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Abstract— Skid-steered mobile robots are widely used be-
cause of the simplicity of mechanism and high reliability.
However, understanding of the kinematics and dynamics of
such a robotic platform is challenging due to the complex
wheel/ground interactions and kinematic constraints. In this
paper, we attempt to develop a kinematic and dynamic modeling
scheme to analyze the skid-steered mobile robot. We model
wheel/ground interaction and analyze the robot motion sta-
bility. As an application example, we present how to utilize
the kinematic and dynamic modeling and analysis for robot
localization and slip estimation using only low-cost strapdown
inertial measurement units (IMU). The extended Kalman filter
(EKF)-based localization scheme incorporates the kinematic
constraints. The performance of the EKF-based localization
and slip estimation scheme are presented. The estimation
methodology is tested and validated on a robotic testbed.

I. INTRODUCTION

Skid-steering is a widely used locomotion mechanism for
mobile robots. For a skid-steered robot (Fig. 1), there is
no steering mechanism and motion direction is changed by
turning the left- and right-side wheels at different velocities.
Due to complex wheel/ground interactions and kinematic
constraints, it remains a challenging task to obtain an ac-
curate kinematic and dynamic model for skid-steered robots.

The focus of this paper is on understanding of the kine-
matics and dynamics of skid-steered mobile robots, and its
applications to robot localization. The results presented in
this paper are the extension of our previous work in [1],
[2]. In [1], we reveal underlying geometric and kinematic
relationships between wheel slips and instantaneous rotation
centers of the left- and right-side wheels and the robot
platform of a four-wheel skid-steered robot (Fig. 1). An
inertial measurement units (IMU)-based localization scheme
is also presented in [1]. In [2], we present a linearized trac-
tion/braking forces model. In this paper, we further extend
the robot dynamics modeling and provide motion stability
conditions. We also analyze the stability and convergence
performance of the IMU-based localization scheme. The
new analysis and development are experimentally tested and
validated.
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The contributions of this study are two-folds. First, the
proposed kinematic modeling and analysis of the skid-steered
robot provide a new framework to study this type of robotic
platform. As a direct application, we discuss the convergence
and performance of the extended Kalman filter (EKF)-based
localization scheme. Second, using a wheel/ground interac-
tion model, we analyze the robot motion and provide a new
framework to analyze the skid motion stability conditions.
The dynamic modeling and analysis can be further used for
robot motion planning and control.
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Fig. 1. A skid-steered four-wheel mobile robot with a sensor suite.

The remainder of this paper is organized as follows. We
start reviewing some related work in Section II. In Sec-
tion III, we discuss the kinematics-based localization scheme.
We then discuss the dynamic modeling and skid motion
stability in Section IV. Experimental results are presented
in Section V before we conclude the paper.

II. RELATED WORK

Dynamic modeling and control of differential-driven mo-
bile robots, such as unicycle or car-like robots, have been
extensively studied in the past two decades. The nonholo-
nomic constraint of zero lateral velocity of wheel contact
point is normally considered for differential-driven mobile
robots. For skid-steered mobile robots, non-zero wheel lateral
velocity is allowed, and the zero-velocity constraint is no
longer valid.

Methods of modeling tracked vehicles have been utilized
for modeling skid-steered mobile robots [3], [4]. In [5], an
extra wheeled trailer is designed to experimentally study
the kinematic relationship for simultaneous localization and
mapping (SLAM) applications. It is concluded that a kine-
matic model for an ideal differential-driven wheeled robot
cannot be used for skid-steered robots. In [6], geometric
analogy with an ideal differential-driven wheeled mobile
robot is studied and experimental validations have been
carried out for skid-steered mobile robots. In [7], stability
studies of the skid-steered robot have been discussed. It is



concluded that the position of the rotation center of the robot
has been located within the wheel base for a stable motion.

Wheel slip plays a critical role in kinematic and dynamic
modeling of skid-steered mobile robots. The slip is typically
defined as a non-dimensional relative motion of the wheel
contact patch to the ground. Wheel slip information is im-
portant for robot localization applications [8]. The wheel slip
also plays an important role in robot dynamics and control.
The pseudo-static relationship between the friction coeffi-
cient and the wheel slip is observed in automotive tire/road
interaction. A linearized approximation of the pseudo-static
friction model is proposed to capture friction forces by
one unified formulation [2]. One of advantages of such a
modeling approach is to relate the friction forces to kinematic
variables, such as wheel rotation velocities. We extend the
dynamic modeling in [2] to study the robot motion stability.

The accuracy of the dead-reckoning localization deteri-
orates when there is a large wheel slip. In [9], the er-
ror reduction of the odometry of the skid-steered robots
is discussed for dead-reckoning applications using encoder
and motor current measurement information. In [6], [10],
the localization of a tracked vehicle is presented based
on kinematic models. In [11], an IMU-based wheel slip
detection scheme is designed for a car-like mobile robot
using a dynamic model-based EKF design. In [8], wheel
slip is compensated in an EKF-based localization design.
In [12], velocity constraints, such as zero lateral velocity,
are integrated with an EKF to enhance the localization
of an autonomous ground vehicle. Wheel slip is however
not considered in the EKF design in [12]. In this paper,
we extend the developed robot models and enhance the
localization scheme for the skid-steered robots in [1]. We
also analyze the performance of the localization scheme.

III. ROBOT KINEMATICS-BASED LOCALIZATION

A. Kinematic modeling

Fig. 2 shows the kinematics schematic of the skid-steered
robot. Similar to [1], we consider that each side’s two wheels
rotate at the same speed and that all four wheels run at the
same velocity directions. We also assume that the robot is
running on a firm ground surface, and four wheels always
contact the ground surface.

Let ωi and vi, i = 1, · · · , 4, denote the wheel angular and
center linear velocities for front-left, rear-left, front-right, and
rear-right wheels, respectively. From the above assumption,
we have ωL := ω1 = ω2 and ωR := ω3 = ω4. We define an
inertial frame I (X,Y,Z) and a robot body frame B (x, y, z)
as shown in Fig. 2. We use Euler angles to describe the
transformation between frames B and I. Let Θ := [φ θ ψ]T

denote the attitude angles, namely, the roll angle φ, pitch
angle θ, and yaw angle ψ, respectively. The transformation
from I to B is considered as the Z-Y -X ordered Euler angle
rotation by the following matrix

CIB =

⎡
⎣cθcψ −sψcφ + cψsφsθ sφsψ + cψsθcφ
cθsψ cφcψ + sθsφsψ −sφcψ + sθcφsψ
−sθ cθsφ cφcθ

⎤
⎦ ,

(1)

where cθ := cos θ, sθ := sin θ, and the same notation for the
angles φ and ψ.
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Fig. 2. A top-view schematic of a skid-steered mobile robot.

Let L and W denote the longitudinal and lateral wheel
bases, respectively. Let (xM , yM , 0) denote the IMU location
in B. We define the longitudinal wheel slip λi at each wheel

λi :=
rωi − vix
rωi

, i = 1, . . . , 4, (2)

where r is the effective wheel radius. Let ICRl, ICRr, and
ICRG denote the instantaneous center of rotation (ICR) of
the left-side wheel contact points, right-side wheel contact
points, and the robot body, respectively. We denote the
coordinates for ICRl, ICRr, and ICRG in B as (xlc, ylc, 0),
(xrc, yrc, 0), and (xGc, yGc, 0), respectively. It is known that
ICRl, ICRr and ICRG lie on a line parallel to the y-
axis [1]. We define the longitudinal ICR location, denoted
as S, as the x-coordinate of the collinear ICRl, ICRr, and
ICRG in B. Then, S satisfies the following constraints [6],
[13], [14].

S = xlc = xrc = xGc = −vGy
ψ̇
. (3)

Let PI(t) = [XI(t) YI(t) ZI(t)]T ∈ R
3 and VI(t) =

[Vx(t) Vy(t) Vz(t)]T ∈ R
3 denote the position and ve-

locity vectors of the IMU in I, respectively. We denote
the IMU acceleration and angular rate measurements as
AB = [aBx aBy aBz]T and ωB = [ωBx ωBy ωBz]T ,
respectively. We obtain the following motion equations [12].

ṖI = VI , (4a)

V̇I = CIBAB + G, (4b)

φ̇ = ωBx + sφ tan θωBy + cφ tan θωBz, (4c)

θ̇ = cφωBy − sφωBz, (4d)

ψ̇ =
sφ
cθ
ωBy +

cφ
cθ
ωBz, (4e)

where G = [0 0 − g]T and g is the gravitational constant.
We consider the robot velocity estimates and constraints

in the body frame B. It is straightforward to obtain the
following velocity constraint in the z-axis direction.

vBz = 0. (5)



For the IMU longitudinal velocity vBx, we obtain

vBx =
r

2
[(ωL + ωR) − (λ′LωL + λ′RωR)] + xM ψ̇, (6)

where

λ′L(λ′R) =
{

max{λL(λR), 0} if ωL ≥ ωR (ωL ≤ ωR)

min{λL(λR), 0} if ωL < ωR (ωL > ωR).
(7)

For the lateral velocity vBy, we obtain

vBy = (S + xM )ψ̇. (8)

We have to estimate the value of S. In [1], we introduce a
non-dimensional variable γ as

γ :=
(1 − λL) − (1 − λR)κω
(1 − λL) + (1 − λR)κω

, (9)

where κω = ωR

ωL
. The value of S is considered as a function

of variable γ. We approximate the function S in (8) by Ŝ as

Ŝ := Ŝ(γ) =
a1

a2|γ| + a3
, (10)

where the coefficients a1 = 2.148 cm, a2 = 0.249, and a3 =
0.039 are obtained by data-fitting the experimental data [1].
We also define the S estimation error eS(t) := S− Ŝ. Since
ωL > 0, ωR > 0 and wheel slip |λ| ≤ 1, it is straightforward
to obtain that −1 ≤ γ ≤ 1.

B. EKF design

The IMU velocities in B are considered as the measure-
ments y(t) ∈ R

3, namely,

y(t) = h(vB) :=

⎡
⎣vBxvBy
vBz

⎤
⎦ = (CIB)TVI . (11)

Considering the wheel encoder measurement noise and
ground topography, we modify (11) and re-write in discrete-
time form as

y(k) = h(vB(k)) + w(k). (12)

We define the state variable X(t) :=
[PT

I (t) VT
I (t) ΘT (t)]T ∈ R

9 and re-write the kinematics (4)
in a discrete-time form as

X(k) = X(k − 1) + ΔT f (X(k − 1),u(k − 1)) , (13)

where u(k) := [AT
B(k) ωT

B(k)]T is the IMU measurements
at the kth sampling time, k ∈ N, and ΔT is the data-sampling
period. The function f (X(k),u(k)) is given in (4) as

f (X(k),u(k)) =

⎡
⎣fP
fV
fΘ

⎤
⎦ :=

⎡
⎣ VI(k)
CIB(k)AT

B(k) + G
fΘ(Θ(k),ωB(k))

⎤
⎦ , (14)

where fP = VI(k), fV = CIBAT
B(k) + G, and

fΘ(Θ(k),ωB(k)) :=

⎡
⎣ωBx + tan θ (sφωBy + cφωBz)

cφωBy − sφωBz
sφ

cθ
ωBy + cφ

cθ
ωBz

⎤
⎦ .

An EKF design is applied to the system (13) and (11).
For (13), we obtain the Jacobian matrix F(k) as

F(k) =

⎡
⎣I3 ΔT I3 03

03 I3 ΔTFV (k)
03 03 I3 + ΔTFΘ(k)

⎤
⎦ , (15)

where In and 0n, are the n× n identity and zero matrices,
respectively, FΘ := ∂fΘ

∂Θ , and FV := ∂fV
∂Θ . The Jacobian

matrix H(k) for (11) is calculated as

H(k) =
∂h
∂X

∣∣∣
X(k)

=
[
03 HV (k) HΘ(k)

]
, (16)

where HV (k) := ∂h(vB)
∂VI

= (CIB(k))T and HΘ := ∂h(vB)
∂Θ .

The EKF can be written as a prediction step (X̂(k|k−1))
and a correction step (X̂(k|k)) recursively. The convergence
of the EKF design is directly related to the robot motion
of the robot. We use the longitudinal velocity calculation
in (6) by constraining the slip range in (7). For a clarity
of analysis purposes, we neglect the noise models in the
EKF design to focus on how to utilize the robot modeling
and analysis information for localization estimation. We have
implemented IMU noise models in [11] in experiments.

C. Velocity estimation error analysis

In this subsection, we analyze the velocity estimation
error under the condition of a bounded attitude estimation.
Let V̂I denote the estimated velocity under the estimated

attitude Θ̂. From (4b), we obtain ˙̂VI = ĈIBAB + G,
where ĈIB := CIB(Θ̂). The estimated errors for velocity
and attitude are defined as eV := VI − V̂I and eΘ :=
Θ−Θ̂ = [Δφ Δθ Δψ]T , respectively. Here, Δφ := φ− φ̂,
Δθ := θ − θ̂, and Δψ := ψ − ψ̂ are the estimation errors
for roll, pitch, and yaw angles, respectively. We assume the
estimated attitude error eΘ is bounded.

From (4b), we obtain the error dynamics

ėV = ΔCIBAB , (17)

where ΔCIB := CIB − ĈIB . Using Taylor expansion, we
approximate ΔCIB as

ΔCIB = −
(
∂CIB
∂φ

Δφ+
∂CIB
∂θ

Δθ +
∂CIB
∂ψ

Δψ
)
, (18)

and (17) is then re-written as

ėV = −FV eΘ. (19)

The above estimation error analysis only considers the
kinematic relationship (4b) under attitude estimation errors.
We have to incorporate the above analysis with the EKF
correction step. Since the EKF design is implemented in a
discrete-time form, we also analyze the velocity estimation
errors in the discrete-time form for presentation convenience.
We rewrite error definitions in the discrete-time form as
eV (k|k − 1) := VI(k) − V̂I(k|k − 1), eΘ(k|k − 1) :=
Θ(k)− Θ̂(k|k− 1), and define the EKF velocity estimation
error eV (k|k) := VI(k) − V̂I(k|k). Error dynamics (19) is
re-written in discrete-time form as

eV (k|k − 1) = eV (k − 1|k − 2) − ΔTFV (k)eΘ(k|k − 1).
(20)



and eV (k|k) = eV (k|k− 1)−
(
X̃(k)

)
4:6

, where ṼI(k) :=

V̂I(k|k) − V̂I(k|k − 1), X̃(k) := X̂(k|k) − X̂(k|k − 1),
and operator (X)i:j , i ≥ j, forms a column vector by
taking the ith to jth elements from the column vector
X. We denote the EKF correction gain matrix W(k) :=
[WT

1 (k) WT
2 (k) WT

3 (k)]T ∈ R
9×3, where Wi(k) ∈

R
3×3, i = 1, 2, 3. From EKF design and (16), we have

ṼI(k) =
(
W(k)

[
y(k) − H(k)X̂(k|k − 1)

])
4:6

= W2(k) [HV (k)eV (k|k − 1) + HΘ(k)eΘ(k|k − 1)]
−W2(k) [y(k) − H(k)X(k)] . (21)

We neglect the second part of the calculation (21) for the
first-order approximation of the output y(k). Using (21), we
obtain

eV (k|k) = [I3 − W2(k)HV (k)] eV (k|k − 1)
−W2(k)HΘ(k)eΘ(k|k − 1). (22)

In our examples, the mobile robot is running on flat
horizontal ground surfaces, and we approximate φ = θ =
0. Therefore, using (20) and neglecting the attitude dy-
namics, the velocity estimation errors ev(k|k − 1) :=(
CIB(k)

)T
eV (k|k − 1) in B satisfy the following dynamic

equations

ev(k|k − 1) = ev(k − 1|k − 2) −
ΔT

(
CIB0(k)

)T
FV (k)eΘ(k|k − 1) (23)

where

CIB0(k) := CIB(0, 0, ψ(k)) =

⎡
⎣cψ(k) −sψ(k) 0
sψ(k) cψ(k) 0

0 0 1

⎤
⎦

Similarly, the EKF velocity estimation errors (22) reduce to

ev(k|k) =
[
I3 −

(
CIB0(k)

)T
W2(k)

]
ev(k|k − 1)

− (
CIB0(k)

)T
W2(k)

⎡
⎣ vBy(k)
−vBx(k)

0

⎤
⎦Δψ(k).(24)

Therefore, from (23) and (24), the estimation velocity
ev(k|k) can grow even if the attitude estimation error, such
as Δψ(k), is bounded.

IV. SKID MOTION STABILITY

A. Robot dynamics

We consider the dynamics equations of skid-steered mo-
bile robots under a planar motion and derive the skidding
motion stability conditions. Let Fix and Fiy denote the lon-
gitudinal and the lateral forces at the ith wheel, respectively;
see Fig. 2. We consider the longitudinal friction forces Fix =
Niμi, where μi is the friction coefficient andNi is the normal
force. It has been widely accepted that the friction coefficient
μ is a function of the wheel slip λ. We here consider a
linear approximation of the μ-λ curve as shown in Fig. 3. Let
λm denote the slip value that corresponds to the maximum
friction coefficient. When slip λ ≤ λm, the wheel runs in a
stable region while λ > λm, the wheel runs in a unstable

region. An important feature of the linear approximation is
the preservation of the two-region characteristic.

The friction coefficient μ can be written by the following
functions [2].

μ(λ) = K [σ1(λ) + σ2(λ) sgn(λ)λ] , (25)

where K is the wheel stiffness coefficient, sgn(x) = 1 if
x ≥ 0 and sgn(x) = −1 if x < 0, σ1(λ) = 0, if 0 ≤ λ <
λm; and 1−αλm

1−λm
λm, if λ ≥ λm, 0 ≤ α ≤ 1, and σ2(λ) = 1,

if 0 ≤ λ < λm; and − 1−α
1−λm

λm, if λ ≥ λm.
Using the geometric relationship [2], we write the dynamic

equations of the robot center G in B as follows.

v̇Gx = gK

[
1
2
σP +

1
4
Wψ̇v1 − 1

2
vGxv2

]
, (26a)

v̇Gy = −1
2
gKvGy

[
v2

(
1 +

1
2
σr1

)
+

1
2
σr2v1

]
, (26b)

ψ̈ =
mg

4IG
K

{
−WσΔ +

(
WvGx +

L2

2
ψ̇σr1

)
v1 −

1
2

[
W 2 + L2

(
1 +

1
2
σr2

)]
ψ̇v2

}
, (26c)

where m is the mass of the robot, IG is the mass moment
of inertia of the robot about G, σr1 = σ1(λ1) sgn(λ1ψ̇)

λ1σ2(λ1)
−

σ1(λ3) sgn(λ3ψ̇)
λ3σ2(λ3)

, σr2 = σ1(λ1) sgn(λ1ψ̇)
λ1σ2(λ1)

+ σ1(λ3) sgn(λ3ψ̇)
λ3σ2(λ3)

,
and σP = σ1

P + σ2
P, σΔ = σ1Δ + σ2Δ, σ1

P =
σ1(λ1) sgn(λ1) + σ1(λ3) sgn(λ3), σ1Δ = σ1(λ1) sgn(λ1) −
σ1(λ3) sgn(λ3), σ2

P = σ2(λ1) + σ2(λ3), σ2Δ = σ2(λ1) −
σ2(λ3). The control input variables v1 and v2 be v1 =
σ2(λ1)u1−σ2(λ3)u2 and v2 = σ2(λ1)u1+σ2(λ3)u2, where
u1 = 1

rω1
and u2 = 1

rω3
.
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Fig. 3. A linear approximation of the μ-λ relationship.

B. Motion stability

We define the stable motion of the skid-steered mobile
robot if the robot is not sliding on the ground surface,
namely, the wheel slip satisfies |λi| ≤ λm. The value of S is
employed as an indicator for the motion stability. From (3),
we take the time derivative and obtain

Ṡψ̇ + Sψ̈ = −v̇Gy.



Substituting robot dynamics (26) into the above equation, we
obtain

Ṡψ̇ =
1
2
gKvGy

[
v2

(
1 +

1
2
σr1

)
+

1
2
σr2v1

]
−

mgK

4IG
S

{
−WσΔ +

(
WvGx +

L2

2
ψ̇σr1

)
v1 −

1
2

[
W 2 + L2

(
1 +

1
2
σr2

)]
ψ̇v2

}
. (27)

By the definition of the motion stability, we ob-
tain σ1 = 0, σ2 = 1, v1 = 1

r

(
1
ωL

− 1
ωR

)
, v2 =

1
r

(
1
ωL

+ 1
ωR

)
, σr1 = 0, σr2 = 0, σΔ = 0, and (27)

becomes

Ṡ +
gKv2

2

(
aI − m

2IG
WyGc

v1
v2

)
S = 0, (28)

where aI = 1 + m
4IG

(
W 2 + L2

)
.

Without loss of generality, we assume ωL ≤ ωR and we
have v1 ≥ 0, yGc > 0, and

v1
v2

=
ωR − ωL
ωR − ωL

= −1 − κω
1 + κω

≈ −γ

for small slip values |λi| ≤ λm. Using the estimate of S
given in (10), we obtain

v1
v2

≈ −γ =
a1

a2

1
Ŝ

− a3

a2
. (29)

Substituting (29) into (28) and using the equality S
Ŝ

= 1+ eS

Ŝ
,

we obtain the dynamics of S as

Ṡ + ζ1S −
√

2ζ2

(
1 +

eS

Ŝ

)
= 0, (30)

where ζ1 := ζ1(v2, yGc) = gkv2
2

(
aI + mWyGca3

2IGa2

)
and

ζ2 := ζ2(v2, yGc) =
√

2gkv2mWyGca1
8IGa2

. Notice that |γ| ≤ 1
by definition (9), and from the steady-state value of S, we
obtain the condition

yGc =
vGx

ψ̇
≥ 2aIIG

mW
. (31)

Condition (31) implies that for a stable motion of a skid-
steered robot, the turning radius has to be larger than the
value in the right hand side of (31).

V. EXPERIMENTAL RESULTS

We have built an on-board sensor suite on the skid-
steered mobile robot shown in Fig. 1. We use a low-cost
IMU from Sentera Technology Inc. The control system is
a two-level hierarchy: the control algorithm and the EKF
design are located in the on-board laptop system, while the
PID-based motor control is located at the low-level real-
time system. The on-board real-time system receives the
commanded wheel velocity at a frequency of 20 Hz, and
the PID-based motor controller is running at a frequency of
1 KHz. The EKF-based localization scheme is updated at a
frequency of 125 Hz, which is also the updating frequency
of the IMU device. All experiments were conducted at

the Texas A&M University campus. We also developed a
computer vision-based positioning system to provide the
robot’s absolute position information in all experiments. The
resolution of the vision positioning system is around 1.49
cm. A timing-synchronization mechanism is set up using
wireless communication such that we can correspond the on-
board localization system with the vision-based positioning
system. The output of the computer vision-based localization
system thus serves as a ground truth to compare and validate
the proposed localization scheme.

We present the experimental results where the skid-steered
robot runs on a flat concrete surface. Due to the page limit,
we present only results for “8”-shape trajectory. In Fig. 4(a),
we show the localization results. For the “8”-shape trajectory,
the robot starts with ωL/ωR = 80/40 rpm for about 8 s,
and then each side’s two wheels simultaneously change their
angular velocities by a constant rate of 10 rpm per second
until their velocity combination reaches ωL/ωR = 40/80
rpm.

Fig. 4(a) also shows the comparison results of the robot
localization under three different schemes. These schemes
use three different sets of measurements: (1) both the vertical
velocity vBz constraint (5) and the longitudinal velocity esti-
mate without considering the wheel slip; (2) both the vertical
velocity constraint and longitudinal velocity estimate with
the wheel slip feedback (6); and (3) all three-dimensional
velocity constraints and estimates incorporating the wheel
slip. From Fig. 4(a), we observe that the first scheme has
a large error (blue-square line). By considering the wheel
slip estimation, the localization results improve significantly
(black-triangle line in Fig. 4). Finally, if we consider all
three-dimensional velocity constraints and estimations with
the slip estimation (blue-dot line), the estimated trajectory is
close to the real trajectory.

Fig. 4(b) shows the wheel slip comparisons between the
EKF-based estimation and vision-based measurements. In
Fig. 4(c), we compare the prediction of EKF velocity esti-
mation errors (blue solid-circle line) with the real errors (red
empty-circle line) and they match well. These results validate
that the estimated velocity errors are mainly due to the yaw
angle estimation error as our analysis. Fig. 5 shows the S-
value comparison results for the “8”-shape trajectories. The
S values are changing for varying γ values and according to
the relationship given in (10).

We also let the robot run on a patch of sand, and thus slide
on the ground surface. Fig. 6(a) shows the robot’s trajectory.
The robot runs under ωL/ωR = 80/40 rpm. The maximum
cycle-to-cycle sliding distance on a sandy patch trajectory is
around 40 cm, while for a regular trajectory, that distance is
only around 20 cm. We clearly observe sliding of the robot
platform when it runs on the sandy patch. Fig. 6(b) shows the
S values during the robot motion. Three spikes are clearly
seen in Fig. 6(b) at times around 2, 10, and 25 s. These
spike values are much larger than the typical value (around
10 cm). Therefore, the increases of S values can be used as
an indicator for the robot sliding conditions.
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Fig. 4. (a) EKF-based XY trajectory estimation for “8”-shape trajectories. In the figure, the robot starts at the origin (marked as a star symbol) and stops
at the symbol marked as a large solid circle. (b) Estimated wheel slip information using EKF-based and computer vision-based localization schemes. (c)
EKF-based velocity estimation errors.
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Fig. 5. S-value comparison for the “8”-shape trajectory.

(a)

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

S
(c

m
)

Time (s)
(b)

Fig. 6. The skid-steered robot runs a circle trajectory with a sandy patch.
(a) Vision-based trajectory with a sandy patch. The robot starting and ending
points are marked as a “cross” and a large solid circle symbols, respectively.
(b) S curve for the circle trajectory.

VI. CONCLUSION

Modeling and localization of skid-steered robots are
challenging due to the complex robot dynamics and
wheel/ground interactions. In this paper, we presented a
kinematic and dynamic modeling and analysis of skid-
steered mobile robots. The kinematic analysis is based on
the motion similarity between the skid-steered robot and
tracked vehicles, while the dynamic modeling approach takes

advantages of the automotive tire/road interaction models.
We presented an EKF-based robot localization scheme that
utilized the kinematic modeling and analysis. The analysis
and estimation methodology are tested on a robotic testbed
with a computer vision-based localization system.
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