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Abstract— Robotic weed removal in precision agriculture
introduces a repetitive heterogeneous task planning (RHTP)
challenge for a mobile manipulator. RHTP has two unique char-
acteristics: 1) an observe-first-and-manipulate-later (OFML)
temporal constraint that forces the order of the two different
tasks for each target and 2) energy savings from efficient task
collocation to minimize unnecessary movements. Stochastically,
RHTP is a renewal process by nature. According to the
Renewal Reward Theorem, the expected energy usage per task
cycle is the long-run average. Traditional task and motion
planning focuses on feasibility rather than optimality due to
the unknown object and obstacle position prior to execution.
However, the known target/obstacle distribution in precision
agriculture allows minimizing the expected energy usage. We
propose a task space partition-based approach by comput-
ing all possibilities of task multiplexing and its probabilities
while considering the robot reachability constraint. We have
implemented and tested our RHTP algorithm compared to its
counterpart in simulation based on real field data. The results
show a significant improvement in path length, number of robot
stops, overall energy usage, and number of replans.

I. INTRODUCTION

Deploying robotic systems in precision agriculture reduces

labor requirements and avoids over-application of chemicals.

We present a robotic weed removal planning algorithm

to guide the mobile manipulator (Fig. 1) to traverse the

field and precisely burn the key growth spot of each weed

using a flaming torch, which is environmentally friendly

and gains popularity in applications [1], [2]. Such tasks are

often repetitive in nature, and energy usage can be reduced

from task collocation if planned efficiently. Named repetitive

heterogeneous task planning (RHTP) problem, the weed

removal process is a renewal-reward process. According to

the Renewal Reward Theorem [3], the expected energy usage

per task cycle is the long-run average. Consequently, it is

imperative to minimize the expected energy usage per cycle

when determining the robot’s action sequence and paths.

Traditional integrated Task and Motion Planning (TAMP) [4]

typically addresses single-instance cases, prioritizing solution

feasibility over optimality due to uncertain object and obsta-

cle positions. However, precision agriculture often provides

known spatial distributions of targets, enabling optimization

of expected energy usage for repetitive tasks.

Robotic weed flaming applications also pose new chal-

lenges. Targeting peripheral leaves or branches may not

effectively suppress or eliminate weeds [1]. Since real-time

S. Xie, and D. Song are with Department of Computer Science and
Engineering, Texas A&M University. D. Song is also with Department
of Robotics, Mohamed Bin Zayed University of Artificial Intelligence
(MBZUAI) in Abu Dhabi, UAE. Corresponding author: Dezhen Song.
Email: dezhen.song@mbzuai.ac.ae.

Fig. 1: A weed removal robot operating in a cotton field, where the target
weeds are highlighted as colored regions. Weed regions sharing the same
color belong to the same cluster.

high-resolution field maps are often inaccessible, robots must

conduct close-range inspections to precisely locate each

weed’s growth point for effective flaming. This approach

introduces two key task constraints: i) each task requires the

robot to first observe the target, revealing its precise position

before executing the manipulation step, and ii) multiple

clustered targets reduce robot base movements to save energy

and increase operational speed if planned carefully. These

factors result in heterogeneous tasks with specific sequencing

requirements and opportunities for optimized movement.

Similar properties are common in various precision agricul-

ture applications, including harvesting and spraying.

We solve the RHTP problem by minimizing the expected

energy usage per cycle. We propose a partition-based task

space approach by computing all possibilities/probabilities

of task multiplexing while considering the robot’s reachabil-

ity constraint. This transforms the original problem into a

region-based optimization problem that focuses on spatial

task multiplexing and sequencing. We implemented and

tested our proposed algorithm in simulations using data col-

lected from a cotton field with our custom platform (Fig. 1).

The results show that our RHTP algorithm significantly

reduces the path length, the number of robot stops, the energy

cost, and the number of replans compared to its counterpart.

Notably, these improvements become more substantial as

the target density increases, which is desirable for practical

agricultural scenarios.

II. RELATED WORK

We view our RHTP problem as a special case of the long-

horizon planning (LHP) problem [9]. LHP is a challenging

planning problem that generates robot behaviors or trajecto-

ries to achieve complex tasks or navigation objectives in an

environment of uncertainty [10]. Our LHP problem is related
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TABLE I: LHP & complex planning problem comparison. * means approximation to the optimal.

Problem & Algorithm Task Platform Scene Knowledge Metric & Optimality

Sensor Planning [5] N UAV+UGV Complete Optimal trajectory*

Tabletop Object Rearrangement [6] M Mobile Manipulator Complete Optimal p&p sequence

Blindfolded Traveler Problem [7] PO + N Mobile robot Partial, Incremental Optimal trajectory*

TAMP w. Partial Observation [8] PO+N+M Mobile Manipulator Partial, Incremental
Feasible task plan,

optimal state trajectory*
RHTP (ours) AP+N+M Mobile Manipulator Partial, Incremental Long-run optimal task&state*

to informative path planning [5], multi-object manipulation

[11], [12], navigation with uncertainty [7], [13], and the

TAMP framework [14], [4], [15]. We compare our work

with closely related works and summarize the comparison

in Table I as detailed below.

Tasks and Robot Platform: For LHP, the task can be clas-

sified as observation (O), manipulation (M), and navigation

(N). Depending on whether the observation task is required

to actively acquire information, it can be divided into passive

observation (PO) and active perception (AP) [16], [17]. The

types of robot platforms and the consequent task capabilities

depend on each other. For tasks that require both navigation

and manipulation ability, mobile manipulators have been

widely deployed due to their high versatility [18], [19]. With

the combination of active perception and manipulation, the

hand-eye system [20] enables the robot to switch between

near-range observation and the required manipulation tasks.

Scene Knowledge: Significant advancements have been

made in planning algorithms for scenarios with complete

prior scene knowledge, even for tasks involving complex

motion primitives [21] or long-action sequencing in multiple-

object manipulation [6] (Table I, row 2). Non-adaptive in-

formative planning, such as sensor planning in [5], assumes

deterministic action outcomes and complete scene informa-

tion for planning (Table I, row 1). When prior scene knowl-

edge is incomplete, planning must incorporate perception

alongside navigation or manipulation, as the robot needs to

collect information incrementally from the scene during the

execution of the trajectory [8], [22]. For partially observed

environments with occlusions, Garrett et al. [8] developed an

online replanning algorithm based on TAMP. Their method

employs a particle filter to represent object pose beliefs,

reducing belief states to deterministic values through self-

loop action determination (Table I, row 4). Contact-based

planning in blindfolded traveler’s problem [7] updates the

beliefs of obstacles while planning the best expected route

(Table I, row 3).

Metrics and Optimality: Planning performance is often

evaluated based on metrics such as time to complete a

task, task success rate, trajectory length, etc. Depending

on the decision variable, they can be classified as two

types: i) task-level metrics refer to metrics to assess task

assignment or action sequence as decision variables. For

a given task plan, if changing symbolic action, adding /

removing action, or changing the order of actions does not

improve overall performance, the task plan is optimal [23].

ii) motion/state-level optimality is defined on robot motion,

trajectory, and poses. For navigation-type tasks, the focus

of the algorithms is to find the shortest travel distance

using approximation algorithms [5], [7]. ORLA* [6] for

the tabletop rearrangement problem find the sequence of

pick-and-place (p&p) actions that minimizes execution time.

TAMP often solves optimality at the continuous motion/state

level [24], but does not optimize the efficiency of the plan

at the discrete task/action level [4]. Although [8], [22] share

observation and manipulation steps, their algorithms focus

on the feasibility of completing a complex multistage task

in a single scene instance. In contrast, our problem is focused

on minimizing energy usage in long run average due to our

application characteristics. Additionally, our focus is on the

aspect of spatial task multiplexing rather than motion/state-

level planning, as the latter is often straightforward in an

open agricultural field.

RHTP extends the single target coupled active percep-

tion and manipulation problem (CAPM) introduced in [25].

While CAPM introduces the Observe-First-Manipulate-Later

(OFML) constraint for single targets, RHTP advances this

concept by addressing multiple clustered targets and incorpo-

rating spatial task multiplexing. This extension significantly

broadens the applicability and efficiency of the approach in

complex, multitarget environments.

III. BACKGROUND AND PROBLEM FORMULATION

Regenerative point: As the robot repetitively performs weed

removal tasks in the field, it periodically captures overhead

images from the row center line by elevating its camera to

provide an overhead view. We refer to weeds as targets. Due

to the perspective limit, these images provide only a low-

resolution scene description, containing the target regions of

interest (TROI) depicted as colored circular regions in Fig. 1.

TROIs are typically identified through object detection al-

gorithms applied to these overhead images. The planning

algorithm needs to find an energy-efficient plan to process

all known TROIs. The moment when an overhead photo is

taken serves as the natural regenerative point in this renewal

process. We formulate an instance of the RHTP problem.

A. Assumptions

The main assumptions are as follows.

a.1 The mobile platform is holonomic.

a.2 No target is surrounded by obstacles and becomes

unreachable.

a.3 The robot does not move its base and arm simultane-

ously to ensure stability.

a.4 The arm is in a rest position while the base is moving.
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a.5 The energy usage of arm movement for each observa-

tion / flaming manipulation task can be approximated

as constants.

Assumptions a.1 and a.2 are common in early stage weed

removal applications where limited weed and crop heights

do not impede robot mobility. In addition, quadruped robots

ensure holonomic motion. These assumptions are made to

reduce the complexity of the problem and can be relaxed

in the future. Assumptions a.3 and a.4 enhance stability

and simplify obstacle avoidance. Assumption a.5 is valid for

repetitive tasks.

B. Scene Description

Denote the robot workspace W ⊂ R
3 with the x-y

plane overlap with the horizontal ground plane and the z

axis pointing upward. Given n targets with index set I =
{1, ..., n}, TROI and manipulation point of interest (MPOI)

for the target i ∈ I are defined as follows.

Ti Target i’s TROI defined by the geometric center at

Xc
i = [xi, yi, 0] ∈ W of the target and its radius ri.

Ti := {X = [x, y, z] : ∥X −Xc
i ∥

2
2 ≤ r2i , z ≥ 0} ⊂ W .

Xi Target i’s MPOI, Xi ∈ Ti. Note that TROI’s geometric

center Xc
i does not necessarily overlap with Xi.

For each target i, a reasonable model of the distribution is

a uniform distribution over Ti since Xi could be anywhere

in Ti. However, the weed growth point is likely to be located

in the center of Ti due to biological symmetry. We model

Xi as a truncated normal distribution: Xi ∼ NT (X
c
i ,Σi, ri),

1 ≤ i ≤ n where Xc
i is the center of Ti, Σi is the covariance

matrix, and ri is the truncation radius. The initial belief space

of the n MPOIs is thus defined as:

Definition 1. (MPOI Belief Space) For a vector of n MPOIs,

X = [X1, ..., Xn], its belief space BX can be represented as

X ∼ BX with

BX = [NT (X
c
1 ,Σ1), ...,NT (X

c
n,Σn)]. (1)

Each close-up observation collapses the corresponding i-th

belief NT (X
c
i ,Σi, ri) into deterministic values.

C. Problem Formulation

We formulate the RHTP with mobile manipulators for a

set of weed-flaming tasks as the base placement sequence

selection and the task assignment problem. Define K =
{0, ...,K} as the time sequence index set. xb,k ∈ Xb denotes

base pose at the k-th stop. The task plan can be represented

as the sequence of base stops and the target index set

assigned to the k-th base stop: π = {(xb,k, Ik)}0:K , where

Ik ⊂ I.

1) Observation/Manipulation Task Constraints: For our

mobile manipulator with hand-eye system, the observation

reachability constraint forces the arm to approach the target i

so that Ti is fully covered in the camera image with sufficient

resolution to identify Xi. The manipulation reachability

constraint determines whether the manipulator can reach

the target while avoiding self-collision or an inability to

perform the weed-flaming task without damaging the robot.

Given a known manipulator configuration, we model the

observation/manipulation reachability constraint as a binary

function with 1O/M(xb,k, Ti, X̄i) = 1 which means that

the constraint is satisfied. The detailed formulation will be

explained later.

Another type of constraint is observe-first-and-manipulate-

later (OFML) temporal constraint that forces the order of the

two different tasks:

Definition 2. (OFML) For the target i, let kτ , kι ∈ K be

time indices for its observation and manipulation actions in

π, respectively. OFML can be described as kτ ≤ kι, ∀i ∈ I.

2) Energy cost: We evaluated plans π based on energy

consumption due to limitations of battery capacity onboard.

Our goal is to compare the energy costs of different task

sequences instead of computing the precise execution costs.

Given Assumption a.5, the arm energy does not vary with

the task sequence. Therefore, we focus on the energy con-

sumption from the robot base movement. We follow the

energy modeling in [26] using a combination of a fixed initial

starting cost for the base and a variable energy cost, but other

energy cost models can also be used. Denote ed(xb,k−1,xb,k)
as the obstacle-free travel distance between xb,k−1 and xb,k,

for a plan sequence, the normalized cost is

c(π) = K + γ

K
∑

k=1

ed(xb,k−1,xb,k). (2)

where γ is the energy cost coefficient, a ratio between the

starting cost and the variable costs of the base, γ > 0.

Problem 1 (RHTP). Given the start state xs, goal state xg ,

and a set of TROIs {Ti : i ∈ I}, sequentially find a task plan

π and for action and key states to obtain MPOI set {Xi :
i ∈ I} to guide and execute the subsequent manipulation

task with the minimum expected energy cost:

min
a,x

EX∼BX
[c(π)] (3)

s.t.
∧

i

1O/M(xb,k, Ti, X̄i) = 1, ∀i ∈ I, (4)

xb,0 = xs,xb,kmax
= xg, and OFML in Def. 2 (5)

IV. ALGORITHM

An effective way to reduce energy is to group the targets

using clustering. Two targets are considered to be in the

same cluster if there exist mobile manipulator configurations

that can observe/manipulate either target without moving the

base. As an example, Fig. 1 colors the clusters differently.

Clustering enables spatial task multiplexing (STM) of robot

base motions. It is clear that STM can reduce base move-

ments, reduce energy usage, and increase speed.

Meanwhile, the OFML constraint in Def. 2 prevents de-

terministic planning before MPOI is observed. We need to

employ the MPOI belief space in Def. 1 to construct the task

sequence. For each cluster, a wise strategy is to increase the

likelihood of spatial multiplexing by choosing the optimal

base positions. As a result, there is a combinatorial nature
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to this problem in the iterative process. We begin with

introducing the probabilistic target reachability map (PTRM).

A. Probabilistic Target Reachability Map

The construction of the PTRM involves converting the

MPOI belief BX into the probability that the mobile ma-

nipulator can reach a target from a given base pose xb ∈ Xb,

as defined in (4). This constraint is inherently probabilistic

due to the random distribution of unobserved targets.

The robot base state constraints can be constructed through

the circular approximation [27] by inverse kinematics of

arm configurations. The reachable space for the robot base

Ro(Ti) ⊂ Xb to observe Ti can be approximated to a

compact, closed donut-shaped region due to camera cov-

erage and resolution constraints. Similarly, given Xi, the

reachable space Rm(Xi) ⊂ Xb for the robot base enabling

manipulation is also a closed donut-shaped region due to

self-collision and kinematic constraints. Detailed derivations

can be found in [25]. Eq. (4) is satisfied if xb ∈ Ro(Ti)
and xb ∈ Rm(Xi) when observing Xi. In general cases,

the feasible manipulation region Rm(Xi) is smaller than the

feasible observation region Ro(Ti) because the camera on

board can often cover a much larger region than the arm can

reach; as analyzed in [25].

Considering that the probability on the estimated X̂i is

truncated and is limited in a small region of TROI, we further

approximate the reachability constraints such that all the base

states that satisfy the manipulation constraint also satisfy the

observation constraint:

Rm(X̂i) ⊂ Ro(Ti), ∀X̂i ∈ Ti. (6)

This approximation allows us to formulate Rm(X̂i) as the

mutual base region for the joint observation/manipulation

(O/M) task. This leads to the following new formulation of

reachability constraint on the base state:

1
b
O/M
(xb, X̂i) =

{

1, if xb ∈ Rm(X̂i)

0, Otherwise.
(7)

Under the simplification, we replace reachability constraint

(4) with (7) for base placement in our RHTP problem.

Due to the OFML constraint, the reachable region for

the manipulation task is nondeterministic. We calculate the

probability of performing a successful task in pose xb ∈ Xb,

based on the current belief space BX. Next, we are ready to

introduce the initialization and update of the PTRM.

Initialization: at the starting point, the probability of base

position xb that allow the robot to reach the target i to

execute a successful task is,

pi(xb) := p(xb ∈ Rm(X̂i)|X̂i) (8)

=

∫

fT (X̂i;X
c
i ,Σi, ri)1

b
O/M
(xb, X̂i)dX̂i, (9)

where fT (·) is the probability density function of truncated

normal distribution. Since p(X̂i) is a truncated probability,

we define a base work space Si for target i as base config-

uration set with non-zero probability to reach the target i as

(a) (b)

Fig. 2: (a) A running example with 4 targets and the TROIs. (b) PTRM
(2D at x-y plane). These probabilities are superimposed on one coordinate
system.

Si = {xb : pi(xb) > 0}, which covers all potential robot

base configurations with non-zero probability to complete

the task.

Update: During run time, once the target i is perceived and

its MPOI is detected after robot movement, Xi becomes

deterministic, pi(xb) := 1, ∀xb ∈ Rm(Xi). Consequently,

the MPOI belief BX collapses to the observed deterministic

value. We also update the base task space Si = Rm(Xi).

B. Task Space Partition

The PTRM provides the sets of feasible base states to

execute the O/M task for each target. The overlapping regions

are the base pose set for the robot where it is possible for the

robot to achieve STM. For example, the base state within the

region S1∩S2 means that it is possible to multiplex the tasks

for both targets if the robot is located in the region. To further

investigate the possibilities of STM, we partition the base

task space S into regions based on the task space intersection

so that each region corresponds to a unique combination of

STM (see Fig. 3).

Definition 3. (Task Space Partition) A task space partition

Q = {Qj : j ∈ IQ} is constructed from a collection of the

base task space sets S = {Si : i ∈ I} such that

(a)
⋃

j∈IQ
Qj =

⋃

i∈I Si,

(b) If j ̸= l then Qj ∩Ql = ∅, and

(c) If Qj ⊆ Si, we label Si as the parent set of Qj . For each

partition Qj , it may have multiple parents. Its parent

index set is denoted as Ij ⊂ I. For two partitions Qj

and Ql, if j ̸= l, then Ij ̸= Il.

Conditions (a) and (b) in Def. 3 ensure that Q is a parti-

tion. Condition (c) states that each partition Qj corresponds

to a unique STM combination. An example partition is shown

in Fig. 3. For each partition of the task space Qj , we compute

the likelihood that the reachability constraint of the task i’ is

satisfied when the robot base is placed there. Therefore, we

define the probability matrix to capture each partition’s task

success probabilities P with each element Pi,j calculating

the probability of target i can be successfully reached from

any base state from the partition region Qj , i.e. xb ∈ Qj :

Pi,j :=

∫

xb∈Qj
pi(xb)dxb

∫

xb∈Qj
1dxb

(10)
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Fig. 3: PTRM partition. Left: a topological visualization of task space parti-
tion. Right: partition’s task success probabilities matrix. These probabilities
are based on location and not normalized against either i or j.

With each Pi,j computed for all partition-target combina-

tions, we obtain the matrix P to represent the probability of

each STM combination. P is updated each time the PTRM

update occurs. The right side of Fig. 3 shows a partition’s

task success probabilities matrix example.

C. Base Placement Planning

Recall the objective function in (3), we want to minimize

the energy E[c(π)]. Obviously, we can condition the expected

energy on the selected task space partitions which can be

viewed as high-level decision variables that direct the robot

to stop and execute tasks.

We begin with the probability of reaching the target i

for a given partition set. Define the task space variable

φ = [φ1, . . . , φr] corresponding to the partition index set

IQ = {1, ..., r}, where binary variable φj = 1 means that the

partition Qj is selected and 0 means otherwise. Let Mi be the

event in which the robot successfully completes the task for

the target i. Then we have conditional probability p(Mi|φ)
derived from the joint failure probability p(Mi|φ) = 1 −
p(M̄i|φ) = 1 −

∏

j(1 − φjPi,j). Note that φ contains

regions that the robot base needs to stop and perform tasks

and represents a high-level task plan that corresponds to the

output π.

Recalling the energy cost function in (2), we need to mini-

mize the number of selected regions, which reduces the fixed

starting cost, since the robot stops at each selected partition.

Meanwhile, the distance traveled must be minimized. The

RHTP can be viewed as a set cover problem with symmetric

traveling salesperson problem (TSP) on the selected task

space partition set.

Here, we define the distance traveled between two partition

regions Qj and Ql as the minimum variable energy cost

ed(Qj , Ql) = minxj∈Qj ,xl∈Ql
ed(xj ,xl). We reformulate

the cost function to incorporate set selection as decision

variables, accounting for both the base stop times and the

energy cost of traveling between selected regions from the

initial to the final states with a weighting coefficient γ, as

shown in Eq. (11).

Let us define the vertex set as the union of the region index

set IQ with a size of r and the start state with index 0 / end

state index with index r+1 such that V = IQ∪{0, r+1} =
{0, 1, ..., r, r + 1}. Q0 and Qr+1 are sets that contain only

the start and end poses, respectively, which are also source

and sink nodes of the TSP tour on the graph if we treat each

partition/region as a node. We define the binary path selection

variables ξ where ξj,k = 1 represents the region k visited

just after the region j and 0 otherwise. Since ed(Qj , Qk) =

ed(Qk, Qj), the TSP is symmetric so that ξj,k and ξk,j have

the same meaning. The task space partition selection problem

as a mixed-integer nonlinear programming (MINLP) problem

is formulated as follows,

min
φ,ξ

φTφ+ γ

r+1
∑

j=0

r+1
∑

k=j+1

ξj,ked(Qk, Qj) (11)

s.t. p(Mi|φ) ≥ δ, ∀i ∈ I, (12)

j−1
∑

k=0

ξk,j +

r+1
∑

k=j+1

ξj,k = 2φj , ∀j ∈ IQ, (13)

∑

j∈IQ

ξ0,j = 1,
∑

j∈IQ

ξj,r+1 = 1, (14)

∑

j∈S









∑

k∈IQ\S
k<j

ξk,j +
∑

k∈IQ\S
k>j

ξj,k









≤ 2,

∀S ⊂ IQ, |S| ≥ 2. (15)

By choosing a proper probability threshold δ, the constraint

(12) ensures that the partitions of the selected task space

have a high probability to complete all tasks. Motivated by

the Dantzig-Fulkerson-Johnson formulation of the TSP, the

constraints (13), (14), and (15) ensure a complete tour from

the start state to the end state that passes through the selected

task space partitions. Eq. (13) requires that two paths be

connected for each selected region. Eq. (14) ensures that the

start and end nodes should be connected to the path. Eq. (15)

is the subtour elimination constraint.

A solution to this MINLP problem can be obtained using

Branch-and-Bound solvers [28], [29]. The optimization re-

sults are the selection of partitions of the task space indexed

by non-zero entries in φ and a visit sequence between these

partitions specified by the binary path selection variables

ξ. Through the partition selection variable, we know that

the number of stop times for the base is κ = φTφ. The

sequence of partition (q) to be visited can be generated from

the path variable ξ as an index list. For the running example,

q = [0, 2, 8, 10] from Fig. 3.

The final step is to generate a task plan π by finding the

base state xb of each region in ξ that defines the shortest path

in the same order of region selection. Solving the optimal

solution xb is trivial and we skip the details here for brevity.

V. EXPERIMENTS

A. Experiment Setup

We have implemented the proposed RHTP algorithm using

Python 3.8.10 on a Ubuntu 22.04 PC machine with the

Intel(R) Core™ i7-10700K CPU @ 3.80GHz. We have tested

the algorithm based on field data collected from our custom

mobile manipulator (see Fig. 1) to validate the performance

for the real application.

Task and System Settings: We have mounted a 6 degree-of-

freedom (DoF) Unitree Z1™ manipulator on the Boston Dy-

namics Spot Mini™ quadruped robot for the weed removal

task. The Spot Mini™ carries all attached accessories (i.e. an
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Fig. 4: Sample scene configurations with different target densities from
early/late grow stage in cotton field and test bed.

additional computer, flammable fuel container, igniter, fuel

pipes, relay controlled valves, control circuit, and a Unitree

Z1 arm [2]). We deployed the mobile manipulator in cotton

fields to collect data to initialize the simulation used to

evaluate our algorithms.

Test Scene Configurations: The test scene is obtained from

images collected from the cotton field at different stages of

weed growth, as shown in Fig. 4. To validate the performance

of the algorithm in different scenarios, we define the target

density as the ratio between the number of weeds |I| and the

area of the ground plane of the workspace ρ = |I|

Area(Wg)
.

We have tested a total of 50 scene instances, where for each

instance Area(Wg) = 1 m2 and the density of the weed

varies from 1 to 7.

Baseline Algorithm: The baseline algorithm for comparison

is a greedy naive algorithm that extends from the single target

CAPM [25] algorithm simply by handling one target at a

time until all targets are handled. The target chosen at each

step is the closest target that has not been processed. We

call this algorithm Naive-CAPM. This can be considered as

algorithms based on the hierarchy planning TAMP.

B. Result

1) Speed Test: We have measured the run time of our

algorithm, which is 2.2 seconds on average. Since the exe-

cution time of actions (base, arm movements, and flaming)

is much longer than the planning time, the run time of

the algorithm is not the bottleneck in the weed removal

application, because the computation can be done while the

robot is in motion finishing the previous step.

2) Offline Performance Comparison: We have compared

our proposed algorithm (RHTP) with Naive-CAPM for en-

ergy usage according to (2) and the number of replans which

is the number of times iteration is needed to complete all

tasks. For each instance, we sample 1000 possible combi-

nations of MPOIs for the initialization of belief according

to (1) where the initial belief parameter is Σi = riI2×2 and

compute the average result for all metrics. The energy cost

and the RHTP parameters are set as γ = 1.12 and δ = 0.7
based on the hardware testing of our robot, respectively.

First, we compare the two algorithms using all 50 in-

stances in the test data. To separate the effect of density from

the uncertainty introduced by prior observation (reflected

through the radius), we set the TROI with the same radius.

The plot in Fig. 5 shows the result. When the target

density is low ρ = 1, the Naive-CAPM and RHTP algorithms

perform very similar to each other. This is expected because

if there is no cluster, they are essentially the same algorithms.
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Fig. 5: Performance comparison between the Naive-CAPM and the RHTP
algorithms.

As the target density increases, the RHTP has a shorter path

length and less number of stops compared to the Naive-

CAPM (result trajectory samples are shown in the video

attachment). As for the number of replans, the RHTP can

achieve less than 1 replan across the board. For the Naive-

CAPM method, since one iteration can only find the position

for one stop, and the task plan requires the robot to stop for

every target, the replan number increases with the density of

target increase. In all metrics, the RHTP algorithm outper-

forms the Naive-CAPM algorithm more significantly as the

density increases further. This is very desirable because our

RHTP algorithm is more efficient when needed.

To validate the effect of the TROI radius, we choose the

instances with the same density ρ = 5, where we have the

most instance at this density (15 instances). We run both

algorithms on this group of instances. We set the radius of

the region to 0.15, 0.20, 0.25, 0.30 meters, respectively. As

shown in Fig. 6, both algorithms are affected by the increase

in region size because the increase in region size means a

greater uncertainty of perception in prescan. In comparison,

it is clear that RHTP still outperforms Naive-CAPM in all

metrics. The advantage is more significant when the TROI

radius (i.e. perception uncertainty) grows larger.
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Fig. 6: Performance comparison between the Naive-CAPM and the RHTP
at different TROI radius settings. The horizontal axes are TROI radius.

VI. CONCLUSION AND FUTURE WORK

We propose the RHTP algorithm to enable the mobile

manipulator to perform repetitive observation and manipu-

lation tasks efficiently in precision agriculture applications.

The RHTP algorithm was designed to reduce the long-term

average energy consumption rate by minimizing the expected

energy use. We reduced the optimization problem to a region-

based set-coverage problem by conditioning all possible

spatial task multiplexing possibilities in different regions.

In experiments, the algorithm demonstrated a significant

improvement over its counterpart in all tasks. Moreover, the

improvement is more significant when the target density

increases, which is desirable. Future work will focus on

improving base and arm motion coordination, and developing

multi-robot algorithms for repetitive tasks.
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