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Abstract— Low-cost millimeter wavelength automotive radar
can work effectively under low visibility or low reflection con-
ditions caused by lighting, weather, pollution, or object surface
properties when a camera or a lidar may fail. It can serve as
a fallback solution to improve safety in autonomous driving.
However, after filtering, radar signals tend to be sparse and
noisy which poses new challenges in scene understanding. This
paper presents a new approach to detecting road boundaries
based on sparse radar signals. We model the roadway using
a homogeneous model and derive its conditional predictive
model under known radar motion. Using this predictive model
and modeling radar points using a Dirichlet Process Mixture
Model, we employ Mean Field Variational Inference (MFVI)
to derive an unconditional road boundary model distribution.
To generate initial candidate solutions for the MFVI, we
develop a custom Random Sample and Consensus (RANSAC)
variant to propose unseen model instances as candidate road
boundaries. For each radar point cloud we alternate the MFVI
and RANSAC proposal steps until convergence to generate the
best estimate of all candidate models. We select the candidate
model with the minimum lateral distance to the radar on each
side as the estimates of the left and right boundaries. We
have implemented the proposed algorithm and it has shown
satisfactory results. More specifically, the mean lane boundary
estimation error is not more than 11.0 cm.

I. INTRODUCTION

Low-cost automotive radars can provide reliable sensory
input under low visibility or low reflection conditions caused
by lighting, weather, air pollution, or object surface prop-
erties when a camera or lidar may fail. If we can develop
effective scene understanding techniques based on radar data,
it will provide a fallback solution to enhance the safety of
autonomous vehicles. Here we report a new road boundary
detection algorithm based on radar data.

Under radar data, a road boundary refers to the boundary
between different types of terrain or separations based on
geometry. For example, asphalt pavement and grassy road
shoulders have different radar reflective patterns. The bound-
ary between them is the road boundary. Traffic cones, road
curbs, or guard rails can also form a road boundary. It is
clear that road boundaries are not necessarily the same as
lane boundaries. Detection of road boundaries is important
to ensure vehicle safety. Radar signals are typically relegated
only to the detection of dynamic objects such as other
vehicles, bicycles, and pedestrians because they are sparse
and noisy, which presents a challenge for road boundary
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Fig. 1. An example of the radar road boundary estimation problem. On
the left, the scenario is shown from the camera perspective, with results
from the radar frame projected onto the camera image. On the right, a top
down orthographic perspective of the scene. Grey ellipses are radar target
detections, and the blue and red curves are the left and right road boundaries,
estimated from the radar, respectively. The grid has 1 meter spacing.

detection. Unlike the significant existing development in lane
detection in the vision or lidar domain, detection of the road
boundary based on the sparse radar input is a new problem.

We propose a new method for detecting road boundaries
based on sparse radar signals. By sparse signals, we refer
to the filtered output of common automotive radars rather
than the raw reflectivity images that are only available to
radar developers. Fig. 1 illustrates the radar inputs and our
problem. We model the roadway using a homogeneous four-
coefficient arc model and derive its conditional predictive
form under known radar motion. Using the conditional
predictive model and model radar points using a Dirichlet
Process Mixture Model (DPMM), we employ Mean Field
Variational Inference (MFVI) to derive an unconditional road
boundary model distribution. To generate initial candidate
solutions for the MFVI, we develop a custom Random
Sample and Consensus (RANSAC) variant to propose unseen
model instances as candidate road boundaries. For each radar
point cloud we alternate the MFVI and RANSAC proposal
steps until convergence to generate the best estimate of all
candidate models. We select the candidate model with the
minimum lateral distance to the radar on each side as the
estimates of the left and right boundaries.

We have implemented the proposed algorithm in C++ as
a module in the Robot Operating System (ROS). We tested
the algorithm on data collected from a Continental ARS430
automotive Doppler radar and it has shown satisfactory
results. More specifically, the mean lane boundary estimation
error is not greater than 11.0 cm, which is reasonable when
considering the radar wavelength.

II. RELATED WORKS

Detection of lane boundaries is a well-studied problem in
the vision and lidar domains, but is new for road boundaries



under sparse radar signals [1]. Vision and lidar approaches
have been the popular sensor choices, including camera-radar
fusion [2] [3] and lidar-radar fusion [4], of which [5] provides
a survey. However, vision and lidar are easily affected by
severe weather conditions or other environmental factors,
leading to poor performance. On the other hand, radars are
less sensitive to environmental conditions. In general, when a
radar is used in robot/vehicle perception, there are, broadly,
two forms of output to consider: radar reflectivity images
and radar target detection point clouds.

Radar reflectivity images are analogous to a camera image
but with cells instead of pixels and with cell dimensions typi-
cally including at least range and azimuth. However, the radar
reflectivity image is often much less sharp and has lower
resolution than a camera image or a lidar point cloud. When
using radar reflectivity images for the estimation of road
boundaries, Nikolova and Hero [6] model the boundaries in
the polar coordinate space of the radar reflectivity image
and identify them as the edges of continuous homogeneous
regions in the image with constant width and curvature.
Kaliyaperumal et al. [7] propose a deformable model for the
boundaries, a likelihood function to match the model with the
edges in the image, and use the Metropolis-Hastings algo-
rithm with simulated annealing to find the optimal match.
Guo et al. [8] present the stripe Hough transform which
is capable of detecting lines in the reflectivity image when
there are orthogonal deviations from the boundary. Werber et
al. [9] estimate straight line landmarks from the reflectivity
image and associate them over time for vehicle localization.

For most commercially available automotive radars, like
the one used for this work, the reflectivity image is not an
available output. Instead, the image is downsampled into
a point cloud of target detections generally representing
points of peak reflectivity in the image. This radar point
cloud data, while similar in format to lidar data, is compar-
atively sparse, noisy, and unstructured. As a consequence,
lidar-based boundary detection approaches are generally not
applicable to radar point clouds. A common technique to
overcome these issues for radar point clouds is to temporally
‘stack’ the point clouds by transforming the points into a
static coordinate frame using some known localization (e.g.
GPS), merging them, and then estimating using this more
dense stacked point cloud. Lundquist et al. [10] present
two such approaches, estimation from an occupancy grid
map and estimation from a Quadratic Program (QP) with
prior sorting of target detections into left and right sets and
outlier rejection. Xu et al. [11] generate an occupancy grid
from temporally stacked radar observations and combine
edge detection and RANSAC in order to identify linear
boundaries.

A significant weakness of the stacking based approach
is that it relies upon robust and accurate localization over
the stacking window. When the localization is not accurate,
especially when traversing turns and corners, the stacked
radar point cloud often exhibits a distinct ‘smearing’ of the
points which can degrade or destroy the estimation quality.
For this reason, the algorithm we propose tracks the road

boundaries over time, applying new observations to update
the existing estimate in a Bayesian manner. Among such
approaches, Lee et al. [12] provide an instantaneous estimate
of the road curvature and Lundquist et al. [10] track points
and quadratic curve segments along the roadway as extended
objects via an Extended Kalman Filter (EKF), but neither
approach estimates the road boundaries. Lundquist et al.
[13], as a prior step towards radar road intensity mapping,
perform a K-means regression clustering of cubic curves in
highway scenarios. Compared with this work, our algorithm
directly estimates the primary road boundaries themselves,
allows a dynamic number of candidate tracks, and makes
a probabilistic, as opposed to binary, assignment of target
detections to tracks, giving the algorithm robustness in the
presence of the obfuscating clutter common in non-highway
scenarios.

III. PROBLEM DESCRIPTION

Consider that we have a vehicle equipped with automotive
radar traveling along a roadway and we would like to
estimate the location of the left and right road boundaries
relative to the sensor at the time t of each measurement. Let
us define {Dt} as the dynamic radar ego coordinate system
at time t that moves with the radar so that the X-axis is
forward and the Y -axis is to the right.

A. Assumptions

a.0 There exist road boundaries within the radar field of
view.

a.1 The radar is mounted such that its forward direction is
parallel with the vehicle’s longitudinal axis.

a.2 The radar is positioned such that it is located between
the left and right road boundaries.

a.3 The primary left and right road boundaries within the
field of view (i.e. ignoring discontinuities at intersec-
tions, driveways, etc.) can be approximated as a circular
arc or line in the Cartesian coordinate space.

a.4 The motion of the radar between two subsequent time
steps is known or estimated. For this purpose, we use the
instantaneous radar ego-velocity estimation [14], how-
ever, other odometry modalities (e.g. inertial) should
also be sufficient.

It should be noted that Assumption a.0 requires the pres-
ence of road boundaries to satisfy the detection condition.
Although a road boundary does not exist in large open space
under the same terrain (e.g. when a vehicle is crossing a
large intersection) and it would limit the application scope
of this algorithm by excluding intersections and very wide
open roads, it is still a good fallback solution to ensure
vehicle safety under severe weather conditions, because it
can effectively protect the vehicle from veering off the road
or colliding with roadside objects. According to a Virginia
Department of Motor Vehicles report, a vehicle veering off
the road is a factor in almost half of all fatal crashes in
Virginia [15].



B. Sensor Model

We will follow the sensor model in our previous work
with these radars [14]. For completeness, we reiterate it
here. Our sensor is a 77GHz automotive Doppler radar
which periodically transmits a pulse and reports a set of the
received reflections as estimated target detections. We use
Zt = {zt,1, . . . , zt,n} to denote the set of target detections
received as a datagram from a transmitted radar pulse. We
consider each detection zt,i as a noisy observation of some
ground truth measurement source st,i. Each target detection
is reported in polar coordinates in the radar coordinate frame
{Dt} and consists of the measurements

zt,i =
[
rt,i θt,i

]T
= st,i + vt,i, (1)

where, i ∈ {1, ..., N} indicates the target index, rt,i ∈
[0, rmax] is the i-th target range, θt,i ∈ [θmin, θmax] is the
i-th target azimuth where θt,i = 0 indicates the forward
direction, θt,i < 0 indicates a target to the left, and
θt,i > 0 indicates a target to the right, and vt,i is the
observation noise such that vt,i ∼ Normal(0,Σt,i) where

Σt,i =

[
σ2
r,i 0
0 σ2

θ,i

]
. The Cartesian parameterization of

the target position in {Dt} is defined in the usual manner,[
xt,i yt,i

]T
=
[
rt,i cos(θt,i) rt,i sin(θt,i)

]T
.

C. Road Boundary Model

In the Cartesian coordinate space, roadways are generally
constructed as a series of circular arcs connected by linear
segments, which may be considered as circular arcs with
infinite radius. We desire to use a single model which can
represent both, and, for this reason, we make use of the
quadratic representation of a conic with constant curvature,

β1(x
2 + y2) + β2x+ β3y + β4 = 0, (2)

where β1 ̸= 0 represents a circle and β1 = 0 a line.
As the radar makes observations in polar coordinates, it is

desirable to express the model in polar coordinates as well
so we have,

β1r
2 + β2r cos(θ) + β3r sin(θ) + β4 = 0. (3)

From this we define the road boundary as the set of points

{s | βTϕ(s) = 0, s ∈ [0, rmax]× [θmin, θmax]} (4)

where s =
[
r θ

]T
is a point expressed in polar coordinates,

ϕ(s) =
[
r2 r cos(θ) r sin(θ) 1

]T
are the model basis

functions, and β =
[
β1 β2 β3 β4

]T
are the model

coefficients. We note that the model is homogeneous, i.e.
β ≡ cβ, for all c ∈ R.

D. Problem Definition

Given a series of radar datagrams Z0, . . . ,Zt, we will
estimate the left and right road boundaries at each time t,
with βt,l and βt,r as the coefficients of our road boundary
model.

IV. ALGORITHM

Our algorithm operates in three primary phases: model
prediction from known radar motion, model estimation al-
ternating candidate updates from the radar observations and
proposing new candidates, and algorithm termination where
we output the boundary estimates and prepare for subsequent
radar observations. We provide a graphical overview of the
flow of our algorithm in Fig. 2.

A. The Roadway as a Dirichlet Process Mixture Model

As described in III-B, we model each target detection zt,i
as the detection of some true source point st,i with zero-
mean Gaussian observation noise vt,i. We model the radar
points as being generated by a DPMM, where the points are
classified into two groups: outliers whose source is not neces-
sarily modeled and inliers which are generated by a candidate
model. Therefore, we will have Kt+1 models where model
index k = 0 indicates the outlier model and k ∈ {1, . . . ,Kt}
indicates a candidate model. Each observed target zt,i is
associated with the latent variable ct,i ∼ Categorical(πt)
representing which model produced the target detection,
where πt =

[
πt,0 · · · πt,Kt

]T ∼ Dirichlet(αt) are the
mixture weights and αt =

[
αt,0 · · · αt,Kt

]T
is the prior

mixture concentration.
Ideally, one would represent the source point as its own

latent variable described by a Spatial Distribution Model
(SDM) on the source object. This is difficult in practice as
such an SDM is heavily dependent upon the geometry of
the scene and would need to account for occlusions, object
shape, etc. Additionally, estimating the source point as a
latent variable significantly complicates posterior inference
unless the SDM is in the exponential family. Instead, we
rely upon a Greedy Association Model (GAM) as in [16],
and we will show that this produces a very straightforward
algorithm for inference. The result is that we convert zt,i
into a pseudo-observation of the model βt,k via the implicit
shape function of our model h(zt,i,βt,k) = βT

t,kϕ(zt,i),
as in [17]. Propagating the measurement uncertainty, we
can say that h(zt,i,βt,k) ∼ Normal(0, σ2

ik) where σ2
ik =

βT
t,kΦ(zt,i)Σt,iΦ(zt,i)

Tβt,k with Φ(zt,i) being the Jacobian
of ϕ(zt,i). We note that this GAM results in a biased
estimation for curved shapes for which [16] identifies and
prescribes a correction. However, in the case of road bound-
ary estimation with radar, the measurement uncertainty is
not typically large enough relative to the curvature for
this bias to have a significant effect. Thus, we consider
E[h(zt,i,βt,k)] = 0 to be a reasonable approximation.
Finally, we model the outlier targets simply as observations
from a uniform SDM over the field of view, zt,i | ct,i = 0 ∼
Uniform([0, rmax]× [θmin, θmax]).

Due to the fact that our road boundary model is homoge-
neous, it is necessary to choose a scale for the coefficients.
Setting the scale such that βT

t,kβt,k = 1 is a natural choice.
Consequently, the coefficients of each candidate model are
distributed such that βt,k ∼ Bingham(C−1

t,k), which is the
analogue to the normal distribution but conditioned on the
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Fig. 2. Algorithm Flow Chart.

unit hypersphere [18]. The Bingham distribution has found
related use in Quaternion Bingham Filters e.g. [19]–[21],
which provide more detail on the properties of the Bingham
distribution. Note that the Bingham distribution is typically
parameterized by the eigen decomposition C−1

t,k = VΛVT,
however, for our purposes it will be more natural to work
with C−1

t,k directly. While ideally it should be the case that
p(βt,k) = p(cβk) where c ∈ R, for our distribution, it
is only true that p(βt,k) = p(−βt,k), i.e. the distribution
is antipodally symmetric, but it will serve as a reasonable
approximation in return for useful mathematical properties;
namely that the Bingham distribution is in the exponential
family, making the inference more tractable. Finally, it is
the case that E[βt,k] = 0, however, this trivial solution
will not be useful for inference. Therefore, we will instead
use the mode of the distribution which is the eigenvector
corresponding to the minimum eigenvalue of the eigenvalue
problem C−1

t,kβt,k = λβt,k. Thus, with some abuse of
notation, we will say that E[βt,k] is equal to this mode.

In summary, we consider the generative model of radar
detections to be

• Nt: Number of detections.
• Kt: Number of candidate models.
• αt: prior concentration.
• πt ∼ Dirichlet(αt).
• ct,i ∼ Categorical(πt).
• zt,i ∼ Uniform([0, rmax]× [θmin, θmax]) if ct,i = 0.
• βT

t,kϕ(zt,i) ∼ Normal(0, σ2
ik) if ct,i = {1, . . . ,Kt}.

• βt,k ∼ Bingham(C−1
t,k).

B. Model Prediction

Let us say that from time t − 1 to t the radar frame is
rotated about its vertical axis by ∆ψ and its position is
translated

[
∆x ∆y

]T
, then the transformation matrix for

the radar coordinate frame is

Tt =

cos∆ψ − sin∆ψ ∆x

sin∆ψ cos∆ψ ∆y

0 0 1

 , (5)

and a static point is predicted to be transformed in the radar
coordinate frame such thatxt|t−1

yt|t−1

1

 = T−1
t

xt−1

yt−1

1

 . (6)

While the Bingham distribution is only closed under or-
thonormal transformations, the transition can instead be

applied to the underlying normal distribution. Applying the
transformation to given road boundary model coefficients
βt−1 and applying additive noise qt ∼ Normal(0,Qt)
results in

βt|t−1 = Ftβt−1 + qt (7)

where
Ft =

1 0 0 0
2(∆x cos∆ψ +∆y sin∆ψ) cos∆ψ sin∆ψ 0
2(∆y cos∆ψ −∆x sin∆ψ) − sin∆ψ cos∆ψ 0

∆2
x +∆2

y ∆x ∆y 1

 .

(8)
Thus the predicted road boundary model becomes

βt|t−1 ∼ Bingham((FtCt−1,kF
T
t +Qt)

−1). (9)

C. Variational Inference
While Markov Chain Monte Carlo (MCMC) methods,

especially Gibbs sampling, are often used to estimate the
posterior of such models, in an online application, the
uncertainty of the burn-in period and mixing quality makes
their convergence unreliable. Instead, we will use Mean
Field Variational Inference (MFVI) in order to estimate the
posterior distribution of the DPMM, at a small cost to
accuracy in return for much more reliable convergence [22].

For simplicity of notation, let Bt = {βt,1, . . . ,βt,Kt
},

Ct = {Ct,1, . . . ,Ct,Kt
}, and we will momentarily disregard

the subscript t for all variables for the remainder of this
subsection. The objective of MFVI then is to find an ap-
proximating joint distribution q of the true joint distribution
p such that

q(c,π,B) ≈ p(Z, c,π,B), (10)

where q(c,π,B) = q(c)q(π)q(B) and p(Z, c,π,B) =
p(Z | c,B)p(c | π)p(π)p(B). In practice, this is solved
by maximizing the variational lower bound, where for a
given factor, the log of the optimal approximating distribu-
tion q∗ is known to be proportional to the expected value
of the log of the true joint distribution p over the other
factors of the distribution [22]. For example, log q∗(c) ∝
Eπ,B[log p(Z, c,π,B)]. For this latent variable model, the
result is the Expectation-Maximization (EM) algorithm. In
each iteration we will first compute an expectation step
(E-Step), followed by a maximization step (M-Step). Iter-
ation proceeds until the parameter estimation converges. We
provide a derivation of the E-Step and M-Step the in the
Appendices of [23].



E-Step: We solve for q∗(c) which gives

γik = Ec[ [ci = k] ] =
ρik∑K
j=0 ρij

, (11)

where [ci = k] is the Iverson bracket which is equal to one
when ci = k and zero otherwise, and

ρik = Eπ[πk]

{
U(zi; [0, rmax]× [θmin, θmax]) if k = 0

N (β̂
T

kϕ(zi); 0, σ
2
ik) if k > 0

(12)
with β̂k = E[βk] (see end of Sec. IV-A) and U and
N representing uniform and normal probability density
functions respectively. Equation (11) is also equivalent to
p(ci = k | zi).

M-Step: We are then able to solve for the other parame-
ters, q∗(π) which gives

Eπ[πk] =
αk +

∑N
i=1 γik∑K

j=0

(
αj +

∑N
i=1 γij

) , (13)

and q∗(B) which gives

βk ∼ Bingham

(
C−1
k +

N∑
i=1

γik
ϕ(zi)ϕ(zi)

T

σ2
ik

)
. (14)

D. Candidate Model Generation

Due to the fact that the MFVI converges towards local
optima and not necessarily the global optimum, the quality
of the results is heavily dependent upon the initial conditions.
Therefore, it is necessary to generate high quality initial
estimates of the candidate models to be included in the
inference. To accomplish this, we take inspiration from the
structure of instantaneous multi-model fitting approaches,
especially Progressive-X [24], wherein, a RANSAC model
proposal step and a model optimization step are alternately
applied. In our case, the model optimization is accomplished
via the MFVI and the model proposal is accomplished by a
custom RANSAC variant. A single iteration of our RANSAC
variant algorithm consists of two steps: sampling and scoring.

Sampling: We instantiate a proposal model β′ exactly
from a sample of 3 detections, i.e. 4 coefficients minus 1
for homogeneity. The random sample is generated from the
Reservoir Sampling algorithm [25], wherein each detection
zi is included in the sample with probability proportional to
γi0 i.e. the probability that zi belongs to the outlier class.
Let B′ = Bt−1 ∪ β′. Additionally, let α′ =

[
αT
t−1 3

]T
,

then π′ = α′

∥α′∥1
, where ∥ · ∥1 is the L1 norm.

Scoring: Given B′ and π′ we compute a single E-Step as
described by equation (11) for γ′

ik. We define the proposal
score as the difference in the expected number of points in
the outlier class given the proposal,

ξ =

N∑
i=1

γ′
i0 − γi0. (15)

We maintain the best proposal β∗ which has the greatest
score ξ∗.

The confidence of the best proposal at iteration j is

1−

1−

(
ξ∗∑N
i=1 γi0

)3
j

, (16)

and we terminate the RANSAC algorithm when the confi-
dence is greater than some confidence threshold e.g. 99%.
If ξ∗ is greater than some acceptance threshold, then β∗

is added to the set of candidate models. The acceptance
threshold may be tuned depending upon how conservative
we would like to be in adding new candidate models wherein
the higher the threshold, the less likely we are to accept the
proposal. Generally, this threshold should be greater than the
minimum sample size of 3, otherwise it is nearly guaranteed
to accept the proposal.

E. Algorithm Termination

Given that the view of the scene changes with time, we
cannot simply use the posterior model concentration αt as
the prior for the next radar measurement at timestep t + 1.
Instead, we let the next prior be a moving average of the
expected number of points assigned to each model,

αt,k = (1− c)αt−1,k + c

N∑
i=1

γik, (17)

where c ∈ [0, 1] controls how strongly the current measure-
ment affects the concentration prior wherein c = 1 indicates
that the current iteration completely determines the prior for
the next iteration and c = 0 indicates that we maintain a
constant prior assigned in candidate generation.

Given αt,k, we eliminate any models which no longer
sufficiently contribute to the DPMM. Simply, if αt,k is
below a chosen maintenance threshold, the candidate model
k is removed from the DPMM, otherwise, the values of
αt,k, C

−1
t,k , and βt,k are used as a prior for the next radar

measurement.
Lastly, we choose the candidates to be output as βt,l and

βt,r. Given we are attempting to recognize the primary road
boundaries to the left and right, we expect them to intercept
the radar y-axis. We separate candidates into left and right
groups depending on the sign of this y-intercept and select
one from each group with y-intercept nearest to the radar
origin to be βt,l and βt,r respectively.

F. Complexity Analysis

We provide pseudocode of our algorithm with complexity
in Alg. 1. We consider that number of candidate models
Kt is bounded by Kmax such that Kt ≤ Kmax ≤ Nt

D−1 in
the worst case, where the dimensionality of our model is
a constant D = 4. However, as the road boundaries tend
to be consistent in the radar field of view and remain in
the candidate set, while other candidate models tend to be
more transient in the radar field of view and are removed in
time, we find it reasonable in practice to enforce a constant
upper bound on the number of candidate models such that
Kt ≤ Kmax ≪ Nt by bypassing the candidate model
generation when Kt = Kmax. We note that the number



Algorithm 1: Road Boundary Estimation
Data: αt−1, Ct−1

Input: {zt,i,Σt,i}i=1:Nt
Output: βt,l, βt,r

// Model Prediction
1 Ct|t−1 from (9) O(Kt−1)

2 Bt|t−1 = {β | minλ C−1
t|t−1,k

β = λβ} O(Kt−1)

3 do O(M)
// Variational Inference

4 π = αt−1/∥αt−1∥1 O(Kt−1)
5 do O(V )

// E-Step
6 {γik} from (11) O(NtKt−1)

// M-Step
7 π from (13) O(NtKt−1)

8 C−1
t from (14) O(NtKt−1)

9 Bt = {β | minλ C−1
t,kβ = λβ} O(Kt−1)

10 while not converged
// Candidate Model Generation

11 ξ∗ = 0, β∗ = ∅, confidence= 0 O(1)
12 while confidence < confidence threshold do O(G)

// Sampling
13 β′ from Reservoir Sample O(logNt)
14 B′ = Bt−1 ∪ β′ O(1)

15 α′ = [αT
t−1 3]T O(1)

16 π′ = α′/∥α′∥1 O(Kt−1)
// Scoring

17 {γ′
ik} from (11) // E-Step O(NtKt−1)

18 if ξ from (15) > ξ∗ then O(Nt)
19 ξ∗ = ξ, β∗ = β′ O(1)

20 confidence from (16) O(Nt)

21 if ξ∗ ≥ acceptance threshold then O(1)

22 Bt−1 = Bt−1 ∪ β∗, αt−1 = [αT
t−1 3]T O(1)

23 while proposal accepted
// Algorithm Termination

24 αt from (17) O(NtKt−1)
25 remove candidate models with αt,k < maintenance threshold O(Kt−1)
26 βt,l, βt,r from Bt with minimum left, right lateral distance O(Kt)

of candidate models is initially Kt−1 and the algorithm
proceeds by repeatedly growing the initial candidate set
before reducing it to its final size of Kt during algorithm
termination, so to aid our analysis, we will consider the
complexity in terms of Kmax rather than at any particular
time t.

The model prediction stage takes a constant number of
operations for each candidate model and thus a total of
O(Kmax) operations. Let the maximum number of iterations
for convergence of the variational inference be V. Both the
E-Step and the M-Step take O(NtKmax) operations, thus
each round of variational inference takes O(V NtKmax) op-
erations. Let the maximum number of iterations of candidate
generation be G. Generating a minimum sample from reser-
voir sampling take O(logNt) operations for a fixed reservoir
size [25], and scoring, primarily consisting of a single E-
Step, takes O(NtKmax) operations. Thus, each round of
candidate generation takes O(GNtKt) operations. Let the
maximum number of iterations of the main loop of our
algorithm, consisting of variational inference and candidate
generation be M ≤ Kmax − Kt−1, then the total number
of operations for this main loop is O(M(V +G)NtKmax).
Finally, algorithm termination takes O(NtKmax) operations.
Therefore, the total runtime at time t of our algorithm is
on the order of O(M(V + G)NtKmax) which reduces to
O(M(V + G)N2

t ) in the worst case or O((V + G)Nt) if
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Fig. 3. Results from Trajectory 1. (a) Sample camera view and (b) sample
top-down orthographic view of scene where grey ellipses are the radar target
detections, green squares are ground truth boundary points, and the blue and
red curves are the estimated left and right boundaries respectively. Grid has
1 meter spacing. (c) The MAE of the estimated road boundary models vs
time, where the dashed line represent the time of the sample in (a) and (b).
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Fig. 4. Results from Trajectory 2. (a) Sample camera view. (b) Sample
top-down orthographic view. (c) MAE vs time over the trajectory.

we apply a more reasonable constant upper bound on the
number of candidate models.

One can tune this computational complexity of the al-
gorithm in a few ways. An ideal selection of Kmax will
keep the candidate set saturated and ideal selection of the
proposal acceptance and candidate maintanence thresholds
will restrict the algorithm to only consider candidates with
sufficient support which together reduce the number of main
loop iterations M . V may be reduced by lowering the
convergence threshold of the variational inference, though
we note that given a smooth transition between timesteps, the
variational inference is often near convergence a priori via
the application of the predictive model. G may be similarly
reduced by setting a lower confidence threshold on candidate
model generation. Finally, because the main loop iterations
monotonically increase the variational lower bound, one can
proceed to algorithm termination at any point (e.g. by time
or iteration threshold) to retrieve a so-far-the-best estimate.

The memory consumption of our algorithm is dominated
by the two Nt×Kmax candidate-detection association matri-
ces with elements γik and γ′

ik generated during the E-Steps in
variational inference and candidate generation respectively.
This results in a memory consumption on the order of O(N2

t )
in the worst case or O(Nt) if we apply the constant upper
bound on the number of candidate models.

V. EXPERIMENTS

The proposed algorithm is developed as a Robotic Oper-
ating System (ROS) module in C++. We test the algorithm
on data collected from a Continental ARS430 automotive
Doppler radar, and the algorithm is validated against ground
truth measurements of the boundary location represented as
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Fig. 5. Results from Trajectory 3. (a) Sample camera view. (b) Sample
top-down orthographic view. (c) MAE vs time over the trajectory.

discrete points along the boundary with approximately 1
meter spacing. The vehicle drives each trajectory at roughly
the posted speed limit of the given roadway.

In order to quantify the results of our algorithm, at each
time step we compute the Mean Absolute Error (MAE)
of the estimated left and right road boundaries relative to
their associated ground truth points. Let us consider a given
estimated road boundary β and an associated set of ground
truth points S = {s1, . . . , sN}. We find that the ground
truth points are somewhat conservative, being approximately
20 cm closer to the interior of the roadway than the radar
measured points. Therefore, in order to account for this and
any GPS offset, we first calculate the mean error over the
entire trajectory, which we consider to be the bias due to
the ground truth and GPS offsets. The mean error of the
estimated boundary is e = 1

N

∑N
i=1 d(si,β) where d(si,β)

is the signed geometric distance of the ground truth point si
from the boundary β. We then compute the mean error e and
error standard deviation σe over the entire trajectory, exclud-
ing any individual estimates where |e− e| > 3σe, which we
consider to be failure cases. The mean absolute error of each
individual estimate is then eMAE = 1

N

∑N
i=1 |d(si,β) − e|.

Additionally, we calculate the failure rate for the estimation
of each the left and right boundaries to be the ratio of the
number of timesteps where |e − e| > 3σe or no estimate is
given to the total number of timesteps.

We demonstrate three different trajectories where we have
ground truth data, for which summarized results are pre-
sented in Table I. Trajectory 1, demonstrated in Fig. 3, is
along a straight, curbed roadway with minimal clutter near
the boundary. Similarly, Trajectory 2, demonstrated in Fig.
4, is along a curbed roadway with minimal clutter near the
boundary, but transitions between straight and curved seg-
ments. Trajectory 3, demonstrated in Fig. 5, presents a more
challenging case along a straight, curbed roadway, featuring
clutter on the left roadside, obfuscating the boundary, as well
as a driveway intersecting the right boundary.

We consider Trajectory 1 to be the most ideal case for our
algorithm, and, consequently, it produces the most stable es-
timation with no failure cases outside the first few timesteps
as the estimation stabilizes. Trajectory 2 results in the lowest
estimation accuracy, largely due to the road curvature tran-
sitions at t ≈ 11 s and t ≈ 21 s which temporarily violate
Assumption 3. However, even in this case, the estimation
is not considered to fail. For Trajectory 3, the mean MAE

TABLE I
SUMMARIZED RESULTS

Trajectory Boundary eMAE (cm) σeMAE (cm) % Failure

1 left 7.44 8.70 0
(300 m) right 10.7 6.68 0.96

2 left 9.36 11.9 1.13
(500 m) right 11.0 10.2 7.98

3 left 7.50 9.17 0.56
(220 m) right 9.98 11.7 14.0

is roughly consistent with the ideal case, but with increased
variance. Most generally, the estimation accuracy is typically
better for the left boundary than the right boundary. This is
due to the smaller angle of incidence to the left boundary,
providing a greater number of detections. We demonstrate
that the algorithm is capable of successful estimation under
various challenging conditions in Figs. 1 and 6.

Finally, we identify the common failure modes of the
algorithm. The most common, demonstrated in Fig. 7(a),
occurs when non-boundary detections with high leverage
cause the estimation to deviate at long range. This occurs
in Trajectory 2 at t ≈ 22 s. The other common failure mode,
demonstrated in Fig. 7(b), occurs when the primary boundary
deviates to join with the boundary of an intersecting road or
driveway. This occurs in Trajectory 3 at t ≈ 14 s. Lastly, the
boundary can be occluded by passing vehicles, which occurs
once in Trajectory 2 at t ≈ 15 s when a vehicle passes to
the left. It is worthwhile to note that in these failure modes,
while the estimation is incorrect at long range, the estimation
is often still reasonable at short range.

VI. CONCLUSION

To provide a fallback solution for autonomous vehicles
under severe weather conditions, we presented a novel road
boundary detection method that is solely based on a sparse
radar point cloud. The method was built on a homogeneous
boundary model and we derived a probability distribution of
road boundary models based on the radar point cloud using
variational inference. In order to generate initial candidate
models, we developed a custom RANSAC variant to propose
unseen model instances as candidate road boundaries. By
alternating variational inference and RANSAC proposals
until convergence we generated the best estimate of all
candidate models. We selected the candidate model with the
minimum lateral distance to the radar on each side as the
estimates of the left and right road boundaries. The algorithm
has been implemented as a ROS module and tested under real
radar data. The results are satisfactory.

In the future, we will investigate global representations
for road boundary mapping and develop a sensor-fusion
approach to further improve robustness.
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Fig. 6. A sample of successful road boundary estimations under various challenging scenarios. left: natural road boundaries without curbs, middle:
significant clutter in an urban scene, right: through a roundabout, note that the left boundary is not detectable due to its curving out of the radar field of
view.

(a) (b)

Fig. 7. A sample of common failure modes. (a) High leverage points from
clutter can disrupt the boundary estimation at long range. (b) Deviation of
the boundary at an intersection or driveway.
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