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Balance Control of a Bikebot for Studying Human Dynamic
Postural Balance Motor Control

Yizhai Zhang, Pengcheng Wang, Jingang Yi, and Dezhen Song

Abstract— We present the development of the gyroscopic-
balanced control of an autonomous bikebot. The bikebot is an
actively controlled bicycle-based robotic platform developed to
study human dynamic postural balance motor skills through
unstable physical human-robot interactions. We first present
a dynamic model and analysis for the bikebot. A nonlinear
balancing controller is designed to stabilize the underactuated
bikebot on an orbital trajectory around the unstable equilib-
rium point that is coupled with another orbit of the actuated
gyro-balancer. We demonstrate the analysis and control design
with experimental validations. Finally, we present a set of
human riding experiments to show how the bikebot can be
used to perturb and excite human sensorimotor feedback loop
for dynamic postural balance motor skills.

I. INTRODUCTION

Human with trained motor skills can fluidly and flexibly
interact with machines while smart machines can also pro-
vide motor assistance and enhancement to facilitate human’s
motor skills learning [1]. Many efficient human-robot inter-
actions are unstable [2], [3]. We consider using rider-bikebot
interactions as a new means to examine a sensorimotor
theory for modeling and shaping postural balancing and other
functional whole-body motor activities.

Bikebot is an actively controlled bicycle-based robot. The
recent study in [4] demonstrates that human neuro-control
has different, complementary sensitivities of balancing sta-
bility between riding the bicycle and quiet stance. Although
studying physical interactions between the rider and the
passive bicycle is reported in recent years [4]–[7], the bikebot
provides active perturbation to break rider’s sensorimotor
feedback loop through actively controlled steering, velocity,
and balancing. Compared to other motor skills such as quiet
stance [8], riding the bikebot requires the coordinated control
of multi-limb and body movements following the sensori-
motor cues. Therefore, the bikebot offers a new platform
for studying human postural balance motor skills through
unstable physical human-robot interactions.

In this paper, we present the dynamic modeling, analysis
and balance control for the bikebot system. The dynamic
model of the riderless gyro-balancer bicycle is first devel-
oped. We analyze the bikebot dynamic model and present a
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pair of coupled oscillating orbits for the bikebot roll motion
and a flywheel’s pivoting motion. The balancing control
design is then to regulate the bikebot motions to follow
these orbital trajectories. An energy shaping method is used
to design the orbital following controller. We present ex-
periments to demonstrate the balancing analysis and control
design. Finally, human riding experiments are presented to
show the feasibility of using bikebot to perturb and excite
human sensorimotor postural balance feedback mechanisms.

Besides the new bikebot design and demonstrating the
feasibility to perturb and excite human postural balance
control, additional contributions of this work are twofold.
First, the presented bikebot dynamic model captures a class
of underactuated robotic systems in which the coupled effects
between the actuated component (gyro-balancer) and the
underactuated component (bikebot roll motion) are through
force/torque and energy exchange. Following the modeling
analysis, we propose a coupled orbital following control
design to balance the bikebot. This design complements
the orbital stabilization approach in [9], [10] where virtual
displacement constraints, rather than force/torque constraints,
are introduced and used. Second, comparing with other re-
lated work in which autonomous motorcycles or bicycles are
designed at a moving velocity [11]–[17], we have success-
fully demonstrated a more challenging task to balance the
stationary bikebot at zero velocity. Moreover, we analytically
give an estimation of the domain of attraction under the
control design.

The remainder of the paper is organized as follows. We
review the related work in Section II and then discuss the
bikebot dynamic model in Section III. The balancing control
and analysis are presented in Section IV. Experiments are
presented to demonstrate the design in Section V. We finally
conclude the paper and discuss the future work in Section VI.

II. RELATED WORK

Robotic systems have been introduced and used in biome-
chanics, neuroscience, and human movement science to
study human postural balance. Those mechanical systems
include one or two degree-of-freedom (DOF) moving plates
(e.g., [18]), or multi-DOF robotic platforms (e.g., [19])
for testing dynamic posturography. Few robotic devices are
designed to aim at studying or training the human’s whole-
body postural capability through unstable physical human-
robot interactions. Our bikebot concept was inspired by the
recent clinical studies in [20], [21] that report promising
results of treating postural disorder and Parkinson’s disease
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Fig. 1. (a) The Rutgers bikebot for studying physical rider-robot interactions. The left sub-figure shows the modified steering mechanism that disengages
the rider steering with the actual motorized steering fork. The right-figure shows the single gyro-balancer design. (b) Human riding experiment.

patients through bicycle riding. The bicycle-based rehabili-
tation device in [20] is a stationary platform and does not
have the capability for dynamically sensing and perturbing
human motor control skills. Our previous works [4], [6], [7]
introduce a non-intrusive instrumented bicycle system and
this type of instrumented bicycles however cannot actively
perturb human motion and break the human neural control
feedback loop. The bikebot instead extends the capability
of the instrumented bicycle by a modified steering, driving
and balancing mechanisms to augment the rider’s dynamic
postural balance capability.

This paper focuses on the dynamic modeling and balanc-
ing control of the bikebot. We extend the dynamic models
in [4], [22] and include the gyro-balancer dynamics. Gyro-
scopic torques are used to help balancing the bicycle [11],
[14], [17], [23] or the unicycle [24]–[26]. None of these
developments include the balancing control at zero moving
velocity, which is much more challenging than balancing
a moving platform. In this paper, we demonstrate a gyro-
balancer-based balancing control for the stationary bikebot.
Moreover, all of the above-mentioned autonomous bicycles
or unicycles are for riderless design while our bikebot design
is a human-in-the-loop system. Indeed, the bikebot and its
interactions with the rider provide a unique and new platform
to study human dynamic postural balance motor skills.

Flywheel-based gyro-stabilizer is a compact actuator to
provide a need of large torques for robotic applications [27],
[28]. A single gimbal gyro-balancer such as the one in the
bikebot design shown in Fig. 1(a) has a compact size and a
simple mechanical design. However, a single gimbal gyro-
balancer has some configuration limitations. For example,
the pivoting angle or angular rate of the flywheel of the
gyro-balancer is bounded in certain ranges due to the phys-
ical constraints. Also, the gyro-balancer not only produces
balancing torque along the roll direction but also generates
undesirable torques along the yaw direction. To overcome
such limitations, it is desirable to operate the gyro-balancer’s
flywheel around the zero pivoting angle when the actuator is
used to help balance the bikebot.

It is challenging to balance the bikebot at zero moving
velocity. Inspired by the observation that an experienced
human rider commonly oscillates his/her body or the steering

mechanism for balancing a bicycle, we propose to design the
balancing controller to stabilize the bikebot on an orbital
trajectory around the vertical equilibrium position. When
actuated only by the gyro-balancer, the riderless bikebot is
an underactuated nonlinear system, similar to many other
mechanical systems such as a pendubot or a Furuta pendu-
lum. In [9], [10], [29], [30], an orbital stabilization design
is presented for a class of underactuated nonlinear dynamic
systems such as Furuta pendulum. In these designs, a virtual
(displacement) constraint is first constructed between the
actuated and the underactuated coordinates and then the
control strategies are used to create oscillating orbits around
the unstable equilibrium. Although the bikebot dynamics
share similarities to those of an inverted-pendulum or a
Furuta pendulum, some essential differences exist in the
orbital stabilization design. We cannot directly apply the ex-
isting results to construct the virtual displacement constraints
because the coupling effects between the actuated gyro-
balancer and the underactuated bikebot are through balancing
moments, rather than the coupled position constraints in an
inverted-pendulum or a Furuta pendulum. We reduce the
robot dynamics to obtain and design the constrained dynamic
motion between the gyro-balancer and the bikebot. This
constructive dynamic constraint-based control design can
be generalized to other underactuated mechanical systems
where forces or torques (rather than displacements) are
coupled between the actuated and unactuated subsystems.

III. BIKEBOT DYNAMIC MODEL

A. Bikebot design

Fig. 1(a) shows the bikebot developed at Rutgers Uni-
versity. The mechanical structure of the bikebot is built on
a mountain bicycle with significant modifications. Both the
traction/braking and the steering functions are augmented to
allow a human rider, an onboard computer, or both to balance
the unstable platform. A hub motor and a DC motor are
used for rear-wheel driving and front steering mechanism
control, respectively. The steering mechanism is modified
such that the steering handlebar and the steering fork are
mechanical separated and independently controlled; see the
left sub-figure in Fig. 1(a). The rider turns the handlebar
and the human input steering angle is measured by the
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encoder. The onboard controller then turns the lower-steering
mechanism at a commanded steering angle. Same design is
applied to pedaling for control the bikebot moving velocity.
A computer-controlled braking actuator is installed on the
rear wheel to reduce the moving velocity. To perturb the
rider’s balancing torque, a single gimbal active controlled
gyro-balancer is mounted on the back rack of the bikebot as
shown in the right sub-figure in Fig. 1(a).

B. Bikebot model

The bikebot is considered as a three-part platform: a rear
frame with the gyro-balancer structure and rear wheel, the
front wheel and steering mechanism and the gyro-balance
flywheel. Fig. 2 shows a schematic of the bikebot kinematics.
We consider the following modeling assumptions: (1) the
mass center W of the gyro-balancer is located at the rotating
axis and therefore, its translational velocity is along the rear
frame; and (2) the rear wheel contact point satisfies the
nonholonomic constraint, i.e., zero lateral velocity.

Gyro−balancer
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Fig. 2. Schematic of the gyro-balanced bikebot systems.

We denote C1 and C2 as the front and rear wheel contact
points with the ground, respectively. As illustrated in Fig. 2,
frame B(x, y, z) is setup on the rear frame with its origin at
C2, z-axis pointing downward, and x-axis pointing forward
along C2C1. Two Euler angles, yaw angle ψ and roll angle
ϕb, are used and the unit vector set of B is denoted as
(i, j,k).

From [22], the vertical position change ΔhG of the mass
center G due to steering angle φ is captured as

ΔhG = lGΔs tanϕb tanφ, (1)

where Δs = lt cos ξ
l

[
lt cos ξ − 12Rtξ

π2

(
1 −

√
3

2

)]
, Rt is the

radius of the front wheel, ξ is the caster angle, l and lt are the
wheelbase and trail distance, respectively. The translational
velocity of C2 and the angular velocity of the bikebot rear
frame in B are respectively given as vC2 = vxi and ωb =
ϕ̇bi+ψ̇ sϕb

j+ψ̇ cϕb
k, where vx is moving forward velocity

and we use notations cϕb
:= cosϕb and sϕb

:= sinϕb for
ϕb and other angles. The position of the mass center G in
B is ρG = lGi − hGk, where lG and hG are the horizontal

and vertical distances from G to C2, respectively. We thus
obtain the velocity of G as

vG = (vx−hGψ̇ sϕb
)i+(hGϕ̇b+lGψ̇ cϕb

)j−lGψ̇ sϕb
k. (2)

The flywheel’s precession angular velocity is Ωw = ϕ̇bi +
(ψ̇ sϕb

+ϕ̇w)j+ψ̇k, where ϕw is the flywheel pivoting angle.
The gyroscopic torque generated by the gyro-balancer along
the x-axis direction is obtained

τwx = (Iwz − Iwx)(ψ̇2 cϕb
sϕb

+ψ̇ϕ̇w cϕb
) +

Iwzωs cϕw
(ψ̇ sϕb

+ϕ̇w) (3)

where the flywheel inertia matrix is Iw =
diag{Iwx, Iwy, Iwz} with the assumption that the principle
axes are along its body frame.

With the nonholonomic constraint at C2 and the kinematic
geometry [22], we obtain that vx = l

σ ψ̇ and σ = tanφg with
steering mechanism relationship tanφg cϕ = tanφ cξ. Using
Lagrange’s equations, we obtain the motion equations of the
bikebot as

(mbh
2
G + c2

ϕw
Iwx + s2ϕw

Iwz + Ibx)ϕ̈b +mbhG
σ̇

l
vx cϕb

+

2(Iwz − Iwx) sϕw
cϕw

ϕ̇wϕ̇b + (s2ϕw
− c2

ϕw
)
σ

l
vx cϕb

ϕ̇wIwx

− sϕw
cϕw

(
σ̇

l
vx +

σ

l
v̇x

)
cϕb

Iwx(c2
ϕw

− s2ϕw
)
σ

l
vx cϕb

ϕ̇wIwz

+ sϕw
cϕw

(
σ̇

l
vx +

σ

l
v̇x

)
cϕb

Iwz + cϕw
ϕ̇wωsIwz

+mbv
2
x

σ

l
(1 − sϕb

σ

l
hG)sϕb

hG +
σ2

l2
v2

xsϕb
cϕb

(Ibz − Ibx)

+
σ2

l2
v2

x(sϕb
cϕb

Iwy − s2ϕw
sϕb

cϕb
Iwx − c2ϕw

sϕb
cϕb

Ifz)

+
σ

l
vxcϕb

ϕ̇wIwy − cϕw

σ

l
vxsϕw

ωsIwz +mbghG sϕb

−mbglGΔs tanφ sec2 ϕb = 0, (4)

Iwyϕ̈w +
(
σ̇

l
vx +

σ

l
v̇x

)
sϕb

Iwy +
σ

l
vxϕ̇b cϕb

Iwy+

(Iwz − Iwx)ϕ̇2
b cϕw

sϕw
+(s2ϕw

− c2
ϕw

)
σ

l
vxϕ̇b cϕb

(Iwx − Iwz)

+ sϕw
cϕw

σ2

l2
v2

x c2
ϕb

(Iwx − Iwz) + sϕw

σ

l
vx cϕb

ωsIwz

− Iwzϕ̇bωs cϕw
= τm, (5)

and

mbv̇x

[(
1 − hG

σ

l
sϕb

)2

+
σ2

l2
l2G

]
+
σ2

l2
v̇x

(
Ix s2ϕb

+Iz c2
ϕb

)
+

2mbvx

[
−hG

l

(
1 − hG sϕb

σ

l

)
(σ̇ sϕb

+σϕ̇b cϕb
) +

σσ̇

l2
l2G

]
+

2
σσ̇

l2
vx

(
Iy s2ϕb

+Iz c2
ϕb

)
+ 2

σ2

l2
vxϕ̇b(Iy − Iz) sϕb

cϕb
+

mblGhG
σ̇

l
ϕ̇b cϕb

+mblGhG
σ

l
ϕ̈b cϕb

−mblGhG
σ

l
ϕ̇2

b sϕb

+
σ̇

l
ϕ̇w sϕb

Iwy +
σ

l
ϕ̈w sϕb

Iwy +
σ

l
ϕ̇bϕ̇w cϕb

Iwy+

σ̇

l
ωs cϕw

cϕb
Iwz − σ

l
ϕ̇bωs cϕw

sϕb
Iwz

− σ

l
ϕ̇wωs cϕb

sϕw
Iwz = Frx, (6)
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where τm is the output torque of the gyro-balancer pivoting
motor and Frx is the traction/braking force of the bikebot
rear wheel.

It is of a particular interest to consider a stationary bikebot.
In this case, vx = 0 and ψ = 0. The motion equations of the
bikebot in (4)-(6) are reduced to

(mbh
2
G + Ix + Iwxz s2ϕw

)ϕ̈b + Iwxz s2ϕw
ϕ̇wϕ̇b −mbghG sϕb

+ Iwz cϕw
ϕ̇wωs = mbglGΔs sec2 ϕb tanφ, (7)

Iwyϕ̈w + Iwxzϕ̇
2
b cϕw

sϕw
−Iwzϕ̇bωs cϕw

= τm, (8)

where Iwxz = Iwz − Iwx.
In the rest of the paper, we focus on stationary bikebot

balancing control and analysis and also on the experimental
demonstration of the perturbed rider-bikebot interactions.

IV. STATIONARY BALANCING CONTROL AND ANALYSIS

A. Stationary bikebot dynamics

We define the state variable x = [x1 x2 x3]T =
[ϕb ϕ̇b sinϕw]T . For presentation convenience, we also
define xb = [x1 x2]T . Since the pivoting motor is controlled
through the lower-level embedded control for a given veloc-
ity, we consider a velocity control input for pivoting angle x3.
With the defined state variable, we re-write the dynamics (7)
along with the pivoting angular velocity control as

ẋ1 = x2 (9a)

ẋ2 = f(x) + g1(x)u1 + g2(x)u2 (9b)

ẋ3 = u1, (9c)

where u1 = cϕw
ϕ̇w is the controlled pivoting velocity, u2 =

tanφ is the controlled steering input,

f(x) =
mbghG sx1

Is(x)
, g1(x) = −Iwxzx2 s2x3 +Iwzωs

Is(x)
,

g2(x) =
mbglGΔs sec2 x1

Is(x)
, (10)

and Is(x) = mbh
2
G + Ix + Iwxz s2x3

. Due to the physical
constraints, the pivoting angle and angular rate are within
certain ranges, namely,

|x3| = | sϕw
| ≤ sϕmax

w
< 1, |u1| = | cϕw

ϕ̇w| ≤ ωmax
w , (11)

where ϕmax
w and ωmax

w are the maximum flywheel pivoting
angle and angular velocity, respectively.

Without steering control (i.e., u2 = 0), the equilibrium of
the dynamics (9) is x1e = x2e = 0 under u1e = ϕ̇we = 0. It
is interesting to notice that the flywheel pivoting angle can
be any values within ϕmax

w while the bikebot is balanced.
We consider how to compute the gyro-balancer flywheel’s

pivoting angle x3(t) for a given profile for bikebot roll angle
x1(t). Indeed, (7) can be re-written as

d

dt

[
(mbh

2
G + Ix)x2 + Iwxzϕ̇bx

2
3 + Iwzωsx3

]
=

− ∂

∂ϕb

(
mbghG cx1

)
(12)

and thus, the bikebot satisfies the Hamiltonian dynamics with
angular momentum along the x-axis direction

px(t) = (mbh
2
G + Ix)x2(t) + Iwxzx2(t)x2

3(t) + Iwzωsx3(t).
(13)

By integrating (12), it is then straightforward to obtain

px(t) − px(0) =
∫ t

0

mbghG sx1(τ) dτ. (14)

From (14), we have the following property with a proof given
in Appendix I.

Property 1: For a given periodic profile x1(t) with period
T , the profile for the pivoting angle is also periodic with
period T .

With the results in Property 1, we design an orbital stabi-
lization control to synchronize the periodic motion between
the flywheel pivoting motion (x3) and the bikebot roll motion
(x1).

B. Balancing controller

We consider the balancing controller design by using the
gyro-balancer and the steering mechanism separately.

1) Gyro-balancer-based balancing control: To further
simplify the controller design, from (10) and the fact that
the flywheel spinning speed ωs � |x2|, it is noted that
Iwzω2 cx3 � |Iwxzx2 s2x3 |. Moreover, mbh

2
G � Ix � Iwxz

and therefore, (9b) is approximated as

ẋ2 − g

hG
sx1 +

Iwzωs

mbh2
G

u1 = 0. (15)

Clearly, for simplified dynamics (15), state variable x ∈
D := S × R × (−1, 1).

We consider regulating the bikebot roll motion on an
orbital trajectory in D. An oscillation orbital trajectory Ob

is given by the following pendulum dynamics.

Ob : ẋ2 +
b

hG
sx1 = 0, (16)

where design parameter b > 0 is a gravitationally equivalent
constant. Plugging (16) into dynamics (15) to eliminate term
sx1 , we obtain

ẋ3 = − (b+ g)mbh
2
G

Iwzbωs
ẋ2 = −Lẋ2, (17)

where constant L = (g+b)mbh2
G

Iwzbωs
. Therefore, by integrat-

ing (17), the corresponding orbital trajectory Ow for x3 is
obtained as

Ow : x3 = −Lx2. (18)

Remark 1: The form of (18) is seemingly similar to those
of virtual holonomic constraints in orbital stabilization of
underactuated mechanical systems in [9], [10]. However, the
relationships (18) are not the same as the virtual constraints
in [9], [10] because (18) is obtained through the system
dynamics (15) rather than by design. Moreover, (18) repre-
sents the torque balance relationship between the controlled
flywheel pivoting and the underactuated bikebot roll motion,
while the virtual holonomic constraints in [9], [10] capture
the displacement relationships among the coordinates.
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Once the bikebot roll motion follows orbit Ob, the total
energy E(xb) is defined as:

E(xb) =
1
2
mbh

2
Gx

2
2 +mbhGb (1 − cx1) .

When target orbit Ob reaches the maximum angle xd
1 with

x2 = 0, the total energy is Ed = mbhGb(1−cxd
1
). We define

the energy difference ΔE = E(xb) − Ed and consider the
Lyapunov candidate function V (x) as

V1(x) =
1
2
ΔE2 +

1
2
k1 (x3 + Lx2)

2
,

where k1 > 0 is a constant. Obviously, V1(x) ≥ 0 and

V̇1(x) = ΔE(mbh
2
Gx2ẋ2 +mbhGb sx1 x2) +

k1(x3 + Lx2)(ẋ3 + Lẋ2).

Using (9) and (15) and letting

u1 =
Lb

hG
(sx1 +v1) = u1s +

Lb

hG
v1, (19)

where u1s = Lb
hG

sx1 and v1 is an auxiliary control input,
V̇1(x) is then reduced to

V̇1(x) = −mbhG(g + b) [ΔEx2 + αk1 (x3 + Lx2)] v1,

where α = g
bIwzωs

> 0 is a constant.
The control input v is further designed as

v1 = k2 [ΔEx2 + αk1 (x3 + Lx2)] (20)

with a positive constant parameter k2 > 0 and then we obtain

V̇1(x) = −mbhG(g+ b)k2 [ΔEx2 + αk1 (x3 + Lx2)]
2 ≤ 0.

By LaSalle theory [31], the system states asymptotically
converge to the invariant set S(x)

S(x) =
{
x ∈ D |ΔEx2 + αk1 (x3 + Lx2) = 0

}
. (21)

In S(x), v = 0, u1 = u1s and the trajectories of the closed-
loop dynamics are on orbits Ob and Ow. It is straightforward
to obtain that origin xe = 0 ∈ S(x).

If the states are not at origin in S(x), i.e., x ∈ S(x) \
{0}, ΔE is a constant with the periodical varying x2 and
from (17), we obtain x3 + Lx2 = C (constant). Given the
invariant set property in (21), this implies that in S(x)\{0},
E = Ed (i.e., ΔE = 0) and x3 + Lx2 = 0. Thus, a subset
of the invariant orbit Ow given by

O∗
w(x) =

{
x ∈ D |ΔE = 0, x3 + Lx2 = 0

}

also lies in S(x), namely, O∗
w = S(x) \ {0}. By LaSalle

principle, under the control (19), the state variables converge
to the target orbits Ob and O∗

w asymptotically for an initial
state x(0) in the domain of attraction D1 ⊂ D. We will give
an estimate of D1 later in this section.

2) Steering-based balancing control: In this section, we
design a balancing control strategy only using steering mech-
anism, i.e., u1 = 0 in (9). Similar to the previous case, we
use an energy shaping approach to design the controller as
follows. Same as (15), we re-write (9b) as

ẋ2 − g

hG
sx1 +

glGΔs sec2
x1

h2
G

u2 = 0. (22)

We still consider the targeted orbit Ob in (16) for the desired
bikebot motion. Following the same definition of E(xb)
and ΔE in the previous section, we consider the Lyapunov
function candidate V2 = 1

2ΔE2. The steering control is
obtained as

u2 = u2s +
c2
x1

mbglGΔs
v2, (23)

where u2s = − (g+b)hG c2x1
glGΔs

sx1 and the auxiliary control input
v2 is designed as

v2 = −k3x2ΔE

in which k3 > 0 is a constant. It is straightforward to obtain
that under control (23), V̇2 = −k3x

2
2ΔE

2 ≤ 0. Following the
same discussion in the previous section, under control (23)
the bikebot roll motion will follow orbit Ob if the initial
condition is in the domain of attraction D2.

We give an estimate of the domain of attraction D1 under
the gyro-balancer control (19) and due to the page limit, we
omit the estimate of D2 under steering control (23).

From the previous analysis, under control (19), x ∈ S(x),
V̇1(x) = 0, and x = 0, V1(0) = 1

2E
2
d ; x ∈ O∗

w(x), V1(x) =
0. Therefore, a conservative estimate of D1 is

D1(x) =
{

x ∈ D |V1(x) ≤ 1
2
E2

d

}
. (24)

The calculation and example plots of D1 will be presented
in the next section.

V. EXPERIMENTS

A. Bikebot and experimental setup

Fig. 1(a) shows the bikebot prototype. The physical pa-
rameter values of the bikebot are obtained experimentally
and listed in Table I. A force/torque sensor (from JR3 Inc.) is
installed along the seat supporting rod to measure the 3-axis
hip-seat forces and torques; see Fig. 1(a). Three load cells
are installed inside the custom-built bicycle seat to measure
the sitting force distribution. An optical encoder is used to
measure the bicycle speed. One IMU unit (model 800 from
Motion Sense Inc.) is mounted to the bicycle frame. The
IMU provides the bicycle attitude estimation for real-time
balancing control. For human riding experiment, a second
IMU is attached at the back of the rider to measure the upper-
body pose [7]; see Fig. 1(b). Each IMU consists of a tri-
axial gyroscope and a tri-axial accelerometer. The embedded
system (NI cRIO 9082 real-time system) samples and stores
all sensor measurements at the frequency of 100 Hz and also
controls the motors at the same frequency.

For indoor self-balance experiments, a vision-based mo-
tion capture system (from Vicon Inc.) is used to provide the
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TABLE I

BIKEBOT PHYSICAL PARAMETERS

mb (kg) Ibx (kgm2) Iwx (kgm2) Iwz (kgm2) hG (m) lG (m) l (m) lt (m) ξ (deg) Rt (m) ωs (rpm)

51 2.5 0.028 0.036 0.64 0.27 1.1 0.06 20 0.33 1080
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Fig. 3. Bikebot self-balancing at zero velocity using the gyro-balancer control. (a) Bikebot roll angle ϕb. (b) Gyro-balancer flywheel pivoting angle ϕw .
(c) The controlled turning torque τwx.
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Fig. 4. Phase portraits of the stationary bikebot self-balancing control. (a) Bikebot roll motion ϕ̇b vs. ϕb. The thick dashed line indicates the orbit Ob.
(b) Gyro-balancer flywheel motion ϕ̇w vs. ϕw . The thick dashed line indicates the orbit Ow . (c) The estimated domain of attraction D1 projected on
plane ϕb-ϕ̇b.

ground truth for the bicycle roll angle. The motion capturing
systems are synchronized with the onboard sensors through
the wireless network connections. For outdoor experiments,
the bicycle attitude angles are obtained by a high accuracy
bicycle IMU.

B. Autonomous stationary balancing experiments

We demonstrate the gyro-balancer-based control of the
stationary bikebot in experiments. Due to the page limit,
we will not present the balancing experiments under the
steering-based control. The gyro-balancer-based balancing
controller (19) was implemented with parameter b = 1 and
k2 = 1 and the bikebot was successfully balanced. Fig. 3
shows the experimental results. The bikebot roll angle is
shown in Fig. 3(a), the gyro-balancer flywheel pivoting angle
is shown in Fig. 3(b) and the generated gyroscopic balancing
torque is shown in Fig. 3(c). Clearly, the trajectories of the
bikebot roll angle and the pivoting angle converge to the
orbits and are finally synchronized in a periodic motion.
It is also clear that under the gyro-balancer control con-
straint (11), the bikebot can be balanced within a small range
(i.e., 2-3 degs.) around the vertical position.

The synchronized motion between the bikebot roll and
flywheel pivoting motions can be further observed from the
phase portraits shown in Fig. 4. Fig. 4(a) shows the phase
portrait of the bikebot roll motion, Fig. 4(b) of the flywheel
pivoting motion and Fig. 4(c) is the domain of attraction
estimation (24) projected on the roll motion plane. The
results shown in these plots confirm the design of the orbital
stabilization design and also demonstrate that the controlled
bikebot motion is within the DOA estimate.

C. Human-bikebot interaction experiments

To demonstrate the feasibility of the use of the bikebot to
perturb the human motor control and coordination, we also
conduct a set of human riding experiments. A young male
subject with experienced bicycle riding skills was recruited
to ride the bikebot in outdoor environment; see Fig. 1(b).
The subject was asked to ride the bikebot same as his regular
bicycle riding style. Both a straight-line riding (for a distance
of 50 m) and a circular riding (about a radius of 3 m) were
conducted in experiments. After the subject got used to ride
the bikebot comfortably, we turned on the gyro-balancer to
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perturb the riding and measured the rider’s responses to the
generated torque disturbances.

We first perturbed the riding by a single torque disturbance
suddenly applied without notifying the rider. Fig. 5 shows the
steering angle responses and the perturbed torques for both
the straight-line and circular bikebot riding experiments. It
is clearly shown in these plots that under a perturbation, the
rider uses the steering as a motor control strategy to keep
balancing the unstable platform. The responses also confirm
the “counter-steering” strategy (turning the steering toward
the same direction as falling trend), a bicycle-riding motor
skill that is obtained through training.
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−40
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Steering angle (deg)
Perturbed torque (Nm)
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Time (s)

Fig. 5. Steering angle and a single perturbed torque disturbance. Top:
along a straight-line trajectory. Bottom: along a circular trajectory.

To further demonstrate that riders use steering, rather than
other motor strategies such as upper body motions, as an
effective strategy in the straight-line and circular riding,
we conduct riding experiments under randomly generated
torques. We compare the riding responses in these perturbed
experiments with profiles obtained from normally riding
experiments without any disturbances. Fig. 6 shows the
comparison results of the rider-bikebot interactions under a
normal and a perturbed experiment. Fig. 6(a)-6(c) shows the
rider’s steering angle responses, bikebot roll angle, and the
rider applied torque in the roll angle direction for straight-
line riding and Fig. 6(d)-6(f) shows the profiles of the
same variables for circular riding experiments. The rider
responded to the random perturbation by actively turning
the handlebar and using steering to balance the platform in
experiments. This is clearly observed by the comparison with
normal riding behavior shown in Fig. 6(a) and 6(d). On the
other hand, neither of the comparisons of the bikebot roll
angle profiles shown in Fig. 6(b) and 6(e) nor rider applied
torques shown in Fig. 6(b) and 6(e) does clearly demonstrate
significant difference. These results and observations confirm
that the bikebot platform can be used to study dynamic
postural human motor skills.

VI. CONCLUSION AND FUTURE WORK

We reported the development of the bikebot for studying
human dynamic postural balance motor control. The bikebot

was modified from a bicycle platform to argument the rider’s
capability with actuated steering, driving and balancing capa-
bilities. This paper presented a dynamic model of the bikebot
with a gyro-balancer actuator. A self-balancing control was
designed to stabilize the riderless, underactuated stationary
bikebot on motion orbits. The stability and the stable regions
were also obtained through analysis. We demonstrated the
controller design and analysis through experiments. Riding
experiments were also presented to demonstrate the feasi-
bility to use the bikebot platform to study and tune human
dynamic postural control.

We currently work on using the bikebot to model human
dynamic postural balance and motor control skills. Devel-
opment of an integrated steering/gyro-balancer control and
its interactions with human motor control is another ongoing
task.
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APPENDIX I
PROOF OF PROPERTY 1

For a periodic profile x1(t+T ) = x1(t) for any t, x2(t) =
ẋ1(t) is also periodic with period T , i.e., x2(t+T ) = x2(t).
From (14), we obtain

px(t+ T ) − px(0) =
∫ t+T

0

mbghG sx1(τ) dτ.

Taking the difference of the above equation with (14), we
obtain

px(t+ T ) − px(t) =
∫ T

0

mbghG sx1(τ) dτ. (25)

Using the fact that both x1(t) and x2(t) are periodic func-
tions with period T and

∫ T

0
sx1(τ) dτ = 0, using (13), (25)

reduces to

[x3(t+ T ) − x3(t)] [Iwzωs + Iwxz(x3(t+ T ) + x3(t))] = 0.

Thus, x3(t + T ) = x3(t) and the flywheel’s pivoting angle
is periodic with period T . This completes the proof.
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