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Abstract— Robot localization using subsurface features cap-
tured by Ground-Penetrating Radar (GPR) complements and
improves robustness over existing common sensor modalities,
as subsurface features are less sensitive to weather, season and
surface scene changes. Here, we propose a novel subsurface
feature-based localization method that uses only GPR mea-
surements with a known subsurface map. An efficient feature
descriptor, the dominant energy curve (DEC), is designed to
identify different locations in cluttered conditions. Specifically,
image processing techniques that involve background segmen-
tation, energy point detection, and energy curve refinement are
designed to extract DEC features from a 2D radargram. With
DECs features obtained, a metric subsurface feature map is
constructed. Finally, we perform robot localization by feature
matching under a particle swarm optimization framework.
We have implemented our method and tested it with the
public CMU-GPR dataset. The results show that our algorithm
improves accuracy and robustness with real-time performance
for robot localization tasks. Specifically, the mean localization
error is 0.50 m for all cases.

I. INTRODUCTION

Robot localization in a Global Positioning System (GPS)-
denied environment remains a challenging problem in the
field of robotics. Most existing methods rely on sensors
such as camera, lidar, or automotive radar. These approaches
extract features from the signals reflected from objects in the
environment to compute the robot location. However, such
appearance-based approaches often face severe challenges
under season changes, surface scene changes, or inclement
weather conditions such as dense fog, rainstorm, heavy snow,
or sandstorm.

In contrast, subsurface objects/features are relatively con-
stant and less likely to be affected by the aforementioned
conditions. As a primary sensor for the subsurface scan,
Ground-Penetrating Radar (GPR) has been widely adopted
in archaeology, landmine identification, utility pipe localiza-
tion, and concrete inspection. Recently, GPR has also been
employed in robot localization. However, current approaches
perform localization by matching the current raw GPR
readings or simple features with the constructed maps by
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Fig. 1. Illustration of our subsurface feature based localization problem.
Blue pipeline is the localization pipeline and black pipeline is the mapping
pipeline that builds the prior map for localization.

applying deep learning techniques, leading to problems in
reliability and interpretability of subsurface features.

Here we propose a novel feature-based subsurface local-
ization method as illustrated in Fig. 1. An efficient feature
descriptor, named as the Dominant Energy Curve (DEC),
is designed to identify different locations in cluttered con-
ditions. Using DEC features, we construct the subsurface
map and adopt the particle swarm optimization algorithm to
estimate the robot position by matching the actual observa-
tions and the constructed map. We have implemented our
method and tested it on the public CMU-GPR dataset. The
results show that our algorithm improves both accuracy and
robustness with real-time performance for robot localization
tasks. Specifically, the mean localization error is 0.50 m for
all cases.

II. RELATED WORKS

The most related works are from GPR in robotic applica-
tions, subsurface reconstruction and mapping, and localiza-
tion and mapping with GPR.

Most GPR usage in robotics is for non-destructive evalu-
ation applications, including bridge deck inspection [1], [2],
utility detection [3], [4], airport runway inspection [5], [6],
and planetary exploration [7], [8]. In these applications, GPR
is used as a sensor to search for and recognize specific
subsurface objects or features. Subsurface reconstruction and
mapping is another typical GPR application with robots,
where the robot is equipped with a GPR to scan an area
of interest for the construction of a subsurface map [9]–[11].
However, these works do not attempt to localize robot using
the generated map.

Using GPR in robotic localization and mapping has re-
ceived more attention recently from robotics researchers.
Early work in robot localization based on GPR is reported in
[12], where a localization GPR (LGPR) module is introduced



as a GPR mounted on a ground vehicle that can localize itself
with a prior map. In this method, a grid map consisting of a
set of rectangular 3D GPR raw signals with location labels is
created in advance and then the current GPR observations are
registered in the grid map to find the global position of GPR.
This work is further extended to autonomous navigation in
variable weather conditions using the same LGPR module
[13]. The main issue of the LGPR method is that the raw
GPR data are used as features for mapping, and hence the
method is sensitive to the varying dielectric properties of the
medium during mapping/localization. Therefore, localization
and mapping may lack consistence and robustness in long-
term applications. Furthermore, the LGPR method needs
initial access to GPS signals during operation.

Instead of localizing the GPR on a prior map, Baikovitz
et al. propose a GPR-based odometry [14] which models the
localization problem as an inference on a factor graph. A key
idea of this method is to learn relative sensor models directly
from GPR data that map non-sequential GPR image pairs
to relative robot motion. They also present an open source
GPR dataset, the CMU-GPR dataset [15], for research in
subsurface-aided perception for robot navigation, and have
tested their method on the CMU-GPR dataset. However, the
performance of their proposed method relies on the quality
of the learned sensor model, which is sensitive to working
conditions and the accuracy of manually labeled training data
sets. Furthermore, it is labor intensive and cost prohibitive
to obtain representative GPR data for training, especially in
real-world applications.

Therefore, extracting stable features from GPR data to
perform mapping and localization is a reasonable choice.
However, this task is quite challenging, as GPR data often
have significant signal clutters. Skartados et al. [16] propose
a feature-based GPR self-localization method by isolating
spatiotemporal salient regions on consecutive GPR traces.
The work assumes a simulated GPR model with subsurface
utility pipeline priors. However, neither the GPR model nor
the requirement for the presence of subsurface pipelines are
easily met in general applications.

Our group has experience in GPR-based robotic inspection
and mapping for years. We have adopted GPR in airport
runway inspection [5], [6], utility pipeline reconstruction [17]
and subsurface mapping [11]. These works lay the foundation
for understanding GPR to develop this work where we
propose a novel GPR feature descriptor for more efficient
subsurface representation and robust robot localization.

III. PROBLEM FORMULATION

A. Working Principles of a GPR

For completeness, let us review the working principles of
a GPR [17]. GPR has a transmitter (TX) to transmit radar
signals and a receiver (RX) to receive radar signals. Reflec-
tion occurs when a radio pulse travels to where dielectric
permittivity varies and a reflection of the pulse is received by
RX, and according to the traveling time between the emitted
radio pulses and the echoed pulses, the processor in GPR
generates an A-scan that records the signal amplitude versus
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Fig. 2. A simplified visualization of GPR working principle.

traveling time at this GPR position (see Fig. 2(a)). At the
top of Fig. 2(b), a GPR travels from point A to B and a
ball-shaped object is buried under point p. When the GPR
is located at the point p, as shown at the top of Fig. 2(a),
a transmitted radio pulse (TX) has two peak reflections, one
from the ground reflection and the other from the buried
object. The resulting A scan signal is shown at the bottom
of Fig. 2(a), the upper peak represents the reflection from
the ground and the lower peak represents the reflection from
the object. When the GPR travels from A to B, the antenna
transmits a series of pulses at different positions, which leads
to a series of A-scan signals. A B-scan is defined as the
sequence of A-scan signals in chronological order, and a
sample B-scan is shown at the bottom of Fig. 2(b). The
different reflection peaks position of the object represents
different distances of the GPR from the object.

B. Scenarios and Assumptions

Before the localization, we perform an exhaustive pre-
scaning process that covers the entire environment to gen-
erate a prior map which is illustrated as the black pipeline
in Fig. 1. The GPS locations and the corresponding radar
feature maps, the format of which will be explained later,
are stored in this prior map.

The localization process is to register the current GPR
readings with the prior map to find the robot location. To
reduce the cost, we employ a single-channel GPR. Since we
are interested in re-localization with subsurface information
matching, we assume that the trajectories of robot between
mapping and localization are not far away from each other
to ensure the existence of similar subsurface features. The
similar trajectory location assumption can be easily achieved
when the robots/autonomous vehicle moves along the lane
and the pre-scann mapping process is sufficiently dense.

C. Notations and Problem Definition

To describe our problem, we define the following nota-
tions.

• {G}: A 3D GPR ego-centric world coordinate system
defined by the initial position of the GPR, with Y − Z
representing the horizontal ground plane, Y pointing to
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the motion direction of the GPR, and X pointing to the
downward direction.

• Pt ∈ {G}, a 3D coordinate for the GPR position at
time t. This is the current time at the localization step.

• W and L are the maximum width index and the
maximum depth index of a B-scan image, respectively.
Note that L is also the maximum depth index of the A-
scans. They can be understood as the width and height
of the B-scan image.

• A = {ax|x = 1, 2, 3, . . . , L}, A-scan signal obtained
by GPR. x is the depth index of the signal value in A.

• Bt(x, y) = {ax|ax ∈ Ay, and y = 1, 2, 3, . . . ,W}
is x-th signal values in the y-th A scans Ay at time
t. Therefore, it forms an image indexed by (x, y) at
time t, 1 ≤ x ≤ L is the depth range of each Ay , and
1 ≤ y ≤W is the horizontal position index range along
the GPR motion trajectory.

• Ft, DEC feature extracted from Bt(x, y) and will be
explained in detail later.

• M = {(Fj ,Pj)|j = 1, 2, 3, . . . , N}, the prior map
constructed as the j-th set of DEC features Fj and the
corresponding 3D GPR positions Pj ∈ {G} where Fj

contain DEC feature just like Ft.
With the notations above, we define our problem as

follows.
Definition 1: With a subsurface feature map M built.

Given Bt(x, y), extract DEC features Ft from Bt(x, y) and
perform feature matching with M to find robot location Pt.

IV. ALGORITHM

We will begin with the introduction of the new DEC
feature descriptor design. After DEC features are extracted
from the current B scan, they will be matched with the prior
subsurface feature map to localize the robot.

A. Feature Extraction

Since a GPR does not directly provide 3D positions for
the scanned objects but a set of cluttered radar reflections
(B-scan images), the feature extraction from GPR data is a
new challenging problem. Thus, we design a novel feature
descriptor, named as the Dominant Energy Curve (DEC), to
efficiently extract features from noisy GPR B-scan images.
DEC describes the variation of the positions of the energy
centers in a B-scan image which corresponds to the most
dominant signal reflection. As shown in Fig. 3, DEC features
can be extracted using the following three steps.

(a) (b) (c)

(d) (e) (f)

Fig. 4. The intermediate results generated in algorithm. Grayscale is used
to represent signal strength in (a)-(d). Brighter color means stronger signal.
All images are using the same B-scan coordinate as Bt(x, y).

1) B-scan Segmentation: A B-scan image consists of a
series of consecutive A-scans. From the original B-scan im-
age (see Fig. 4(a)), it is hard to identify the dominant energy
position variation due to many other noisy reflections in the
background. Our goal is to suppress the noisy background
reflections and focus on salient ones.

Frequency Domain Decomposition: We map a B-scan
image to a two-dimensional frequency domain, which can be
seen as a superposition of a series of plane waves. A single
plane wave is determined by a normal vector −→n , the length
of −→n , the amplitude and phase of the wave. Among them,
low-frequency waves make up outlines and high-frequency
waves make up details. The Fourier transform is adopted to
achieve this process,

F (u, v) =

L−1∑
x=0

W−1∑
y=0

Bt(x, y)e
−j2π(ux

L + vy
W ) (1)

where F (u, v) is the frequency domain graph shown in
Fig. 4(b), (u, v) is the coordinate in the frequency domain
graph and also the parameter to determine a plane wave.

Detail preservation: The high-frequency waves are at the
edge of the frequency domain while the low-frequency waves
are at the center, and those high-frequency waves form parts
in which the grayscale value changes significantly. To better
focus on the change in dominant energy positions of the B
scan, it is necessary to remove the low-frequency fluctuations
and keep the high-frequency detail information. A Gaussian
high-pass filter is used,

H(u, v) = 1− e−D(u,v)2/2D2
0 , (2)

where D(u, v) is the l2 distance from point (u, v) to the
center point coordinate (W2 ,

L
2 ), D0 is the radius of the



Gaussian high-pass filter which is a constant. H(u, v) is the
Gaussian high-pass filter and shown in Fig. 4(c).

The dot product between F (u, v) and H(u, v) is a new
two-frequency domain with the low-frequency signal re-
moved,

G(u, v) = F (u, v) ·H(u, v). (3)

Restoring: Recombine these high-frequency plane waves
into a new B-scan image with only details, and apply the
inverse Fourier transform on G(u, v),

B′
t(x, y) =

1

WL

L−1∑
u=0

W−1∑
v=0

G(u, v)e−j2π(ux
L + vy

W ), (4)

where B′
t(x, y) is the new B-scan image block with only high

frequency details. B′
t(x, y) is shown in Fig. 4(d). Compared

to Fig. 4(a), many scattered reflection signals are reduced in
Fig. 4(d) and texture of energy changes are clearly shown.
With the B scan segmentation step completed, we are ready
to extract the energy position from B′

t(x, y).
2) Energy Position Extraction: B′

t(x, y) is composed of
a series of new A-scan A′

y that keeps peaks and suppresses
low amplitude and low frequency fluctuations,

A′
y(x) = B′

t(x, y), ∀x, y. (5)

Binary Processing: For each filtered A-scan signal A′
y ,

the prominent peak positions indicate significant reflections
occurring when the electromagnetic wave encounters objects
or interfaces where the dielectric constant varies. To enhance
those prominent reflections, we perform binary processing on
A′

y . The threshold ty is,

ty =

∑m
x=1A

′
y(x)

m
, (6)

where m is the length of the signal, A′
y(x) is the value of

the signal at position x.
The amplitude of an electromagnetic wave decreases when

it spreads deeper into the ground and the reflections at deep
layers are weak. As a result, to better extract features deep
under the ground, each A-scan signal A′

y is evenly divided
into shallow and deep parts and will be processed separately:
the signals in the upper half are named shallow signal and
those in the lower half are named deep signal.

A′
y = {A′

shallow, A
′
deep}. (7)

Calculate thresholds tshallow
y and tdeep

y for A′
shallow and A′

deep with
the adaptive threshold in (6), respectively. Use these two
thresholds to transform A′

shallow and A′
deep into binary signals

bshallow
y and bdeep

y with a high value of 255 if the element
value of the A scan sub-sequence is above the corresponding
threshold or a low value of 0 otherwise, respectively.

Energy Center Calculation: Now let us calculate energy
center positions pshallow

y and pdeep
y for shallow and deep layers,

respectively, set pshallow
y as an example, with

pshallow
y =

∑q
k=1 x

shallow
k

q
, (8)

where q is the number of the positions where signal value in
bshallow
y is 255. xshallow

k is the position where the signal value in
bshallow
y is 255. Similarly, the result pdeep

y can be obtained. When
performing the above operations on all A′

y in B′
t(x, y), we

can obtain two curves Dshallow
t and Ddeep

t ,

Dshallow
t = {pshallow

y |i = 1, 2, 3, . . . ,W}, (9)

Ddeep
t = {pdeep

y |i = 1, 2, 3, . . . ,W}. (10)

Dshallow
t and Ddeep

t represent changes in energy positions in
the shallow and deep layers of the B-scan image Bt(x, y),
respectively. To obtain reliable features, it is necessary to
proceed with the refinement step.

3) Energy Curve Refinement: It is inevitable that there is
a small amount of high-frequency noise left, which can lead
to false peaks. False peaks will significantly interfere with
the feature matching process. To remove these false peaks,
Continuous Wavelet Transform (CWT) is used to decompose
signals into a combination of wavelets with different time and
scale parameters. Discrete Wavelet Transform (DWT) [18] is
to discrete the parameters in CWT, use Dshallow

t as an example,

T (a, b) =
1√
a

∫ +∞

−∞
Dshallow

t (n)ψ(
n− b

a
)dn (11)

where, T (a, b) is the time-frequency domain, a is a scale
parameter and b is the time parameter, ψ(n−b

a ) is the wavelet
function used in DWT.

After the transformation, recombine the low-frequency
wavelets in T (a, b) into a new signal that is shallow DEC
and defined as Fshallow

t . Similarly, apply DWT on Ddeep
t to get

Fdeep
t . Finally, the resulting Ft is obtained as,

Ft = {Fshallow
t ,Fdeep

t }, (12)

where Ft is the feature of Bt(x, y). Samples of Fshallow
t and

Fdeep
t are shown in Figs. 4(e) and 4(f), respectively.

B. Prior Subsurface Mapping

As we mentioned before, our localization method depends
on prior mapping which is the process is constructing the
subsurface map M. M is a combination of Euclidean 3D
positions of the robot when receiving A-scans and DECs.
After the robot travels along the entire mapping trajectory, it
generates a long B-scan image. Slice the long B-scan image
according to the width of W and get B scan image segments.
Each B-scan image feature extracted from feature extraction
is composed of shallow DEC and deep DEC. The whole
subsurface energy position variation curve is constructed by
connecting the DECs of the same layer together in chrono-
logical order. With the Euclidean 3D positions recorded
when capturing, each A-scan corresponds to a Euclidean
3D position in the world frame. All 3D positions and the
corresponding DECs together form M.

C. Localization by Searching and Feature Matching

We feed the DEC features extracted from the current GPR
observations into PSO for localization in the subsurface map.
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Fig. 5. Example trajectory segments from a basement showing the
similar trajectory requirement between mapping and localization (nsh b)
environment in CMU-GPR dataset.

Denote Np as the total number of particles, wm as weight
of the m-th particle, and Xm ∈ {G} as the 3D coordinate
of the m-th particle in M.

For the m-th particle, we compute the difference between
the observed features Ft and the features Fj in the prior
map as

dm = ∥Fshallow
t − Fshallow

j ∥2 + ∥Fdeep
t − Fdeep

j ∥2

s.t. Xm = Pj ,
(13)

where ∥ · ∥ denotes the Mahalanobis distance.
Then wm is computed by normalizing dm to [0, 1] interval

by Gaussian distribution,

wm =
1√
2πσ

e−
d2m
2σ2 , (14)

where σ denotes the estimated error.
With wm obtained, we perform resampling using a multi-

nomial resample algorithm. The weight update and resam-
pling processes are executed iteratively. The robot location
Pt can be obtained as

Pt = argmin
P̂t

Np∑
m=1

dm

s.t. P̂t =
1

Np

Np∑
m=1

Xm,

(15)

where P̂t denotes the estimated value of Pt.

V. EXPERIMENTS

We evaluate our proposed GPR-based localization method
on the public CMU-GPR dataset. First, we briefly introduce
the data set. Then, the results of the feature similarity
verification between the maps and the observations are
presented to validate the effectiveness of our designed DEC
features. After that, we evaluate our method qualitatively
and quantitatively by comparing our method with several
counterparts. Finally, we discuss the computational speed of
our method to show its potential for real-time applications.
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Fig. 7. eRMSE over time in three environments.

A. Dataset Introduction

Our experiments are performed on CMU-GPR dataset [15]
which is an open-source GPR dataset specially for research
in subsurface-aided robot navigation. This dataset contains
several distinct trajectory sequences in three GPS denied
scenarios, including 7 trajectories in a basement (nsh b), 5
trajectories in a factory floor (nsh h) and 3 trajectories in
a parking garage (gates g). For the three environments, the
total trajectory length of gates g, nsh b nsh h data sets are
365m, 264m, and 90m, respectively. Measurements collected
on each trajectory include a single-channel GPR, a camera,
a wheel encoder, and total station readings.

Fig. 5 illustrates an example of a segment of a robot
trajectory sequence. From Fig. 5, these two trajectories
travel from B to A but do not overlap completely. In our
experiments, we select one trajectory from the sequence as
the referred map. Data from the total station provide an
accurate position for each position on the map. We choose a
different trajectory for robot localization purpose. Our task
is to perform robot localization while traveling along the
trajectory segment from the start point to the end point. Note
that the two trajectories are adjacent but not overlapping.

B. Feature Similarity Verification

Since the proposed DEC feature is the foundation for the
matching and localization of the following features, we verify
it first. Figs. 6 (a) and (b) show examples of the original
B scan segments for the map trajectory and the localization
trajectory, respectively. The extracted Fshallow

j and Fshallow
t by our

algorithm are shown in Figs. 6(c) and (d), respectively. Their
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difference value dm, is shown in Fig. 6(e). DEC differences
reflect the differences between the robot’s real positions and
the corresponding positions on the map. The low value in
the DEC difference implies the high similarity between the
features extracted when the robot moves along the adjacent
but non-overlapping trajectories.

C. Field Test for GPR-based Localization

The three existing methods to which we compare our
algorithm are:

• Odometry. The method is to localize the robot using
wheel-encoder measurements by dead-reckoning.

• Raw signal matching. The method employs Pearson cor-
relation coefficient to calculate the similarity between
the raw GPR signals. The similarity values between
a series of A-scan signals actually observed and the
signals on the map are then fed into the particle filter
to perform the localization. Pearson correlation between
two independent GPR A scan signals Ai and Aj

is r(Ai, Aj) =
∑n

x=1(Ai(x)−Ai)(Aj(x)−Aj)√∑n
x=1 (Ai(x)−Ai)

2
√∑n

x=1 (Aj(x)−Aj)
2
,

where n is the length of the signals.
• The learned model [14], which is a machine learning-

based GPR localization method that performs inference
on a factor graph.

To quantitatively assess the performance of different lo-
calization methods, root mean squared error (RMSE) eRMSE

is used,

eRMSE :=

√∑N
i=1 ∥Pi, PtotalStation∥22

N
, (16)

where ∥ · ∥2 is l2 norm, N denotes the number of mea-
surements at current position, PtotalStation denotes the position
measured by the total station, and Pi is the position obtained
from the i-th estimation.

Fig. 7 shows eRMSE of the raw signal matching algorithm
and our proposed algorithm in three environments, where
we can see that the eRMSE curve of the raw signal matching
algorithm has some extremely high peaks caused by the mis-
match in the A-scan signals. As a result, the PSO algorithm
cannot converge correctly. On the other hand, we can find
that our proposed algorithm recovers the robot’s locations
stably and close to the ground truth.

Fig. 8 shows the eRMSE statistics of the four algorithms com-
pared in three testing environments and the overall perfor-
mance. The odometry method has the largest error especially

in gates g since there are more turns in the parking garage
scenario. The raw signal matching algorithm often traps
in false localization caused by feature mismatching. Since
the Odometry and the Raw signal methods perform much
worse than ours and the learned model, we only focus on
the comparison with the learned model. Our algorithm out-
performs the learned model in parking garage and achieves
similar performance in factory floor, but is slightly inferior in
basement. Note that loop closure is performed in the learned
model algorithm. Since our method does not include loop
closure, it is more applicable in the general scenario, and its
performance can be easily improved further if it is combined
with those techniques. Quantitatively, the mean localization
errors of our proposed algorithm are 0.47m, 0.52m, and
0.57m in the three scenarios, respectively. Fig. 8(d) shows
the comprehensive statistics of the three environments, this
is done by interpolating and aggregating the results based on
trajectory length. The mean value eRMSE of our algorithm is
0.50m while the learned model is 0.59m according to [14]
and the total distance weight of each environment. We do not
include odometry results in the combined statistics because
its error drift is linear to the trajectory length.

VI. CONCLUSION AND FUTURE WORK

We reported a novel robot localization method by ob-
serving subsurface characteristics using a single-channel
GPR onboard. An efficient feature descriptor, DEC, was
specifically designed for the interpretation of GPR data.
The metric subsurface map was built by extracting DEC
features along the robot’s trajectories with known positions.
As a result, our method was able to localize the robot using
feature matching. Our proposed method was tested on the
public CMU-GPR dataset, achieving satisfactory localization
performance compared to the existing state-of-the-art.

In the future, we will implement our method in a dis-
tributed and parallel manner to achieve real-time localization
performance. A new spatial data structure will be developed
and incorporated to increase the speed of map matching. A
more sensory fusion approach will be developed to increase
robustness and reduce computational needs.
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