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Abstract— Control of underactuated balance robot requires
external subsystem trajectory tracking and internal unstable
subsystem balancing with limited control authority. We present
a learning-based control approach for underactuated balance
robots. The tracking and balancing control is designed the
controller in fast- and slow-time scales. In the slow-time scale,
model predictive control is adopted to plan desired internal
state profile to achieve external trajectory tracking task. The
internal state is then stabilized around the planned profile in
the fast-time scale. The control design is based on a learned
Gaussian process (GP) regression model without need of a
priori knowledge about the robot dynamics. The controller
also incorporates the GP model predicted variance to enhance
robustness to modeling errors. Experiments are presented using
a Furuta pendulum system.

I. INTRODUCTION

Underactuated mechanical systems are characterized as
fewer number of control inputs than the number of degree-
of-freedom (DOF) [1]. Underactuated balance system is
introduced in [2] as a class of underactuated system with
tasks of trajectory tracking for actuated subsystem and bal-
ancing unstable unactuated subsystem. Commonly studied
underactuated balance robots include cart-pole system [3],
Furuta pendulum [4]–[6], and autonomous bicycles [7] etc.
Bipedal walkers also belong to underactuated balance sys-
tems because the actuated joint angles are commanded to
follow desired trajectories to form certain gaits, while the
unactuated floating base should be kept stable [8], [9].

Control of underactuated balance robots faces challenges
of no analytical causal compensator for the non-minimum
phase systems [10]. An innovative control design of underac-
tuated balance robots is to take advantages of partition of the
external and internal subsystems. For example, in [2], a con-
cept of balance equilibrium manifold (BEM) is introduced
to characterize the desired profile of internal subsystem
and its dependency on tracking performance of external
subsystem. A simultaneous trajectory tracking and internal
balance control is then designed to stabilize the system
onto BEM. Similar design is applied to bicycle/motorcycle
applications in [7], [11]. A model-based control design is
reported in [3] for a cart-pole system in which a singular
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perturbation technique is employed to regulate the system
under uncertainties. Despite of the mathematical elegance,
these controllers require precise dynamics models.

Recently, machine learning-based controller design has
shown potential to save effort of understanding unmodeled
dynamics and achieving superior performance over physical
model-based control. Gaussian process (GP)-based learning
is used to create flexible nonlinear nonparametric mod-
els [12] and these models have been widely applied to
inverse dynamics control [13]–[16]. Gaussian process effec-
tively predicts differentiable and closed-form mean value and
covariance of output distribution, and this attractive property
enables its integration with optimization-based controllers
such as model predictive control (MPC) and reinforcement
learning control [17]–[22]. Compared to other learning ap-
proaches, such as artificial neural network and support vector
machine, GPs provide predictive covariance that can serve as
a quantitative evaluation of model uncertainty.

The goal of this paper is to use the GP-based learning
model to design a simultaneous tracking and balancing
control for underactuated balance robots. By transforming
the learned model into an external/internal convertible (EIC)
form [2], we take the singular perturbation approach to
design a feedback linearization control for the internal dy-
namics with a much faster converging rate than that of the
external dynamics [3]. An MPC method is then used to
design a trajectory tracking control of the external dynamics
to obtain the desired internal subsystem profiles. By doing so,
we reduce the computational demands for MPC design for
real-time applications. Since the robot model is learned from
experiment data with GPs, the proposed control approach
takes advantage of the predicted Gaussian distribution and
incorporates the model uncertainty into the design. The
presented method and analysis are demonstrated through
experiments on a Furuta pendulum. For high-DOF systems,
GPs are used to identify the dynamics of each dimension of
the system independently and the proposed design is readily
applied to these systems.

The presented work are different with those in [23]
for cart-pole system. First, the work in [23] assume prior
knowledge of the physical model, while we need no a priori
model information here. Second, the feedback controller
incorporates the uncertain levels from the learning model
and these properties are not considered in [23]. Compared
with the model-based singular perturbation design in [3],
we use GP-based control without need of robot’s model
knowledge. Unlike the learning model construction in [24]



where successful balance demonstrations are required, the
proposed approach takes unbalance excitation data for model
learning.

The contribution of this work lies in three aspects. First,
we extend the EIC form and the inversion-based BEM solver
in [2] to an MPC-based trajectory planner and a trajectory
stabilizer. The planning and control framework reduces the
MPC computational cost. Second, the proposed learning
model design is efficient and does not require successful
balance demonstration. Finally, the proposed design explic-
itly incorporates the GPs predicted model uncertainty to
enhance control robustness. This feature guarantees feasi-
bility of achieved tracking and balancing tasks under model
uncertainties.

The remainder of the paper is organized as follows. In
Section II, we overview the models and control of under-
actuated robotic systems. Section III presents the GP-based
control design. The experimental results of Furuta pendulum
are demonstrated in Section IV. Finally, we present the
concluding summary and discuss future work directions in
Section V.

II. UNDERACTUATED BALANCE ROBOT MODELS AND
CONTROL

Fig. 1 shows three examples of the underactuated balance
robots [23]. The Furuta pendulum (Fig 1(a)) has the actuated
base joint (i.e., θ) and the unactuated roll angle α. Similarly,
the bikebot (Fig. 1(b)) has the (actuated) vehicle position
and the (unactuated) platform roll angle [7], [25]. The 7-link
bipedal walker (Fig. 1(c)) has only six actuated joints and the
absolute angle of the upper body is unactuated [8], [9]. We
consider a general model and control for these underactuated
balance robots.
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Fig. 1. A few example of underactuated balance robotic systems. (a) Furuta
pendulum system. (b) Bikebot system. (c) Human bipedal walker.

A. Underactuated balance robot models

The underactuated balance robots can be modeled by
Lagrangian equations as follows.

D(q)q̈ +H(q, q̇) = B(q)u, (1)

where q ∈ R
m+n is the generalized coordinate of the

system, u ∈ R
m is the control input, D(q) is the mass

matrix, H(q, q̇) contains the centripetal, Coriolis and the
gravitational terms and B(q) is the input mapping matrix.
Furthermore, q = [θT

1 αT
1 ]

T is decomposed into actuated
generalized position θ1 ∈ R

m and unactuated generalized
position α1 ∈ R

n. Without loss of generality, it is assumed
that m ≥ n. We define generalized velocities θ2 = θ̇1

and α2 = α̇1 so that q̇ = [θT
2 αT

2 ]
T . Equation (1) is then

partitioned into actuated and unactuated subsystems as

D(q)

[
θ̇2

α̇2

]
+

[
H1(q, q̇)
H2(q, q̇)

]
=

[
B1(q)
0n×m

]
u, (2)

where B1(q) ∈ R
m×m has full rank. By inverting the mass

matrix D(q) in (2), we obtain[
θ̇2

α̇2

]
= D−1(q)

[
B1(q)u−H1(q, q̇)

−H2(q, q̇)

]
. (3)

A general state-space representation of (3) is formulated as{
Σe : θ̇1 = θ2, θ̇2 = fθ(θ,α,u),

Σi : α̇1 = α2, α̇2 = fα(θ,α,u),
(4)

where θ = [θT
1 θT

2 ]
T , α = [αT

1 αT
2 ]

T , and f θ(·) and
fα(·) are nonlinear vector functions. The goal of the control
system is to allow the external subsystem Σe to track desired
trajectory θd = [θT

d1 θ
T
d2]

T , θd2 = θ̇d1, while the internal
unstable subsystem Σi to be kept balanced.

In (4), the external subsystem Σe and internal subsystem
Σi are coupled and considered dual relationship [2]. For
example, letting

v = fα(θ,α,u), (5)

dynamics Σi is feedback linearized as α̇2 = v. Because
v ∈ R

n and u ∈ R
m, only a subspace of u is obtained by

inverting (5). Letting u = [uT
d uT

f ]
T , ud ∈ R

n and uf ∈
R

m−n, ud is obtained by the inverse dynamics model

ud = f−1
α (θ,α,v,uf ), (6)

while uf is freely designed. System (4) under (6) becomes{
Σe : θ̇1 = θ2, θ̇2 = fθ (θ,α,u(v,uf )) ,

Σi : α̇1 = α2, α̇2 = v.
(7)

In (7), Σi is directly controlled by v and not affected by Σe,
while Σe is affected by both inputs uf and v.

Temporarily ignoring the tracking task of θ for Σe, we
design a proportional-differential (PD) controller to force α
to converge to desired trajectory αd = [αT

d1 α
T
d2]

T , αd2 =
α̇d1,

vpd = α̇d2 − kd
ε
eα2 − kp

ε2
eα1, (8)

where errors eα1 = α1 − αd1, eα2 = α2 − αd2, eα =
[eTα1 e

T
α2]

T , ε > 0 is a small constant, and kp, kd > 0 are
constant gains. To enforce the tracking task for Σe, we design
the desired trajectory αd(θd, θ) to be dependent on (θd, θ)
such that θ → θd. Balance equilibrium manifold (BEM)
is introduced in [2] to capture such dependency. BEM is
defined as E = {αd = α0

d : α0
d1 = αd1(θd, θ),α

0
d2 = 0}

from inverting implicit function

f θ(θ,α
0
d) = θ̇d2 − kdeθ2 − kpeθ1, (9)



where errors eθ1 = θ1 − θd1, eθ2 = θ2 − θd2, and eθ =
[eTθ1 e

T
θ2]

T .
Inverting (9) suffers accuracy issue for a learned model

of fθ [23]. We instead take an MPC approach to solve
α0

d and obtain E under tracking design of θd. We do not
directly apply MPC to (7) to solve v because in that case
the controlled Σi might not be stable. We take a singular
perturbation approach.

B. Decoupled dynamics with singular perturbation

Applying controller (8) to (7), the error dynamics then
become{

θ̇1 = θ2, θ̇2 = fθ(θ,αd + eα,u(vpd,uf ))

ėα1 = eα2, ėα2 = −kp

ε2 eα1 − kd

ε eα2.
(10)

As ε goes to 0, both eα1 and eα2 converge to zero expo-
nentially with a rate of − 1

ε . The θ dynamics is slow, while
eα dynamics is referred as fast one. It can be shown that
θ(t, ε) − θ̂(t) = O(ε) or equivalently ||θ(t, ε) − θ̂(t)|| ≤
k|ε| [26], where θ̂(t) = [θ̂1(t)

T θ̂2(t)
T ]T is the solution of

˙̂
θ1 = θ̂2, ˙̂

θ2 = fθ(θ̂,αd,u(α̇d2,uf )).
Since estimating θ̂ takes much less computational effort

than obtaining θ by (10), we formulate the MPC problem
for θ̂ to follow θd, for which (7) is considered as

˙̂
θ1 = θ̂2,

˙̂
θ2 = fθ(θ̂, α̂,u(ŵ,uf )), ˙̂α1 = α̂2, ˙̂α2 = ŵ (11)

with α̂1 = αd1, α̂2 = αd2, and ŵ = α̇d2. The design
variable of the MPC problem is the input trajectory ŵ, uf

and the initial values α̂1(0) and α̂2(0). Although the form
of (11) is the same as (7), α̂(0) in (11) is a design variable
that needs to be optimized, while α(0) in (7) is measured.

III. GP-BASED PLANNING AND CONTROL

A. GP-based model estimation

Controller (6) and dynamics (7) require information about
fθ and f−1

α . In order to use a zero-mean Gaussian distribu-
tion in model estimation, we re-write model (7) as{

θ̇1 = θ2, θ̇2 = f θ(θ,α,ud,uf )

α̇1 = α2, α̇2 + κα(θ,α, α̇2,uf ) = ud,
(12)

where fθ and κα are unknown functions that need to be
estimated. One benefit of writing the model into (12) is
that the inverse dynamics controller becomes ud = v +
κα(θ,α,v,uf ) with v specified in (8). By doing so, the
estimate of κα is obtained by zero-mean GP such that if the
application data are far away from the training data inputs,
the inverse dynamics control still stabilizes α by (8). By (12),
the learning model is formulated as{

θ̇1 = θ2, θ̇2 ∼ gpθ(θ,α, α̇2,uf ),

α̇1 = α2, ud − α̇2 ∼ gpα(θ,α, α̇2,uf ),
(13)

where gpθ and gpα are the GP distributions to estimate
fθ and κα, respectively. To train these GP distributions, the
inputs are tuple {θ,α, α̇2,uf} and the outputs are θ̇2 and

ud−α̇2. For each output, an individual GP model is built and
the GP models for different outputs are assumed independent.

With (13), the control input ud is obtained as

ud ∼ v + gpα(θ,α,v,uf ), (14)

where gpα(θ,α,v,uf ) ∼ N (μα,Σα) is predictive Gaus-
sian distribution, μα and Σα

1 are input dependent and
computed from (26) in Appendix. Input v is the inverse
dynamics control for α̇2 as

v = ŵ − kd(α2 − α̂2(0))− kp(α1 − α̂1(0)), (15)

{ŵ, α̂1(0), α̂2(0)} are solution from the MPC design that
will be discussed later in this section. By (14), ud ∼
N (μd,Σd) is Gaussian distribution with μd = v + μα and
Σd = Σα. The mean value μd is used as the control input.

Under (14), we briefly show that the subsystem Σi is
stabilized to α̂. Plugging (14) into (12), the closed-loop
dynamics become

α̇1 = α2, α̇2 = v + μα − κα(θ,α, α̇2,uf ).

The error dynamics are then obtained as

ėα = Aeα +B[μα − κα(θ,α, α̇2,uf )], (16)

where

A =

[
0 In

−Kp −Kd

]
, B =

[
0
In

]
, (17)

matrices Kp and Kd are properly chosen such that A
is Hurwitz. It is assumed that the predicted GP mean
value is close to the unknown underlying function, that is,
μα − κα(θ,α, α̇2,uf ) is close to zero, and therefore, the
stabilization is obtained. More details can be found in [27].

B. MPC-based trajectory planning

With controller (14), we still need to determine the desired
trajectories α̂ and ŵ for Σi. We use MPC to find these
trajectories. The learned model (13) with controller (14) is in
the same form as (10) except that the deterministic function
fθ is replaced by gpθ, namely,

θ̇1 = θ2, θ̇2 ∼ gpθ(θ, α̂+ eα, ŵ + ė2,uf ). (18)

In the above equations, we use α = α̂ + eα to replace
α and α̇2 = ŵ + ė2 to replace α̇

α2 in gpθ. By singular
perturbation theory, assuming eα converges to zero rapidly,
similar to (11), we obtain the reduced system dynamics as

˙̂
θ1 = θ̂2,

˙̂
θ2 ∼ gpθ(θ̂, α̂, ŵ,uf ), ˙̂α1 = α̂2, ˙̂α2 = ŵ.

For presentation convenience, we use discrete-time format of
the above dynamics for MPC design as follows 2.{

Δθ̂1(k) = θ̂2(k)Δt, Δθ̂2(k) ∼ θ̂2(k) + gpθΔt,

Δα̂1(k) = α̂2(k)Δt, Δα̂2(k) = ŵ(k)Δt,
(19)

1We here drop their dependency on (θ,α,v,uf ) for presentation
convenience.

2For notation clarity, we drop all arguments for GP model gpθ .



where Δθ̂i(k) = θ̂i(k+1)− θ̂i(k), Δα̂i(k) = α̂i(k+1)−
α̂i(k), i = 1, 2, k ∈ N, and Δt is the sampling period.

At the kth step, we use θ̂(k + i|k), i = 0, . . . , H + 1, to
denote the predicted θ at the (k + i)th step, H ∈ N is the
prediction horizon, and θ̂(k|k) = θ̂(k). Using (19), we have

θ̂(k + i+ 1|k) ∼ F θ̂(k + i|k) +Ggpθ, (20)

where matrices

F =

[
Im ΔtIm

0m Im

]
,G =

[
0m

ΔtIm

]
.

θ̂(k+i+1|k) generally does not satisfy Gaussian distribution
even if θ̂(k + i|k) is Gaussian. To make this prediction
manageable, we adopt the linearization of the posterior GP
mean function [19] and an approximation of θ̂(k + i+ 1|k)
is a Gaussian distribution with the following mean and
covariance.{
μθ̂(k + i+ 1|k) = Fμθ̂(k + i|k) +Gμgpθ

,

Σθ̂(k + i+ 1|k) = FΣθ̂(k + i|k)F T +G∂Σθ̂G
T ,

(21)

where μgpθ
and Σgpθ

are the mean value and covari-

ance functions of gpθ, respectively, ∂Σθ̂ =
∂μgpθ

∂θ Σθ̂(k +

i|k)∂μ
T
gpθ

∂θ +Σgpθ
. Note that Σgpθ

= Σgpθ
(μθ̂(k+i|k), α̂(k+

i|k), ŵ(k + i),uf (k + i)) is input dependent.
For the entire system specified by (16) and (18), the

objective function is designed as

J̄k
θ̂,Ŵ

=

H∑
i=0

[
E‖êθ(k + i)‖2Q1

+ ‖ŵ(k + i)‖2R + ‖α̂(k)‖2Q2
+

‖uf (k + i)‖2R
]
+ E‖êθ(k +H + 1)‖2Qe

, (22)

where ê(k + i) = θ̂(k + i|k) − θd(k + i), matrices Qi,
i = 1, 2, 3, R are positive definite and norm of a vector e
is defined as ‖e‖2Qi

= eTQie. The MPC input variable is
Ŵ = {α̂(k), ŵ(k + i),uf (k + i), i = 0, . . . , H}. We take
expectation operator in (22) because we approximate θ(k+i)
by the probabilistic variable θ̂(k + i|k) from (21).

The fact that the reduced dynamics (21) is used to predict
the future trajectory gives computational benefit. To include
the tracking performance for Σi, we modify the objective
function to be

Jk
θ̂,Ŵ ,α

= J̄k
θ̂,Ŵ

+ ρ‖Σd(k)‖, (23)

where Σd(k) is the covariance of the predictive distribu-
tion (14) at the kth step and ρ > 0 is a weighting factor. The
rationale to include Σd in the cost function is to incorporate
the inverse dynamics model uncertainty in the MPC planning
phase. We will demonstrate the results in Section IV.

The optimal control input by the MPC design is

Ŵ
0
(k) = argminŴ (k) J

k
θ̂,Ŵ ,α

. (24)

The optimization is formulated as an unconstrained MPC and
solved with a gradient decent method. The optimal control
input Ŵ

0
(k) is used in the inverse dynamics controller (15).

Fig. 2 summarizes the structure of the GP-based planning

and control design. In each sampling period, the trajectory
planner solves the MPC problem (24) with model (21). It
also incorporates the predictive variance Σd of the inverse
dynamics model. The MPC outcome is the planned internal
trajectory Ŵ

0
. The inverse dynamics controller in (14)

and (15) then uses profile Ŵ
0

for input μd.

Fig. 2. The structure of the GP-based planning and control design.

IV. EXPERIMENTS

Fig. 1(a) shows the Furuta pendulum that is used for
experiments. The hardware system is provided by Quanser
Consulting Inc. 3 The data collection and control systems
are implemented through Matlab Simulink. The real-time
controller is run on a laptop computer with Intel Core i7-
2620M dual-core processor 2.7GHz. The rotary base angle
θ is actuated and the pendulum angle α is unactuated. Angle
α is defined as zero when the pendulum is vertically upright.
The motor voltage Vm is the control input and the control
goal is to balance the pendulum while angle θ must follow
a given trajectory θd.

The Furuta pendulum dynamics are captured by model (4)
whose detailed expression is refer to [4]–[6]. It is straight-
forward to obtain that θ1 = θ, θ2 = θ̇, m = 1 for external
dynamics Σe, α1 = α, α2 = α̇, n = 1 for internal dynamics
Σi and ud = Vm. To obtain the learned model, we perturb the
system and collect the motion data under open-loop control
input

Vm =

{
a1 sin(ω1t) + a2 sin(ω2t) , |α| ≤ π

3 ,

0 , |α| > π
3 ,

(25)

where a1 and a2 are chosen to satisfy the voltage limit
|Vm| ≤ 5 V, and ω1 and ω2 are chosen to excite the system
at both low and high frequencies. In experiment, we choose
a1 = 3, a2 = 1.5, ω1 = 8 rad/sec and ω2 = 40 rad/sec.
Under this input, we manually give the pendulum an initial
velocity when |α| ≥ π

2 . The open-loop controller (25) cannot
stabilize the pendulum to stay around upright position. We
swing up the pendulum repeatedly to obtain enough data for
training the model. Control input Vm and motion data are
recorded when |α| ≤ π

3 . The joint angles (θ, α) are measured
with encoders, velocities (θ̇, α̇) and accelerations (θ̈, α̈) are
obtained by numerically differentiating joint angles with low
pass filters. The control and data collection are implemented

3http://www.quanser.com.
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Fig. 3. Control performance comparison between the proposed learned model-based design and the EIC-based controller. (a) External angle θ tracking
profiles. (b) Internal angle α tracking profiles. (c) External angle tracking errors eθ . (d) Internal angle tracking errors eα.

at 100 Hz. The proposed controller is implemented with
sampling period Δt = 20 ms. In (22), the parameters values
are chosen as H = 27, weight matrices Q1 = Qe =
diag(1000, 100), Q2 = diag(100, 100) and R = 10 and
ρ = 1 are chosen for (23).

Fig. 3 shows the control performance under the proposed
design. We collect 800 training data points (8 s experiment
run) in the training data set. In the testing experiments, the
desired external trajectory was designed as θd = 0.6 sin(t)+
0.4 sin(4t) rad. The training data is collected from unsuc-
cessful balance experiments. Fig. 3(a) shows the tracking
performance of external subsystem angle θ and Fig. 3(b) for
internal subsystem angle α. For comparison purpose, we also
include the physical model-based EIC control performance
in [2]. Figs. 3(c) and 3(d) further compare the tracking
errors eθ and eα under these two controllers. It is clear
from these results that the learning-based control design
effectively captures the underactuated balance robotic dy-
namics and both the external tracking and internal balancing
tasks are satisfactory. The performance under the learning-
based design outperforms that with the physical model-based
controller.

To understand the influence of training data set on the

control performance, we vary the number of the training data
set from 200 to 800 points to obtain different learned models.
These models are used to track the same trajectory θd(t)
as mentioned above. Fig. 4(a) shows the error distribution
contours under different numbers of training data set for
learning control and the EIC-based control design. For each
learned model, the figure includes the tracking errors of a
90 s motion duration. The results clearly imply that with
only 200 training data, the controller achieves the balancing
and tracking tasks with large errors. With the increasing
training data sets, the magnitudes of both the balancing
and tracking errors decrease. With a set of 800 training
data points, the learned model-based controller achieves
superior performance than that under the analytical model-
based controller.

The trade-off between the tracking and balancing perfor-
mance is tuned by the choice of ρ value in the MPC objective
function (23). Experiments are conducted to show the perfor-
mance with the same learned model (obtained by using 200
training data points) under different values of ρ. Fig. 4(b)
shows the performance of the tracking and balancing errors
with different ρ values. We intentionally chose an inaccurate
learned model and therefore, the value of ‖Σd‖ in (23) is
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Fig. 4. (a) Comparison results of the internal balance error ‖eα‖ and external tracking error ‖eθ‖ under the learning model-based control by various
training data points and the EIC-based control (with physical model). (b) Comparison of the balance and tracking errors ‖eθ‖ and ‖eα‖ under different
values of the weight factor ρ.

relatively large. When ρ = 0, the balancing performance is
not robust due to the poor inverse dynamics model. With
ρ = 10, the system achieves a balanced trade-off between
balancing and tracking tasks. With a further increased ρ
value (i.e., ρ = 40, 60), the tracking performance becomes
worse, and when ρ > 80 the controller fails to balance
the pendulum. The averages of the variance of the inverse
dynamics model for 60 s trials are 0.255, 0.174, 0.108 and
0.108 for ρ = 0, 10, 40, 60, respectively. The results clearly
show that with increased ρ values, the magnitude of Σd

decreases. This confirms that the integration of ‖Σd‖ in the
objective function helps the performance improvements.

V. CONCLUSION AND FUTURE WORK

We presented a learning model-based control design for
underactuated balance robots. Besides non-minimum phase
and unstable internal dynamics, one control challenge of
underactuated balance robots is dependency of the equilibria
on output trajectory. The proposed control system integrated
a trajectory planner and feedback stabilization design. The
trajectory planner used an MPC design to optimize the de-
sired internal state profile and an inverse dynamics controller
then stabilized the system around the planned profile. The
control system was built on a GP learning model with
no need of a priori knowledge about robot dynamics or
successful balance training demonstration. The controller
also incorporated the predictive model uncertainties into the
online optimization process to enhance the performance. The
design and analysis were demonstrated by Furuta pendulum
experiments.

The proposed control system is readily applicable to a
broad class of underactuated balance robots. Currently, we
are implementing the control design to a bikebot system [28].
Performance improvement is also among the future research
directions.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Pengcheng Wang
of Rutgers University for his help and support for various

constructive discussions. They are also grateful for anony-
mous reviewers for their helpful comments and suggestions
to improve the quality of the paper.

APPENDIX

Suppose that the training data set contains n input-output
data pairs D = {(xi, yi)|i = 1, . . . , n}. The observation yi
is a noisy underlying output with zero mean Gaussian noise
ε, i.e., yi = f(xi) + ε. The variance of ε is σ2

n.
The testing data set contains m input {(x∗

i )|i = 1, . . . ,m}
for which the output f∗

i needs to be predicted. The joint
distribution of the training outputs y and the test outputs f∗

is [
y
f∗

]
∼ N

(
0,

[
KX,X + σ2

nI KX,X∗

KX∗,X KX∗,X∗

])
,

where KX,X∗ is the n × m matrix composed by the
covariance function, that is, KX,X∗(i, j) = k(xi,x

∗
j ) and

KX,X , KX∗,X and KX∗,X∗ are defined similarly. The
probabilistic prediction of f∗ is given by the conditional
distribution f∗|X,y, X∗ ∼ N (f̄

∗
,Σf∗)

f̄
∗
= E[f∗|X,y, X∗] = KX∗,X [KX,X + σ2

nI]
−1y

Σf∗ = KX∗,X∗ −KX∗,X [KX,X + σ2
nI]

−1KX,X∗ .
(26)

GP model captures dynamical systems ẋ = f (x,u) + ε,
x ∈ R

ns and u ∈ R
nin , by modeling each dimension

independently. The input for the regression is [xT uT ]T

while the output is ẋ.
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