
Visual Programming for Mobile Robot Navigation
Using High-level Landmarks

Joseph Lee1, Yan Lu2, Yiliang Xu3, and Dezhen Song1

Abstract— We propose a visual programming system that
allows users to specify navigation tasks for mobile robots using
high-level landmarks in a virtual reality (VR) environment
constructed from the output of visual simultaneous localization
and mapping (vSLAM). The VR environment provides a Google
Street View-like interface for users to familiarize themselves
with the robot’s working environment, specify high-level land-
marks, and determine task-level motion commands related to
each landmark. Our system builds a roadmap by using the
pose graph from the vSLAM outputs. Based on the roadmap,
the high-level landmarks, and task-level motion commands, our
system generates an output path for the robot to accomplish
the navigation task. We present data structures, architecture,
interface, and algorithms for our system and show that, given
ns search-type motion commands, our system generates a path
in O(ns(nr lognr +mr)) time, where nr and mr are the number of
roadmap nodes and edges, respectively. We have implemented
our system and tested it on real world data.

I. INTRODUCTION

As service-oriented robots increase, they have to be pro-
grammed by users without much technical background. The
average user will need easier and more flexible robot pro-
gramming tools as opposed to the specialized programming
languages used for industrial robots [1]. For mobile robots,
the most fundamental task is to program robot navigation
capabilities, which direct a robot to move from point A
to point B in an environment in which prior maps often
are not available. For a novice user, generating a path of
waypoints on a sparse landmark map produced by prior
simultaneous localization and mapping (SLAM) outputs is
nontrivial due to the combination of human’s poor spacial
reasoning capability and lack of contextual information.

Here we propose a visual programming system that allows
users to specify navigation tasks for mobile robots using
high-level landmarks in a virtual reality (VR) environment
constructed from the output of visual SLAM (vSLAM) (See
Fig. 1). The VR graphical user interface (GUI) of our system
allows users to take a virtual tour similar to Google Street
View to familiarize themselves with the robot’s working envi-
ronment. Users can directly specify image regions of objects
as high-level landmarks from the scene. With each specified

This work was supported in part by National Science Foundation under
IIS-1318638, NRI-1426752, and NRI-1526200, and in part by TxDot 0-
6869.

1J. Lee and D. Song are with the Department of Computer Science and
Engineering, Texas A&M University, College Station, TX 77843, USA. E-
mail: {jslee,dzsong}@cse.tamu.edu

2Y. Lu is with Honda Research Institute, Mountain View, CA 94043,
USA. E-mail: sinoluyan@gmail.com

3Y. Xu is with Apple Inc., Cupertino, CA 95014, USA. E-mail:
yiliang xu@ieee.org

 Go to

Roadmap

Pose graph

Path

Motion
command
sequence

High-level
landmarks

 Left at

 Go toStart at Go to

Keypose

High-level
landmark
selection

Stop at

Motion
planning

High-level
landmarks

 Left at

 Go toStart at Go to Go to

Virtual
environment

tour

Stop at

Fig. 1: Mobile robot programming with our proposed system (Best
viewed in color). Our system generates a robot path from a user-
defined motion command sequence that uses high-level landmarks.
This enables users to program mobile robots at the object level
without dealing with low-level map coordinates.

landmark, the user creates task-level motion commands. In
the preprocessing step, our system builds a roadmap by using
the pose graph from the vSLAM outputs. Based on the
roadmap, the high-level landmarks, and task-level motion
commands, our system generates an output path for the robot
to accomplish the navigation task.

We present data structures, architecture, interface, and
algorithms for our system. Given ns search-type motion com-
mands, our system generates a path in O(ns(nr lognr +mr))
time, where nr and mr are the number of roadmap nodes
and edges, respectively. We have implemented our system
and tested it with real indoor data acquired by a mobile
robot equipped with a synchronized camera array and a lidar
sensor. The experimental results show that our system can
generate robot paths that satisfy the user commands.

II. RELATED WORK

Our proposed robot programming system relates to the
areas of robot programming, motion planning, SLAM, and
teleoperation.

In [1], Biggs and MacDonald provide a survey on robot
programming which divides the methods into manual pro-
gramming and automatic programming. In manual program-
ming, the user directly programs the robot using either
text-based [2] or graphical systems [3], whereas automatic
programming refers to methods such as learning and pro-
gramming by demonstration, a common technique used for
manipulator robots [4], [5]. For mobile robots, Kanayama

and Wu [2] develop a high-level programming language for
text-based programming. Nicolescu and Mataric [6] develop
an instructive system that programs a mobile robot using
learning by demonstration. However, the effort to train a
mobile robot in this approach will grow linear to space, and
many training examples are required to increase flexibility.
Our system can be viewed as a new task-level automatic
programming using VR.

Robot motions can be generated by motion planning
algorithms with classic methods such as [7], [8]. However,
motion planning requires a complete scene representation
which is often unavailable for service mobile robots in
unstructured environments. Also, motion planning can be a
difficult task for a robot and can benefit from human input.
For example, a human-assisted motion planner is proposed
in [9] where the user can steer the planner towards/away from
certain regions. In [10], a remote human-in-the-loop gripper
is presented where the user can assist motion planning by
moving a virtual gripper in the display and specifying way-
points. Our path generation step can be viewed as a motion
planning problem with a given roadmap. However, inspired
by the existing works, the main focus of our system is to
translate user intention into the motion planning framework
to automate the path generation process.

To display the robot’s working environment, our system
employs VR built by keyframes from vSLAM. We also
use pose graph from the vSLAM as a starting point for
the roadmap construction. SLAM can be performed using
depth sensors and visual sensors, i.e. regular cameras. SLAM
methods based on depth sensors such as lidar [11], [12]
and RGB-D cameras [13], [14] have low scale-drift issues,
whereas visual sensors provide both geometric and appear-
ance data. In vSLAM, the extended Kalman filter [15] and
bundle adjustment [16] are mainly used. In our work, we use
a 2D lidar map generated by the method in [17] and use the
pose graph and keyframes of the multi-layered feature graph
(MFG) proposed by [18] which exploits the regularities of
urban environment such as rectilinear structures.

Integrating trajectory following and obstacle avoidance
capabilities [19], our system can be used as a supervi-
sory control system in teleoperation. Fong and Thorpe [20]
classify vehicle teleoperation interfaces into four categories:
direct [21], multimodal/multisensor, supervisory control [22],
and novel [23]. To allow a free-look of the environment, a
visual teleoperation display is also proposed for unmanned
vehicles using a spherical camera and an Oculus Rift [24]. It
has been shown that VR can significantly improve telepres-
ence. Our system falls into this category. However, directly
controlling the robot can be difficult due to poor spacial rea-
soning of the user from the display. Our high-level landmark-
based supervisory control can avoid this issue.

Our experience in vSLAM using mobile robots [18] and
teleoperation [25], [26] has prompted a need for a system
that allows users to easily assist robot navigation in urban
environments.

1. GUI
2. Load SLAM
output

3. Panorama
construction

MFG data

8. Path
generation

2D lidar map

4. Roadmap
conversion

6. Roadmap view
construction

Panorama

Motion command sequence

Roadmap

Pose graph

Keyframe

5. Scene view
construction

7. Extract high-
level landmark

User input

High-level
landmark
selection

OTL
 motion

sequencing

Exploration
& navigation

Path

High-level landmark

Map

Mobile
robot

Fig. 2: System diagram

III. SYSTEM DESIGN

A. Overall structure

The system diagram of our visual programming system is
depicted in Fig. 2. Using our system, a user explores and
navigates through the robot’s environment as a virtual tour
and specifies high-level landmarks which are used for object-
oriented task-level (OTL) motion sequencing. Given the OTL
motion commands, our system generates a robot path.

From the GUI, the user first loads the MFG data and 2D
lidar map to construct the robot’s environment and roadmap.
The environment is created using both keyframes and the
pose graph of the MFG data, and the roadmap is created from
the pose graph as a preprocessing step. The user navigates
along the roadmap and keeps track of his current pose in
the roadmap view, where the roadmap is overlaid on the 2D
lidar map. From the scene view, the user selects high-level
landmarks which are used for OTL motion sequencing. After
the user completes motion sequencing, the system generates
a path from the given motion commands. The robot path is
then displayed to the user and used by a mobile robot.

The generated path is not limited to our robot but can
be used among different type of mobile robots. When the
path is generated off-line, the path can be used to program a
mobile robot. However, as noted previously, our system can
also be used as an interface for on-line robot control in a
teleoperation scenario.

B. Data structures

The data structures in the MFG data that are used in our
system are listed as follows:
• Keyframe is a camera image denoted by Ik

i , where k
denotes the key index, and i denotes the camera index
in the synchronized camera array.

• Keypose is an estimated robot pose when keyframe Ik
i

is captured. Let the camera pose for Ik
i be defined by

a rotation matrix Rk
i ∈ SO(3) and a translation vector

tk
i ∈R3. Then the keypose is aligned with the reference

camera pose in the camera array, i.e. Rk
0 and tk

0.
• Pose graph is an undirected graph P, where nodes rep-

resent keyposes and edges represent their dependencies.
Additionally, the required data structures used to generate

a robot path from user commands are illustrated in Fig. 1
and defined below.

• High-level landmark is a user-specified image region in
Ik
i . The image region is defined by a bounding box and

labeled by the user. However, if an image recognition
algorithm is available, high-level landmarks can also be
identified by the system.

• Motion command is a text command paired with a high-
level landmark by the user. The text commands specify
robot tasks, such as start at, go to, and avoid.

• Motion command sequence is a directed graph M, where
a node mi represents a motion command, and edge
(mi,m j) represents the transition from mi to a child node
m j. Each edge has a condition that should be satisfied
to make the transition.

• Roadmap is an undirected graph R, where the k-th node
rk represents a waypoint rk ∈R3. An edge (rk1 ,rk2) in R
represents the Euclidean distance between rk1 and rk2 .

• Path is a continuous sequence S where the elements are
robot positions in R3.

C. User Interface

In this section, we describe the GUI of our system
(Fig. 2 Box 1) that facilitates robot programming using
high-level landmarks. Our GUI, shown in Fig. 3, consists
primarily of four components: scene view, roadmap view,
motion command panel, and motion sequencing panel. These
components support mainly three user activities for robot
programming: exploration and navigation, high-level land-
mark selection, and OTL motion sequencing. We detail them
in the following sections.

1) Exploration and navigation: When the user loads the
MFG data and 2D lidar map (Fig. 2 Box 2), the scene view
and roadmap view display the robot’s environment in an
interactive OpenGL scene. Both scene view and roadmap
view assist the user with exploration and navigation and
provide situation awareness.

From the scene view, the user views the scene as
a panorama image that is constructed using the MFG
keyframes (Fig. 2 Box 3). For immersive viewing experience,
we use a spherical panorama, i.e. a panorama texture mapped
on a spherical surface. The user can explore the environment
using pan, tilt, and zoom controls in the scene view. The
roadmap R is also overlaid in the scene view so that the user
can see the navigable paths.

In the roadmap view, the roadmap R is overlaid on the
2D lidar map that is viewed top-down. The roadmap R
is constructed from the pose graph P using the algorithm
described in Sec. III-D (Fig. 2 Box 4). When the user
navigates through the environment, the scene view camera
moves along the nodes in R and the spherical panorama
is created at the current position of the scene camera. The
roadmap view allows translating and zooming for exploration
of the environment.

2) High-level landmark selection: When the user explores
the environment using the scene view, the user can specify
high-level landmarks directly from the panorama image
(Fig. 2 Box 7). To specify a high-level landmark, the user
uses a mouse to specify a bounding box corner in the

panorama image to extract objects of interest. When the
user clicks the spherical panorama, an intersection point X
between the sphere and the ray that originates from the
mouse position is computed.

Let Πk
i be the image plane of the camera image Ik

i , and let
Ck

i be the camera center. The intersection point I between Πk
i

and the line L = Ck
i +(X−Ck

i)t where t ∈R is computed by
I = Ck

i +(X−Ck
i)((P−Ck

i) ·Nk
i)/((X−Ck

i) ·Nk
i), where P is

a point on Πk
i and Nk

i is its normal. Then, the (x,y) image
coordinates of I, i.e. the bounding box corner, in image Ik

i
is computed.

When the bounding box is defined, the high-level land-
mark is highlighted in the spherical panorama. The region
inside the bounding box in Ik

i is colored and mapped to
the panorama texture T k(u,v) by using the maps mx

i (u,v) =
x, my

i (u,v) = y, which transforms Ik
i (x,y) to T k(u,v) by

T k(u,v) = Ik
i (m

x
i (u,v),m

y
i (u,v)), where (u,v) is the texture

coordinate and is related to the spherical coordinates by
θ = vπ and φ = π(2u−1), where θ and φ are the latitude
and longitude angles of the coordinates of the sphere S =
[r sin(θ)cos(φ),−r cos(θ),−r sin(φ)sin(θ)], where r is the
radius.

A label of the landmark can be added through the land-
mark list and is displayed in the scene view. The high-level
landmarks can be saved as a file and can be loaded for later
usage.

3) OTL motion sequencing: The user performs motion
sequencing using the motion command panel and the motion
sequencing panel. The motion command panel contains two
list views: the command list and landmark list. The user
selects an item from each list view to form a motion
command. Here, we only focus on six commands: go to,
start at, stop at, left at, right at, and avoid. New commands
can be added per task requirement.

When a high-level landmark is specified by the user, it is
displayed as an iconized landmark in the landmark list in
the motion command panel. The user selects an item from
each list, i.e. a text command and high-level landmark, to
form a motion command. When the user presses the Add
motion command button, an orphan node corresponding to
the user-defined motion command is created in the motion
sequencing panel.

After the user creates motion commands, which are the
building blocks of a motion command sequence, the user
can arrange motion commands in the motion sequencing
panel to create a motion command sequence M for higher-
level tasking. Since high-level landmarks are displayed in the
nodes, the user can create high-level commands in an object-
oriented fashion. After an orphan node is created from the
motion command panel, using a mouse, the user can connect
the nodes with directed edges to create a motion sequence.
The interface allows the user to add/remove nodes and edges
in the graph. When an edge is selected, the user can add
transition conditions. In our system, a transition condition
is whether a motion command node is visited for a certain
number of times (See Fig. 7 for example.) After the user
constructs a sequence, the user presses the Generate path

High-level landmark
selection

Roadmap

Current
pose

Motion command sequence

Roadmap

Fig. 3: The GUI of our system. (Best viewed in color.) The GUI mainly consists of four components: the scene view (top-left), roadmap
view (top-right), motion command panel (bottom-left), and motion sequencing panel (bottom-right).

Algorithm 1 Pose Graph To Roadmap Preprocessing
Input: Pose graph P, search radius d, number of nearest neighbors k to search
Output: Roadmap R
1: /* Initialize roadmap */
2: R← P . O(np +mp)
3: /* Build kd-tree */
4: T ← KD-TREE-CREATE(V (R)) . O(np lognp)
5: /* Connect near keyposes */
6: for each vertex r ∈V (R) do . O(np)
7: /* Find k-nearest neighbors within fixed radius */
8: Q← KD-TREE-SEARCH(T,r,k,d) . O(k lognp)
9: for each vertex q ∈ Q do . O(k)

10: if edge (r,q) /∈ E(R) then
11: R← R∪{(r,q)}
12: end if
13: end for
14: end for

button, and the system will compile the motion command
sequence M and generate a path S that satisfies the commands
(Fig. 2 Box 8). The path S is overlaid on the roadmap view
which allows the user to map the high-level commands into
physical space at a glance. High-level landmarks associated
with the motions are also displayed along the path in the
roadmap view.

D. Algorithms

When the user loads the MFG data, the pose graph P is
converted into the roadmap R as a preprocessing step using
Algorithm 1 (Fig. 2 Box 4). When the user creates the motion
sequence and presses the Generate path button the path is
generated using Algorithm 2 (Fig. 2 Box 8). In the following,
for a graph G, we denote the set of vertices and edges by
V (G) and E(G), respectively.

In Algorithm 1, roadmap R is first initialized by copying
the nodes and edges from P. The value of each node rk ∈
V (R) is set as the keypose position rk =−Rkᵀ

0 tk
0, and the value

of each edge (ra,rb) ∈ E(R) is set by distance[(ra,rb)] =
‖ra−rb‖. We build a kd-tree with the roadmap node values
rk. Then, for each rk, we perform a k-nearest neighbor search
within a fixed radius and obtain the set of nodes Q. We
add an edge from node rk to each node in Q if it is not
already a neighboring node. This is illustrated in Fig. 4. If
we let np = |V (P)| and mp = |E(P)|, the time complexity of

Algorithm 2 Path Generation
Input: Motion command sequence M, roadmap R, current node rc ∈ R
Output: Path S
1: mcurr ← head[M]
2: while mcurr 6= NIL do
3: /* Handle motion command */
4: c← command[mcurr]
5: rt ← target[mcurr]
6: if c = START or c = STOP or c = GOTO then
7: /*graph-search-types */
8: T ← DIJKSTRA(Rc,rc,rt) . O(nr lognr +mr)
9: S← S∪T

10: rc← rt
11: /* Restore graph edges */
12: Rc← R
13: else if c = AVOID or c = LEFT or c = RIGHT then
14: /*graph-edit-types */
15: E← EXTRACT-EDGES(Rc,rc,c,S) . O(dr)
16: for each e ∈ E do . O(dr)
17: distance[e]← ∞

18: end for
19: end if
20: /* Handle transition conditions */
21: mnext ← NIL
22: k← 0
23: for each edge e ∈ outedge[mcurr] do . O(dm)
24: if condition[e] = TRUE then
25: mnext ← head[e]
26: k← k+1
27: end if
28: end for
29: if k > 1 then
30: error “invalid motion command sequence”
31: end if
32: mcurr ← mnext
33: end while

Algorithm 1 is O(knp lognp +mp).
Algorithm 2 generates a path S from a motion com-

mand sequence M. In a graph point of view, there are two
types of motion commands in our system: graph-search-type
commands and graph-editing-type commands. The former
includes start at, stop at, and go to, and performs a search
in the current roadmap Rc. The latter includes avoid, left
at, and right at which modifies edge weights in Rc. For
graph-search-type commands, a shortest path search using
Dijkstra’s algorithm is performed. For the graph-editing-
type commands, the edges extracted from EXTRACT-EDGES,
which depends on the specified command, are modified. For
example, see Fig. 5. Let dr be the maximum degree of R,
and let dm be the maximum outdegree of M. If we let nr =
|V (R)| and mr = |E(R)|, the graph-search-type commands

(a) (b)

d

r

Fig. 4: Pose graph to roadmap. (a) Nearest neighbors search region.
(b) Newly added edges and navigable paths.

(a) (b)

cr

cr

Fig. 5: Modified edge weights and navigable paths using graph-
editing-type commands (a) avoid and (b) left at.

run in O(nr lognr + mr), whereas the graph-editing-type
command runs in O(dr). Let the number of graph-search-
type commands be ns and let the number of graph-editing-
type commands be ne. Then the worst case time complexity
of Algorithm 2 is O(ns(nr lognr +mr + dm) + nedr). If we
consider that dm, dr, ns, and ne are usually small compared to
nr and mr the time complexity becomes O(ns(nr lognr+mr)).

IV. EXPERIMENTS

We have implemented our system in C++. To evaluate the
effectiveness of our system, we have tested our system using
real world data. We use a set of motion command sequences
as input and verify that the generated output paths are correct.
We have also tested the runtime of our algorithm and show
numerical test results.

A. Data set

Our ground mobile robot that was used to collect data
is built on an X80Pro platform. The wheel-based platform
has two 12V motors and can move at a maximum speed
of 75cm/sec. A SICK TiM571 lidar which has a 25m-
depth range, a 270◦-angular coverage range, and a scanning
frequency of 15Hz is mounted on the platform. On top of the
robot, six Point Grey USB3 2.1MP color cameras (BFLY-U3-
23S6C-C) are mounted. The cameras are synchronized by
an external trigger and capture 960×600 resolution images
at a frequency of 1Hz. This frame rate is suitable for our
application due to slow robot movement. Here, we present
data collected from two environments: office and garage.
The size of the environment is shown in Fig. 6, where each
chessboard square in the background of the 2D lidar map is
1m2. The office data contains 45 keyposes, and the garage
data contains 181 keyposes in the pose graph.

B. Roadmap construction and Path generation

We have tested our system using a set of motion command
sequences to verify whether our system can generate correct
motion paths. For each dataset, we first load the MFG data
and 2D lidar map into our system. Then we provide the
system with different motion command sequences for testing.

When the MFG data is loaded, our system constructs a
roadmap from the pose graph using Algorithm 1. Figs. 6a
and 6b show the constructed roadmaps for the office and
garage data, respectively. Note that in Fig. 6a, the original

(a) Office (b) Garage

Fig. 6: Roadmaps and high-level landmarks.

MCS #1

MCS #2

MCS #3

Fig. 7: Sample motion command sequences (MCSs) for testing
(Best viewed in color). The color of the motion command nodes
correspond to the colors of their resulting path segments in Fig. 8.

sequential pose graph is converted into a loop which allows
the user to navigate in different directions.

Next, we use a set of motion command sequences (MCSs)
to test Algorithm 2. Fig. 7 shows the motion command
sequences that are used for testing: MCS #1 and MCS #2 are
used for the office data, and MCS #3 is used for the garage
data. Fig. 8a shows the generated path from MCS #1 which
contains only graph-search-type commands. The resulting
path is the shortest path on the roadmap. We use MCS
#2 to test a combination of graph-search-type and graph-
editing-type commands. Figs. 8b and 8c show the resulting
partial paths where a longer route is taken due to the avoid
command. Finally, we use MCS #3 to test the transition
conditions used in a repetitive motion task. Figs. 8d, 8e,
and 8f show the generated partial paths. Due to the transition
conditions, the pillar, sign, and object high-level landmarks
are visited twice.

C. Runtime test

We test the runtime of our algorithm under different
parameter settings. The testing computer is a PC laptop with
a 1.9GHz Intel Core i7 CPU and 8GB RAM. The operating
system is a 64-bit Windows 8. We test both algorithms
in Sec. III-D on the garage data to see how they perform
depending on the size of the input pose graph and roadmap.
Fig. 9a shows the runtime of Algorithm 1 respect to the
pose graph size np. For each k nearest neighbor settings, we
compute the average of 1000 runs. Fig. 9b shows the runtime
of Algorithm 2 respect to the roadmap size nr. We increase
the number of graph-search-type commands ns from 1 to 5 in
a motion command sequence. The results show an average of
100 runs for each ns. Trends in both Figs. 9a and 9b conform
to our complexity analysis.

Go to box

Go to
window Go to box

Go to
window

Go to
pillar

Go to sign

Go to object

Go to pillar Go to sign

Go to object

Go to exit

(a) (b) (c)

(d) (e) (f)

Fig. 8: Path segments from MCSs in Fig. 7 (Best viewed in color).

0 20 40 60 80 100 120 140 160 180

200

400

600

800

1000

1200

1400

1600

Ti
m

e
(m

ic
ro

se
co

n
d

s)

𝑛𝑝

𝑘 = 4

𝑘 = 3

𝑘 = 2

𝑘 = 1

𝑘 = 0

(a)

Ti
m

e
 (

m
ic

ro
se

co
n

d
s)

𝑛𝑟
0 20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

𝑛𝑠 = 5

𝑛𝑠 = 4

𝑛𝑠 = 3

𝑛𝑠 = 2

𝑛𝑠 = 1

(b)

Fig. 9: Runtime results.

V. CONCLUSIONS AND FUTURE WORK

We proposed a new system that allows users to visually
program mobile robots. The system used a VR environment
constructed from keyframes in vSLAM results to allow users
to experience robot working environment and define high-
level landmarks associate with OTL motion commands. Our
algorithms converted the OTL motion commands to weight
point paths to guild robots without overtaxing on human
spatial reasoning capability. We presented the data structures,
system architecture, user interface, and algorithms. We tested
our system using real world data and showed that the
generated paths satisfied the motion task requirements. For
future work, we would like to extend our method so that
the optimal motion sequencing is not restricted to the exact
pose graph locations. We will also extend the set of motion
commands to support different type of motions.

ACKNOWLEDGMENT

We would like to thank A. Perera and S. Oh for their input during the
early development of this project. We would also like to thank C. Chou, H.
Cheng, B. Li, S. Yeh, G. Li, M. Treat, R. Liu, and Y. Sun for their input
and contributions to the NetBot Lab at Texas A&M University.

REFERENCES

[1] G. Biggs and B. Macdonald, “A survey of robot programming sys-
tems,” in Proc. of the Australasian Conf. on Robotics and Automation,
2003, p. 27.

[2] Y. Kanayama and C. Wu, “It’s time to make mobile robots pro-
grammable,” in Proc. of the IEEE Int. Conf. on Robotics and Au-
tomation (ICRA), vol. 1, 2000, pp. 329–334.

[3] W. Dai and M. Kampker, “User oriented integration of sensor oper-
ations in a offline programming system for welding robots,” in Proc.
of the IEEE Int. Conf. on Robotics and Automation (ICRA), vol. 2,
2000, pp. 1563–1567.

[4] S. Alexandrova, M. Cakmak, K. Hsiao, and L. Takayama, “Robot
programming by demonstration with interactive action visualizations,”
in Proc. of Robotics: Science and Systems (RSS), Berkeley, USA, July
2014.

[5] S. Manschitz, J. Kober, M. Gienger, and J. Peters, “Learning to
sequence movement primitives from demonstrations,” in Proc. of
the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),
September 2014, pp. 4414–4421.

[6] M. N. Nicolescu and M. J. Mataric, “Natural methods for robot task
learning: Instructive demonstrations, generalization and practice,” in
Proc. of the 2nd Int. Joint Conf. on Autonomous Agents and Multiagent
Systems, 2003, pp. 241–248.

[7] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp.
566–580, Aug 1996.

[8] S. M. Lavalle, J. J. Kuffner, and Jr., “Rapidly-exploring random trees:
Progress and prospects,” in Algorithmic and Computational Robotics:
New Directions, 2000, pp. 293–308.

[9] J. Denny, R. Sandström, N. Julian, and N. M. Amato, “A region-
based strategy for collaborative roadmap construction,” in The 11th
Int. Workshop on the Algorithmic Foundations of Robotics (WAFR),
August 2014, pp. 125–141.

[10] A. Leeper, K. Hsiao, M. Ciocarlie, L. Takayama, and D. Gossow,
“Strategies for human-in-the-loop robotic grasping,” in Proc. of the
ACM/IEEE Int. Conf. on Human-Robot Interaction (HRI), March
2012, pp. 1–8.

[11] P. Newman, D. Cole, and K. Ho, “Outdoor slam using visual appear-
ance and laser ranging,” in Proc. of the IEEE Int. Conf. on Robotics
and Automation (ICRA), May 2006, pp. 1180–1187.

[12] J. Zhang and S. Singh, “Loam: Lidar odometry and mapping in real-
time,” in Proc. of Robotics: Science and Systems (RSS), July 2014.

[13] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “Rgb-d mapping:
Using kinect-style depth cameras for dense 3d modeling of indoor
environments,” The International Journal of Robotics Research (IJRR),
vol. 31, no. 5, pp. 647–663, 2012.

[14] F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard, “3-d
mapping with an rgb-d camera,” IEEE Transactions on Robotics,
vol. 30, no. 1, pp. 177–187, 2014.

[15] J. Civera, O. G. Grasa, A. J. Davison, and J. Montiel, “1-point ransac
for extended kalman filtering: Application to real-time structure from
motion and visual odometry,” Journal of Field Robotics, vol. 27, no. 5,
pp. 609–631, 2010.

[16] K. Konolige and M. Agrawal, “Frameslam: From bundle adjustment
to real-time visual mapping,” IEEE Transactions on Robotics, vol. 24,
no. 5, pp. 1066–1077, 2008.

[17] S. Kohlbrecher, J. Meyer, O. von Stryk, and U. Klingauf, “A flex-
ible and scalable slam system with full 3d motion estimation,” in
Proc. IEEE Int. Symposium on Safety, Security and Rescue Robotics,
November 2011.

[18] Y. Lu and D. Song, “Visual navigation using heterogeneous land-
marks and unsupervised geometric constraints,” IEEE Transactions on
Robotics, vol. 31, no. 3, pp. 736–749, June 2015.

[19] R. C. Arkin, Behavior-based Robotics. Cambridge, MA, USA: MIT
Press, 1998.

[20] T. W. Fong and C. Thorpe, “Vehicle teleoperation interfaces,” Au-
tonomous Robots, vol. 11, no. 1, pp. 09–18, July 2001.

[21] D. Lee, O. Martinez-Palafox, and M. Spong, “Bilateral teleoperation
of a wheeled mobile robot over delayed communication network,” in
Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), May
2006, pp. 3298–3303.

[22] C. Masone, A. Franchi, H. Bulthoff, and P. Giordano, “Interactive
planning of persistent trajectories for human-assisted navigation of
mobile robots,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS), Oct 2012, pp. 2641–2648.

[23] C. Escolano, J. Antelis, and J. Minguez, “A telepresence mobile
robot controlled with a noninvasive brain-computer interface,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,
vol. 42, no. 3, pp. 793–804, June 2012.

[24] K. Kruckel, F. Nolden, A. Ferrein, and I. Scholl, “Intuitive visual
teleoperation for ugvs using free-look augmented reality displays,” in
Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), May
2015, pp. 4412–4417.

[25] K. Goldberg, D. Song, and A. Levandowski, “Collaborative teleop-
eration using networked spatial dynamic voting,” Proceedings of the
IEEE, vol. 91, no. 3, pp. 430–439, Mar 2003.

[26] D. Song and K. Goldberg, “Sharecam part 1: interface, system ar-
chitecture, and implementation of a collaboratively controlled robotic
webcam,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS), vol. 2, Oct 2003, pp. 1080–1086.

