1
,

∂ρ2

∂ξ2
, . . . ,

∂ρN

∂ξN

)
,

Jπ =
[

∂ψT
1

∂ W π
,

∂ψT
2

∂ W π
, . . . ,

∂ψT
N

∂ W π

]T
,

Jx1 =
[

∂ψT
1

∂Xc
,

∂ψT
2

∂Xc
, . . . ,

∂ψT
N

∂Xc

]T
,

Jx2 =
[

∂ρT
1

∂Xg
,

∂ρT
2

∂Xg
, . . . ,

∂ρT
N

∂Xg

]T
.

To simplify the notations, we denote Σ−1
ω1

=

[ C
Σ 0
0 ψ

Σ

]
,

and Σ−1
ω2

=

[ G
Σ 0
0 ρ

Σ

]
, and derive (21) in next page top.

Finally, we can solve Ση ,ξ through Σp by applying the
block-wise matrix inversion to (21).

D. Rigid Body Transformation Model Error

To verify the results, we use the Euclidean distance
between

Gk B̂i and Gk Bi as the metric function to measure
the model prediction error, which is given by

δk,i = h(
Gk B̂i,

Gk Bi) = ‖
Gk B̂i−Gk Bi‖, (22)

where
Gk B̂i is the model prediction of Gk Bi.

Gk B̂i can be
obtained by calibrated parameters qT

k = {ηT,ξT
k } and ground

truth measurements W Bi according to (14). Lemma 2 shows
the variance of δk,i.

Lemma 2: Under Gaussian noise assumption, the variance
of δk,i is denoted by

σ
2
δk,i

= Jh1
Gk

Σ̂iJTh1 + Jh2
Gk ΣiJTh2, (23)

where Jacobian matrices Jh1 =
∂h

∂
Gk B̂i

and Jh2 =
∂h

∂
Gk Bi

.

Proof: Since δk,i is a function of
Gk B̂i and Gk Bi, the

uncertainty of δk,i comes from their corresponding covari-
ance matrices Gk Σi and Gk

Σ̂i. Gk Σi is given by (13); Gk
Σ̂i

is obtained by the forward propagation of error [29] under
first-order approximation

Gk
Σ̂i = Jg1 Σqk JTg1 + Jg2

W
ΣiJTg2, (24)

where Jacobian matrices Jg1 = ∂g
∂qk

, Jg2 = ∂g
∂ W Bi

, and g is

defined in (16). W
Σi is obtained from measurement and Σqk

is the covariance matrix of qk which can be extracted by
Lemma 1. Since

Gk B̂i and Gk Bi have no correlation, the
overall variance of δk,i in (23) can be obtained by addition
of their uncertainties.



JTω Σ
−1
ω Jω =

[
A B
C D

]
=


JTη

ρ
ΣJη JTη

ρ
ΣJξ 2 0 0 JTη

ρ
ΣJx2

JT
ξ 2

ρ
ΣJη JT

ξ 1
ψ

ΣJξ 1 + JT
ξ 2

ρ
ΣJξ 2 JT

ξ 1
ψ

ΣJπ JT
ξ 1

ψ
ΣJx1 JT

ξ 2
ρ

ΣJx2

0 JTπ
ψ

ΣJξ 1 JTπ
ψ

ΣJπ JTπ
ψ

ΣJx1 0
0 JTx1

ψ
ΣJξ 1 JTx1

ψ
ΣJπ

C
Σ+ JTx1

ψ
ΣJx1 0

JTx2
ρ

ΣJη JTx2
ρ

ΣJξ 2 0 0 G
Σ+ JTx2

ρ
ΣJx2

 . (21)

V. EXPERIMENTS

The proposed method has been validated in physical
experiments. We will show the experiment setup and the
calibration results with uncertainty analysis in this section.

A. Experiment Setup

We use GSSI SIR-3000 with 1.6 GHz antennas and the
parameters are given as follows: the horizontal sample rate
for the wheel encoder is 390 pulses per meter, the two-way
travel time of the radar signal is 8 ns, the sample rate for
the GPR control unit is 1024 sample/scan, and the dielectric
constant in air is 1. To export the GPR images, we use GSSI
software RADAN 7. To distinguishing a hyperbola from the
background, we apply background subtraction to segment out
a foreground hyperbola by subtracting the origin GPR image
to the GPR image without a metal ball in the setup. As for
camera, we choose an industry grade 10 mega-pixel CMOS
camera (DS-CFMT1000-H) with an external trigger. The
intrinsic parameters are calibrated using camera calibration
toolbox for Matlab [33]. For the calibration objects, the
radius of the metal ball is 19.05 mm and the vertical height
hi is 419.10 mm. The ball checkerboard is with the size of
each square 101.0 mm ×101.0 mm, and mirror checkerboard
is with the size of each square 128.0 mm ×128.0 mm.

The calibration data collection follows the procedure men-
tioned in Section III-B.3. We set n = 24 and N = 20 and we
repeat the calibration data collection procedure to collect two
datasets: one for calibration and one for testing.

B. Calibration Results

We use the calibration dataset to estimate the relative
pose between the camera and the GPR. The calibration
results are shown as follows: G

Ct = [−10.2,−108.3,1246.0]T

mm and [θx,θy,θz]
T = [−1.9945,0.0211,0.0199]T rad, where

(θx,θy,θz) is the Euler angle representation of G
CR.

C. Direct Approach versus Dual Modal Calibration Opti-
mization

We compare the calibration results from a direct approach
to the results from our approach with dual modal calibration
optimization. The direct approach is to compute the results
by combining [21] with mirror-based camera calibration
directly. In our approach, we use the calibration dataset to
estimate not only the relative pose, but also the calibration
setting, which consists of camera and mirror positions. To
evaluate two approaches, we first use Di and hi in testing set
to estimate Gk Bi and then map it into world frame as

W B̂i
by both methods. Next, we compute the Euclidean distance
of

W B̂i and W Bi to compare them. The results show that
the mean error and standard deviation (SD) are 18.68 mm
and 5.48 mm for the direct approach, respectively, while our

mean error and SD are 6.67 mm and 3.40 mm, respectively.
Considering the fact that the GPR signal wave length is 18.75
cm, the results are satisfying and our approach in this paper
achieves higher accuracy.

D. Model Prediction Errors and Uncertainty Analysis

In this section, we evaluate if our uncertainty analysis
in Section IV-D can capture the prediction error of the
calibrated model. Since we do not have the ground truth to
validate our calibration results, we use Di and hi in testing
set to estimate Gk Bi, which is served as ground truth. And
we estimate

Gk B̂i by transforming W Bi through Ck
W T and G

CT.
We also evaluate the calibration result by computing the
Euclidean distance between Gk Bi and

Gk B̂i.
To obtain the average error for each metal ball center

position, we compute the model prediction for each {Gk}
according to Lemma 2 and take the average of them by using
δi =

∑
N
k=1 δk,i

N . Hence the expected value and variance of δi can
be estimated by sample mean and sample variance.

We have the error and the predicted σδi for the 24 testing
samples listed in Table I. More specifically, the measurement
errors for metal ball center position measurements have a
variance of 8 mm2 in each dimension. This may be caused
by radar accuracy and structural deformation under weight.
Hence, W

Σi = 8I3 and σ2
hi
= 8 for hi. Besides, the variance

for points on GPR and camera images are set to 1. The
results agree with our analysis as 66.67% errors fall in the
1-σ range of the calibrated model prediction.

TABLE I
THE PREDICTED SD OF δi VS ITS ACTUAL VALUE

i σδi (mm) δi(mm) i σδi (mm) δi(mm)

1 6.17 3.67 13 17.33 4.41
2 7.56 3.44 14 28.45 4.15
3 6.43 7.24 15 8.52 2.23
4 6.69 5.88 16 10.94 6.42
5 14.08 3.26 17 6.53 5.65
6 5.79 3.14 18 7.61 3.45
7 8.36 8.24 19 7.30 5.06
8 9.29 9.19 20 5.66 10.33
9 13.61 14.03 21 6.90 8.82

10 38.13 2.08 22 6.08 13.27
11 5.52 8.92 23 22.59 7.69
12 6.02 8.08 24 5.83 11.46

VI. CONCLUSIONS AND FUTURE WORK

We proposed a calibration system for the relative pose
calibration of a GPR and a camera. We designed an arti-
ficial planar bridge with a planar mirror as the calibration
platform. We modeled the camera projection with mirror
reflection transformation and GPR imaging process. By using



ball checkerboard and metal ball as calibration object, we
estimate camera and mirror poses from camera images and
extracted hyperbolas in the GPR image to recover metal
ball coordinates in the GPR frame. The MLE was employed
to estimate the rigid body transformation between the two
sensors. We provided the closed form error analysis for our
calibration models. The physical experiments confirmed our
results.

In the future, we will collect data on real bridges and fuse
the data from different sensors for automatic in-traffic bridge
inspection.
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