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Abstract— We report system and algorithmic development
for a sensing suite comprising multiple sensors for both surface
and subsurface transportation infrastructure inspection focus-
ing on multi-modal mapping for inspection. The sensing suite
contains a camera, a ground penetrating radar (GPR), and a
wheel encoder. We design the sensing suite and propose a data
collection scheme using customized artificial landmarks (ALs).
We use ALs to synchronize two types data streams: camera
images that are temporally evenly-spaced and GPR/encoder
data that are spatially evenly-spaced. We also employ pose
graph optimization with synchronization as penalty functions
to further refine synchronization and perform data fusion for
3D reconstruction. We have implemented the system and tested
it in physical experiments. The results show that our system
successfully fuses three sensory data and product metric 3D
reconstruction. The sensor fusion approach reduces the end-to-
end distance error from 7.45cm to 3.10cm.

I. INTRODUCTION

Transportation infrastructure such as bridge decks, free-
ways, and airport runways requires periodic inspections
for maintenance purposes. Manual inspections are labor-
intensive and costly. A more viable approach is to employ a
robot. The inspection tasks often include both surface and
subsurface mapping to assist searching for cracks, voids,
or other damages. The ability to combine surface images
with subsurface scans is important for further inspections or
future repairs. Therefore, it is necessary to combine multiple
inspection sensors such as a regular camera, a light Detection
and Ranging (LIDAR) device, and a ground penetrating
radar (GPR) together along with navigational sensors such
as a wheel encoder and/or a global position system (GPS)
receiver. Combining data from heterogeneous sensors is
challenging because there are challenges in system design,
synchronization, correspondence, and data fusion.

We report our recent development on systems and algo-
rithms that enable encoder-camera-GPR tri-sensor fusion for
transportation infrastructure inspection which can be viewed
as a multi-modal mapping process, a classic problem in
robotics with a new sensor combination. We build a sensing
suite consisting of the aforementioned sensors (see Fig. 1).
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Fig. 1. Left: our sensing suite comprises a camera and a GPR; a GPR
includes GPR control unit, wheel encoder, and GPR antenna. Right: artificial
Landmarks. Black and red colored side is the upper side while the metal
side is downside (best viewed in color).

We also design visualization software and a data collection
scheme using artificial landmarks (ALs) to simplify the
scanning process. Moreover, ALs allow us to synchronize
two types of data streams: camera images that are temporally
evenly-spaced and GPR/encoder readings that are spatially
evenly-spaced. Our algorithm takes advantage of ALs to
identify moments when the camera center, the GPR frame
origin, and the intersection point between AL edges and the
GPR trajectory are vertically collinear. The moments allow
us to align data streams and then refine them in pose graph
optimization with synchronization constraints.

We have implemented the algorithm and tested it under
physical experiments using real data from bridge deck in-
spection to validate our system. The results show that our
system and algorithm successfully achieve our design goal
and the overall system is able to synchronize the two types of
data streams with improved accuracy. In the bridge dataset,
our algorithm reduces the end-to-end distance error from
7.45cm to 3.10cm.

II. RELATED WORK

Our proposed system relates to the areas of bridge deck
or road surface inspection, GPR applications, visual simulta-
neous localization and mapping (SLAM), and sensor fusion.

Transportation infrastructure inspection is indispensable
for safety. To assess infrastructure condition, nondestructive
evaluation (NDE) is a highly recommended approach nowa-
days because it provides reliable diagnosis [1]–[3] without
structure destruction. NDE techniques are usually achieved
by using sensors such as GPRs, cameras, chain drags,
etc. Moreover, the sensors can be further integrated on an
autonomous robotic system for inspection, e.g. robotic bridge
inspection tool [4]–[9]. Inspired by existing works, our



system comprise a GPR, a camera, and a wheel encoder; and
our sensor fusion algorithm can utilize their complementary
nature to achieve better 3D reconstruction results.

A GPR can measure the time between echoes of elec-
tromagnetic signals to survey the objects and layers under-
neath the ground surface [10]–[12]. Hence there are a lot
of important applications, e.g. archeology [13], [14], mine
detection and removal [15], [16], bridge deck inspection
and evaluation [4]–[9], and planetary exploration [17], [18].
As an ideal sensor for scanning subsurface structure, it is
often limited to flat surface due to its inability to obtain
pose information from its wheel encoder alone. Fusing it
with a camera with visual SLAM capability can address this
problem and significantly increase GPR application scope.

As a variation of the SLAM problem [19], the visual
SLAM problem is to simultaneously estimate robot pose and
landmark positions using one or more cameras. To solve the
visual SLAM problem, there are two popular approaches:
filtering (e.g. [20]) and bundle adjustment (e.g. [21]). We
employ ORB-SLAM2 [22] as a preprocessing step since it
is one of the state-of-the-art visual SLAM algorithms for a
monocular camera. In fact, our algorithm is not limited by
one particular type of visual SLAM algorithm.

Taking advantage of the complementary nature of differ-
ent sensory modalities, sensor fusion can improve sensing
accuracy, increase robustness, and reduce noises for a variety
of applications. Existing sensor fusion combination includes
camera-LIDAR [23], [24], WiFi-IMU [25], [26], and camera-
IMU [27], [28]. However, camera-GPR sensor fusion has
not been well-studied yet. Our group focuses on robotic
infrastructure inspection algorithm and system development.
In [29], we address extrinsic calibration of for GPRs. Built
on the result, we combine a GPR with a camera and develop
a mirror-based calibration process to estimate the relative
pose between the camera and the GPR [30]. With calibration
problems solved, this paper focuses on how to fuse the
surface scanning results from a camera with subsurface
data from a GPR to provide a comprehensive solution for
transportation infrastructure inspection.

III. SYSTEM DESIGN

To enable both surface and subsurface inspection, we
design a sensing suite comprising a camera, a LIDAR, a
GPR, and a laptop computer detailed in the attached video.

A. Hardware

1) Sensor Choices: The camera (DS-CFMT1000-H) is
used not only for surface inspection but also for visual SLAM
because it can provide more accurate pose and trajectory
estimation than that from a GPS receiver in local region. In
addition, GPS may not always be available due to terrain
or high-rise buildings. The LIDAR (Hokuyo UST-20LX)
can also be used for surface crack detection when cracks
cannot be distinguished from background images. The GPR
(GSSI SIR-3000) is used for substructure inspection and it is
installed a wheel encoder which is also an important sensor

for data fusion. The wheel encoder data is pre-synchronized
with GPR data by a hardware trigger.

2) Configuration: Fig. 1 illustrates the physical config-
uration of the hardware. Due to the coverage requirement,
the camera needs to be mounted at least 1 meter above the
ground to inspect surface cracks. The LIDAR is mounted as
close to the camera as possible to allow the co-centered data
registration between the two sensors. To scan the subsurface
cracks, the GPR antenna needs to be installed close to the
ground surface to ensure good radar signal penetration of the
underneath concrete structure. The penetration depth of GPR
is inversely proportional to the radio signal frequency, but the
resolution of GPR image is proportional to the frequency.
Therefore, we choose a 1.6-GHz GPR transceiver antenna
because it ensures a 2-meter penetration depth for concrete
decks with a resolution of less than 4.7cm. All sensors are
mounted on a standard survey tricycle (GSSI model 623).

3) ALs: To facilitate the synchronization of the camera
and the GPR, we design ALs that are made of colored
patterned metal plates and clearly visible to both sensors
as shown in Fig. 1. ALs enable us to align surface and
subsurface structure from two different sensor modalities.

B. Software and User Interface

Our customized software visualizes all sensory data (see
the attached video). It is developed using C++ based cross-
platform graphics sdk QT version 5.9 to ensure it is easy to
be ported to different platforms. It has three main compo-
nents: a camera view, a GPR view, and a world coordinate
view. The top right window is the camera view. The bottom
right GPR view component renders the full GPR radargram
and shows the current GPR scan index. The world coordi-
nate view renders the camera poses, GPR poses, the GPR
radargrams, and 3D landmarks in 3D space at the left side.
Users can navigate in the world coordinate view to examine
the data from all sensors. All three views allow the user to
interact with the synchronized data frame by frame. If users
choose a particular frame in any of the three views, the other
views automatically switch to the corresponding data. “Play,”
“Next,” and “Previous” buttons are located at the bottom of
the interface to assist the user to navigate.

C. Data Collection Procedure

Since camera images are taken according to a fixed interval
determined by camera internal clock and GPR scans are
triggered by its wheel encoder based on a preset fixed dis-
tance traveled, there is no inherent synchronization between
the two sensors. However, this would lead to significant
issues when fusing the data streams. Therefore, we design
a data collection procedure (see Fig. 2) to deal with the
synchronization problem by using our ALs.

First, we place ALs on the survey area and make sure
that those ALs are evenly spaced out and remain fixed
on the ground. The number of ALs is adjustable in our
setting; but we suggest to use at least two to cover either
end of the survey area. Next, we push the sensing suite to
traverse ALs by following the preplanned survey trajectory.



During the procedure, we ensure that the sensing suite
traverses the edges of ALs on both sides along the trajectory.
Fig. 2 shows an example of the setup. There are 4 lines
{L1,L2,L3,L4} indicating 4 edges generated by both sides
of 2 ALs. Therefore, the GPR passes each edge 3 times and
traverses 12 edges in the trajectory. Those edges will be used
as references for the synchronization problem in Section IV.
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Fig. 2. Data collection procedure.

Employing ALs makes the data collection procedure more
efficient and flexible if comparing to a conventional approach
which relies on manually painted lines or grids on the survey
area in advance. The conventional approach also requires the
GPR to painstakingly move along a preset linear trajectory
which is slow and labor intensive. In our design, we only
need to place ALs on the ground without precise positioning
or strict linear scan motion of the sensing suite.

IV. ALGORITHMS

Recall that camera images and GPR scans are triggered
by time and by position intervals, respectively. We propose
an algorithm to solve the synchronization problem between
the two data streams. The resulting sensor fusion algorithm
can use GPR scans to solve the scale ambiguity and drifting
issues in monocular visual SLAM and generate a 3D metric
reconstruction for both surface and subsurface inspection.
The visual SLAM capability enabled by the camera also
addresses the inability to estimate poses by GPR alone. The
fused metric reconstruction includes camera/GPR poses, 3D
landmarks, and GPR scans. We ignore the LIDAR-camera
sensor fusion here because it is a well-studied area.

Fig. 3 illustrates the flow of our algorithm: 1) prepro-
cessing, 2) tri-sensor correspondence using ALs, 3) initial
scale rectification and synchronization, and 4) optimal scale
correction and data alignment.
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Fig. 3. Algorithm block diagram.

A. Preprocessing

Camera and GPR data are pre-processed as follows to
obtain initial reconstruction information in its individual
modality. For camera images, we apply ORB-SLAM2 [22]
to estimate camera poses and 3D landmarks at each frame.
Let Ik be the camera image at time k, where k = 1,2, . . . ,N.
Let {W} denote the 3D world coordinate system and {Ck}
denote the camera coordinate system at time k. Additionally,
we define {W} to be coinciding with {C1}. Given sequential
camera images Ik, we obtain camera poses {Rk, t̃k} with
respect to {W} at time k, where Rk is the camera rotation
matrix and t̃k ∈ R3 is the translation vector. The ORB-
SLAM2 algorithm also provides 3D landmark position X̃i ∈
R3, where index i denotes the i-th 3D landmark, and i =
1,2, . . . ,n. Note that this is the outcome of the monocular
visual SLAM. All 3D information is up-to-scale. As a
convention in this paper, we use the tilde ˜ to indicate
variables in 3D space that are up-to-scale. Therefore, t̃k and
X̃i are up-to-scale while tk and Xi are defined in the metric
scale. For GPR raw data, we use GSSI RADAN 7 to export
the GPR scans. Let D j be the j-th GPR scan, which is a
1024-dimension vector containing depth information, and l j
be the GPR accumulated travel length measured by wheel
encoder from D1 to D j, where j = 1,2, . . . ,m. In addition,
all D j form the GPR image.

We obtain camera readings {Rk, t̃k, X̃i} and GPR/encoder
readings {D j, l j} after the preprocessing step. At this mo-
ment, we know wheel encoder readings are synchronized
with GPR data but we do not know how they correspond to
camera readings yet, which is the focus of the next step.

B. Tri-Sensor Correspondence Using ALs

In our design, the camera center is directly above the
origin of the GPR coordinate system. Therefore, the ground
projection of the camera trajectory is the same as that of
the GPR. Let us define AL anchor points to be the points
on the AL edges created by the intersection between the
projected camera/GPR ground trajectory and AL edges. The
three sensor synchronization moment (TSSM) established by
ALs is the moment that the camera center, GPR coordinate
system origin, and AL anchor point are collinear as a line
perpendicular to the ground (see Fig. 4). If we can recognize
this moment across all sensor modalities, we can establish
positional reference for correspondences among all sensors.

1) Identify TSSM from the GPR and Wheel Encoder
Readings: When the GPR origin is directly above AL, the
metal plate generates a strong response in the GPR readings
and remains constant until GPR finishs traversing the AL.
This is because the distance between the AL and the GPR
does not change in this duration which leads to a clear
short horizontal bar in the radargram (see Fig. 4). The
beginning and the ending moments of the short horizontal
bar are TSSMs in GPR readings. Let the number of detected
edges be M for all ALs in the setting, we can obtain the
corresponding GPR scan indexes { jp|p= 1,2, . . . ,M}. For all
of these scan indexes, we have their corresponding encoder
readings {l jp |, p = 1,2, . . . ,M}. For the example in Fig. 2,
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Fig. 4. ALs help us synchronize camera image stream and GPR/encoder
data streams. Four TSSMs are shown here. Camera poses represented by
small triangles and GPR poses represented by small rectangles are displayed
on the top of the radargram. The poses drawn in dashed lines are virtual
poses corresponding to TSSMs (best viewed in color).

we have the GPR scan indexes { j1, . . . , j12} due to M = 12
edges.

2) Recognize Camera Center Positions at TSSM: For
now, we only have an up-to-scale 3D reconstruction from
the ORB-SLAM2 results. We need to obtain TSSM camera
center positions in this coordinate system. Note this camera
pose is a virtual pose which means it does not correspond
to an actual image due to the discretized time across frames.
However, this pose can help us synchronize all sensors later.
See Fig. 4 for examples of the visual poses.
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Fig. 5. Left: AL edge points in a 2D camera image. Right: two skew lines
L̃1 and L̃t are used to compute camera center position t̃k+,p (best viewed
in color).

Fig. 5 illustrates the process of identifying the camera
center position for the virtual pose. The high contrast pattern
in AL allows us to recognize points on the edge (green
points in the figure) across multiple frames. Based on the
known camera poses, we can obtain their 3D points. Let
{x f ↔ X̃ f | f ∈L1} be the corresponding 2D and 3D points
where L1 is the index set containing all edge points. These
3D points X̃ f allows us to establish AL edge line L̃1 :
X̃ = p1 + t1d1, where t1 is a parameter, p1 = mean(X̃ f ),
and d1 is the singular vector corresponding to the largest
singular value after performing SVD on normalized points
[X̃1−p1, . . . , X̃ f −p1, . . . ]

T.
From images taken, we can identify two image indexes k

and k+ 1 representing two immediate camera poses before
and after crossing L1. The camera center positions at k and
k + 1 are t̃k and t̃k+1, respectively. The camera trajectory

between k and k+1 can be approximated by a line L̃t : X̃ =
p2+t2d2, where t2 is a parameter, p2 = t̃k, and d2 = t̃k− t̃k+1.

Finding the skew line between L̃1 and L̃t allows us to
obtain the camera center positions t̃k+,p at TSSM, where the
combo subscripts k+, p indicate this is slightly after time k
and it is corresponding to p-th AL edge. We have

t̃k+,p = p2 +
(p1−p2) ·n1

d2 ·n1
·d2, (1)

where n1 = d1× (d1×d2).

C. Initial Scale Rectification and Synchronization
1) Local Scale Rectification: Now we can recover the

true scale by TSSM correspondence. When the sensing suite
traverses two adjacent ALs, we can identify two virtual
camera poses corresponding to the leading edge of each AL.
If the first edge index is p1, then the second edge index
is p1 + 2 due to the adjacency (see Fig 4). Say that the
corresponding camera frame indexes are k1 and k2. Then the
camera center positions of the two virtual poses are t̃k+1 ,p1

and
t̃k+2 ,p1+2. The corresponding distances extracted from encoder
readings are l jp1

and l jp1+2 , respectively. Then a local scale
ratio can be obtained as the ratio between the distance from
the encoder and the distance from camera poses,

s=
l jp1+2 − l jp1

||t̃k1+1− t̃k+1 ,p1
||+∑

k2−1
k=k1+1 ||t̃k+1− t̃k||+ ||t̃k+2 ,p1+2− t̃k2 ||

,

(2)
where || · || is l2 norm. Then the scale of all t̃k and X̃i at
frames k between k1+1 and k2 can be recovered by tk = st̃k
and Xi = sX̃i. For t̃k and X̃i before the first virtual camera
pose or after the last virtual pose, we can also use the closest
local scale ratio to rectify them. Note that we use a local
scale ratio instead of a global scale ratio established by the
first and the last ALs because monocular SLAM may not
have a uniform scale ambiguity in its results due to scale
drift. Using a local scale to correct the affected poses and
3D landmarks can alleviate the issue. Also, this is not a
precise scale recovery because the encoder readings may be
inaccurate due to skids and the scale drift variation may be
big. We will handle it in Section IV-D.

2) Synchronizing Camera Poses to GPR/Encoder Data:
With the scale rectified, we can align camera poses with the
GPR/encoder data streams through distance matching. Let t′k
be GPR frame origin for the corresponding camera center
position tk. The fixed frame mapping relationship is

t′k = Rextk + tex, (3)

where extrinsic parameters {Rex, tex} are obtained by cali-
bration [30]. Define the distance traveled from the first edge
of the first AL to the current pose kc to be d0(kc). Say that
k0 is the index of the camera/GPR frame right before the
first edge, tk+0 ,1 is the camera center of the first virtual pose
right above the first edge and used as the starting point of
the inspection. Then we have

d0(kc) = ||t′k0+1− t′k+0 ,1||+
kc−1

∑
k=k0+1

||t′k+1− t′k||. (4)



Note that we do not have ˜ over variables because they are in
metric space. We can compute d0(k) for each camera/GPR
pose k. For each d0(k), there exists an encoder reading l jk

dl(k) = l jk − l0 ∼= d0(k) (5)

where l0 is the encoder reading corresponding to the first
virtual pose t′

k+0 ,1
, and dl(k) is the cumulative distance

traveled by the sensing suite from wheel encoder readings.
Eq. (5) is true because encoder increment is 3mm, which is
much less than the camera pose estimation error.

D. Optimal Scale Correction and Data Alignment

Now we can further synchronize sensor readings and per-
form metric reconstruction using an optimization framework.
We formulate a constrained optimization problem as follows.
Let the estimated parameters be 3D landmarks X = {Xi|i =
1, . . . ,n}, camera orientations R = {Rk|k = 1, . . . ,N}, and
camera center positions T = {tk|k = 1, . . . ,N}. The cost
function for camera re-projection errors is given by

C(X ,R,T ) =
N

∑
k=1

∑
i∈Sk

‖xi,k− x̂i,k‖2
Σi,k

, (6)

where Sk denotes the set containing all indexes of points
visible by camera at time k, xi,k is the image observation of
Xi at time k, x̂i,k = f (Rk, tk,Xi) is the camera projection
function, Σi,k is the covariance of xi,k, and ‖·‖Σ denotes
Mahalanobis distance. It is worth noting that points xi,k are
the surviving inline set from ORB-SLAM2 pose graph.

At each camera/GPR frame, we can incorporate encoder
readings to capture the traveled distance. Note that encoder
error accumulates linear to the distance traveled. We verify
distances traveled between adjacent camera/GPR poses and
formulate the follow objective function by considering rela-
tive error

F(X ,T ) =
N

∑
k=2

∥∥∥ [d0(k)−d0(k−1)]− [l jk − l jk−1 ]

l jk − l jk−1

∥∥∥. (7)

Also, virtual poses at AL edges provide more constraints
to this problem that can be used as penalty functions in the
objective function. For each rectified camera center tk+,p for
the virtual pose, we can find its corresponding virtual GPR
pose at t′k+,p using (3). Similar to (4) and (5), we can define
travel distance function dv(p) as

dv(p) = ||t′k0+1− t′k+0 ,1||+
kp−1

∑
k=k0+1

||t′k+1− t′k||+ ||t′k+p ,p− t′kp
||,

(8)
where kp is the index of the camera/GPR frame right before
p-th AL and dv(1) = 0; and exact encoder reading l jp for
each virtual pose. Then we have

G(X ,T ) =
M

∑
p=2

∥∥∥ [dv(p)−dv(p−1)]− [l jp − l jp−1 ]

l jp − l jp−1

∥∥∥. (9)

Finally we formulate the optimization problem as

min
X ,R,T

C(X ,R,T )+α ·F(X ,T )+β ·G(X ,T ), (10)

where α and β are nonnegative weighting scalars. In (10),
F(X ,T ) is a soft constraint due to potential synchro-
nization errors; G(X ,T ) is a hard constraint because the
AL correspondence at TSSM must be strictly preserved.
Therefore, β has a higher value than α . We have to adjust
α and β to solve (10). The optimization problem can be
solved by first using a small positive weight for α and β ,
and then applying any nonlinear optimization solver, e.g.
Levenberg–Marquardt. Then we gradually increase α and
β and use the previous solution as the initial solution to
solve (10) iteratively. Finally, we can obtain the solution as
β is sufficiently large and the residual is converged. After
estimating X ,R,T , we can repeat the synchronization
procedure in Sections IV-C.2 to further remove errors caused
by scale drift, and re-optimize to improve accuracy.

V. EXPERIMENTS

The proposed algorithm has been validated in physical
experiments. The parameters for GSSI SIR-3000 are given
as follows: the horizontal sample rate for the wheel encoder
is 390 pulses per meter, the two-way travel time of a radar
signal is 8 ns, the GPR sample rate is 1024 samples per scan,
and the dielectric constant in air is 1. The resolution for the
wheel encoder is 1785 pulses per meter, and the distance
error does not exceed ±2% under ideal conditions (e.g.
smooth surface and no skid). We have scanned a bridge deck
at the Ernest Langford architecture center at Texas A&M
University to test our system. The attached video illustrates
the dataset and the 3D reconstruction result which shows that
our algorithms are able to synchronize these data streams to
create successful 3D metric reconstruction.

Furthermore, to validate if our algorithm can improve the
accuracy for 3D reconstruction, we adopt the end-to-end
GPR travel distance error between the first and last ALs
as the metric. When collecting data, we manually measure
the distance dGT that GPR traveled from the first AL’s edge
(p = 1) to the last AL’s edge (p = M) and treat it as the
ground truth. We define the error metric as

etri =
∣∣∣‖t′k+,M− t′k+,1‖−dGT

∣∣∣, (11)

where t′k+,1 denotes the first virtual pose and t′k+,M denotes
the last virtual pose on the trajectory. And we also define the
corresponding error metric for the wheel encoder as

ewheel =
∣∣∣[l jM − l j1 ]−dGT

∣∣∣. (12)

Moreover, we know that ewheel is bounded below emax =
a · lm, where lm is the total traveling distance measured by the
encoder and a is the relative accuracy (in our case, a = 2%
according to GSSI manual). Finally, we use the bridge dataset
to evaluate the accuracy and list results in Table I. The result
shows that our algorithm improves reconstruction accuracy.

VI. CONCLUSIONS AND FUTURE WORK

We built an encoder-camera-GPR tri-sensor transportation
infrastructure inspection sensing suite and developed a tri-
sensor mapping algorithm. Our system design included hard-



TABLE I
ACCURACY TEST

etri ewheel emax

Error(m) 0.0310 0.0745 0.0816
Accuracy(%) 0.76 1.83 2.00

ware configuration, software interface, ALs, and a data col-
lection scheme. We designed ALs to assist the synchroniza-
tion between two types of data streams: camera images that
are temporally evenly-spaced and GPR/encoder data that are
spatially evenly-spaced. We identified synchronization events
created by ALs and used them as inputs to synchronize
sensory inputs. The results lead to 3D metric reconstruction
for synchronized data streams that covers both surface and
subsurface structure. We tested our system in real physical
experiments. Our system and algorithm have successfully
achieved data synchronizations and metric reconstruction. In
the future, we will conduct more physical experiments, espe-
cially in field tests. We will provide complexity analysis for
the algorithm. We will further improve speed and accuracy
of the proposed algorithm.
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