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Abstract. A mobile robot equipped with a single camera can take images at differ-
ent locations to obtain the 3D information of the environment for navigation. The
depth information perceived by the robot is critical for obstacle avoidance. Given a
calibrated camera, the accuracy of depth computation largely depends on locations
where images have been taken. For any given image pair, the depth error in regions
close to the camera baseline can be excessively large or even infinite due to the
degeneracy introduced by the triangulation in depth computation. Unfortunately,
this region often overlaps with the robot’s moving direction, which could lead to
collisions. To deal with the issue, we analyze depth computation and propose a pre-
dictive depth error model as a function of motion parameters. We name the region
where the depth error is above a given threshold as an untrusted area. Note that
the robot needs to know how its motion affect depth error distribution beforehand,
we propose a closed-form model predicting how the untrusted area is distributed on
the road plane for given robot/camera positions. The analytical results have been
successfully verified in the experiments using a mobile robot.

1 Introduction

Vision-based navigation is preferable because cameras can be very small, pas-
sive, and energy-efficient. Using a single camera to assist a mobile robot is the
most simplistic configuration and is often adopted in small robots. However,
images from cameras contain rich information of the environment, and un-
derstanding the imaging data is nontrivial. Extracting geometry information
from images is critical for obstacle avoidance. Stereo vision approaches are
often employed.

For the monocular system, the stereo information can be constructed
using structure from motion (SFM) approach [1]. This method constructs
depth information using images taken at different perspectives. Since the
robot motion changes camera perspectives, the baseline distance is not limited
by the width of the robot and it is desirable for small robots. However, the
SFM approach has its own limitation. The depth of obstacles located at
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the baseline cannot be obtained because the camera centers and obstacle
locations are collinear. Unfortunately, if the robot moves along a straight
line, its forward direction is always the baseline direction.

Understanding depth error distribution on the road plane is critical for ap-
plications such as robot navigation. We model how depth error is distributed
on the road plane and partition the road plane using a given error thresh-
old. The predictive closed-form model is a function of robot motion settings
and can be used to predict how the region beyond the given error thresh-
old changes on the road plane. Hence the model has the potential to benefit
a variety of applications including 1) guiding the robot for mixed initiative
motion planning for better sensing and navigation, 2) guiding the selection
of visual landmarks for vision-based simultaneous localization and mapping
(SLAM), and 3) improving the visual tracking performance for mobile robots.

The proposed predictive depth error distribution model has been tested in
physical experiments. The experiments use a mobile robot and artificial ob-
stacles to validate the predictive depth error model. The experimental results
have confirmed our analysis.

2 Related Work

Our research is related to monocular vision systems for robots, structure from
motion (SFM) [1], and active vision [2–4].

Due to its simple configuration, a monocular vision system is widely used
in mobile robots with space and power constraints. The research work in this
category can be classified into two types including SLAM and vision-based
navigation. SLAM [5–8] focuses on the mapping and localization aspects and
is often used in structured indoor environments where there are no global
positioning system (GPS) signals to assist robots in navigation. SLAM fo-
cuses on identifying and managing landmark/feature points from the scene
for map building and localization. Obstacle avoidance is not the concern of
SLAM.

Our work focuses on monocular vision-based navigation for obstacle de-
tection and avoidance. Due to the inherent difficulty in understanding the
environment using monocular vision, many researchers focus on applying ma-
chine learning techniques to assist navigation [9–12]. However, those methods
are appearance-based and only utilize color and texture information. Lack of
geometry information limits their ability in obstacle detection.

Our work is a geometry-based approach that uses SFM to obtain the in-
formation of the environment. SFM can simultaneously estimate both the 3D
scene and camera motion information [1]. Since the camera motion informa-
tion is usually available from on-board sensors such as an inertial measure-
ment unit (IMU) or wheel encoders, the dimensionality of the SFM problem
can be reduced to the only estimation of the 3D scene, namely the triangu-
lation computation. The depth error is determined by the image correspon-
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dence error and the camera perspectives. To obtain the 3D information, it is
necessary to find the corresponding points between the overlapping images.
However, due to the fact that images are discrete representations of the envi-
ronment and the inherent difficulty in image matching, it is unavoidable that
matching errors are introduced into the corresponding points [13, 14]. There
are many newly developed techniques that can be used to reduce correspon-
dence errors. Such techniques include low-rank approximations [15–17], power
factorization [18], closure constraints [19], and covariance-weighted data [20].
In addition, new features, such as planar parallax [21–24] and the probability
of correspondence points [25], can be used instead of correspondence points
to reduce the correspondence error.

Our work accepts the fact that image correspondence cannot be elimi-
nated completely. We instead study how the depth error is affected by the
image correspondence error. Although the variance of the image correspon-
dence error are the same across the image plane [13,14], the variance of depth
error is not uniformly distributed across the image coverage [26]. Therefore,
robot navigation and camera motion planning should take the depth error
distribution information into account. This observation inspires our develop-
ment.

3 Problem Description

3.1 Coordinate Systems

Our algorithm runs every τ0 time. In each period, the robot has a trajectory
T (τ), τ ∈ [0, τ0]. The period length τ0 is a preset parameter depending on
the speed of the robot and the computation time necessary for stereo recon-
struction. The most common approach to assist robot navigation is to take
a frame F at τ = 0 and another frame F at τ = τ0 for the two-view stereo
reconstruction. As a convention, we use underline and overline with variables
to indicate their correspondence to F and F , respectively. To clarify the prob-
lem, we introduce the following right hand coordinate systems as illustrated
in Fig. 1.

• World coordinate system (WCS): A fixed 3D Cartesian coordinate sys-
tem. Its y-axis is the vertical axis, and its x-z plane is the road plane.
Trajectory T (τ) is located in the x-z plane with T (τ0) located at the ori-
gin of the WCS. Hence, T (τ) = [xw(τ), zw(τ)]T , 0 ≤ τ ≤ τ0 as illustrated
in Fig. 1.

• Camera coordinate system (CCS): A 3D Cartesian coordinate system
that is attached to a camera mounted on a robot with its origin at the
camera optical center. Its z-axis coincides with the optical axis and points
to the forward direction of the robot. Its x-axis and y-axis are parallel to
the horizontal and vertical directions of the CCD sensor plane, respec-
tively.



4 D. Song, H. Lee, and J.Yi

WCS

yw xw

zw

h cxcy

cz
CCS of F

cx

cz

c
y

t

CCS of F

)0(T

)(τT

)( 0τTRoad plane

Fig. 1. Definition of coordinate systems and their relationship. The WCS is a fixed
coordinate system while a CCS is attached to the moving camera.

• Image coordinate system (ICS): A 2D image coordinate system with the
u-axis and v-axis parallel with the horizontal and vertical directions of an
image, respectively. Its origin is located at its principal point. Coordinates
u and v are discretized pixel readings. When we mention frames such as
F , F and F , they are defined in the ICS.

Frames such as F and F have their corresponding CCSs and ICSs. We use
the notation CCS(F ) to represent the corresponding CCS for frame F . As
illustrated in Fig. 1, the origin of CCS(F ) projects to T (τ0) on the road
plane, which is the origin of the WCS. The vertical distance between the
origins of the CCS(F ) and the WCS is the camera height h. The origin of
CCS(F ) projects to T (0) on the road plane.

3.2 Assumptions

• We assume that obstacles in the environment are either static or slow-
moving. Therefore, the SFM algorithm can be applied to compute the
depth information.

• We assume both intrinsic and extrinsic camera parameters are known
either from pre-calibration or camera angular potentiometers and robot
motion sensors. The camera has square pixels and zero skew factors,
which is valid for most cameras.

• The robot takes frames periodically for the stereo reconstruction. During
each period, we assume that the road surface can be approximated by a
plane, which is the x-z plane of the WCS as illustrated in Fig. 1.

• We assume that the pixel correspondence error across different frames is
uniformly distributed in the ICS. We believe that the pixel correspon-
dence errors do not have an infinite tail distribution in reality and the
uniform distribution is a conservative description of the property.

• We assume all CCSs are iso-oriented with the CCS(F ), which is deter-
mined by the navigation direction at time τ0. Although the robot may
have different positions and orientations when taking images, we can
project the images into the CCSs that are iso-oriented with CCS(F )
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using a perspective re-projection because we know accurate camera pa-
rameters.

3.3 Problem Context

Frames and Frame Parameters For frames such as F and F , we need
to define their corresponding robot locations and camera parameters. As
illustrated in Fig. 1, the camera is mounted at a height of h. Hence the
camera position is uniquely defined by its coordinates (xw, h, zw) in the WCS.
In order to have a good coverage of the road, the camera usually tilts towards
the ground as illustrated in Fig. 1. The tilt angle is defined as t.

Obstacle-Free Region The previous period provides an obstacle-free road
region Rf . The robot needs to stay in Rf and reach T (τ0) at the end of the
current period.

Region of Interest A camera frame usually covers a wide range, from
adjacent regions to an infinite horizon. For navigational purposes, the robot
is not interested in regions that are too far away. As illustrated in Fig. 1,
the z-axis of the WCS points to the robot’s forward direction at time τ = τ0

when frame F is taken. zM is defined as the maximal distance that the robot
cares about in the next iteration of the algorithm. The region of interest Ri

is a subset of camera coverage,

Ri = {(xw, zw)|0 ≤ zw ≤ zM , (xw, zw) ∈ Π(F )}, (1)

where xw and zw are defined in the WCS and function Π(F ) is the coverage
of F in the x-z plane of the WCS. Our research problem is to understand
how the depth error is associated with objects in Ri. To study how the depth
error is distributed on the road plane, we introduce the untrusted area below.

3.4 Untrusted Area and Problem Formulation

The computed depth information is not accurate due to the image corre-
spondence error. According to our assumptions, for a given pixel in F , the
corresponding pixel in F can be found with an error that is uniformly and
independently distributed. Hence, the depth error is also a random variable.
Define e = zw − ẑw as the depth error, which zw is the true depth of the
corresponding object in the WCS and ẑw is the depth computed from the
stereo reconstruction process. e has a range |e| ≤ |e∆|. The depth error range
e∆ will be formally defined later. We adopt |e∆| as the metric to characterize
the quality of the depth information. et > 0 is a pre-defined threshold for
|e∆|. To facilitate robot navigation, we want to ensure that |e∆| ≤ et.
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Although the image correspondence error is uniformly and independently
distributed in the ICS, the influence of the image correspondence error on the
depth is non-uniform due to a nonlinear stereo reconstruction process. For the
two camera frames F and F taken from two different camera perspectives,
we can construct the depth map for the overlapping regions of the two frames
Π(F ∩F ). We define the untrusted area Au(F , F ) that is constructed by the
image pair (F , F ) in the WCS as

Au(F , F ) = {(xw, zw)|(xw, zw) ∈ Π(F ∩ F ), |e∆(xw, zw)| > et}, (2)

because we know that the depth information in Au is untrustworthy due to
the excessive |e∆|. Our problem is,

Definition 1 For a given threshold |e∆|, a pair of overlapping frames (F , F ),
and the corresponding camera parameters, compute Au(F, F ).

The error threshold |e∆| is not necessarily a constant. For example, we define
et = ρzw where ρ is the relative error threshold and 0 < ρ < 1. The choice
of |e∆| and ρ depends on how conservative the motion planning is. A smaller
value results in larger Au and the robot has to travel longer distance to avoid
Au. In our experiments, ρ = 20% works well for navigation purpose.

4 Analysis of Depth Error

4.1 Computing Depth from Two Views

In stereo vision, 3D information is computed through triangulation under the
perspective projection based on the extracted correspondence points from
each pair of images [27]. Define c and c as camera centers for frames F and
F , respectively. Define P and P as the camera projection matrices for F and
F , respectively. Since the CCSs of F and F are iso-oriented and only differ
from the WCS by a tilt value t in orientation, the orientation of the WCS
with respect to the CCSs can be expressed by a rotation matrix

RX(−t) =




1 0 0
0 c(t) s(t)
0 −s(t) c(t)


 .

Note that we use s(·) and c(·) to denote sin(·) and cos(·), respectively. If
CCSs are not iso-oriented, it is not difficult to extend the rotation matrix
using Euler angle sets. The origin of the WCS with respect to the CCSs of F
and F are defined as W and W , respectively. Since T (0) = [xw(0), zw(0)]T ,
T (τ0) = [0, 0]T , and the camera height is h, the camera center positions with
respect to the WCS are c = [xw(0), h, zw(0)]T and c = [0, h, 0]T , respectively.
Then we have,

W = −RX(−t)c, and W = −RX(−t)c.
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Therefore,

P = K[RX(−t)|W ], P = K[RX(−t)|W ],K = diag(f, f, 1),

where f is the focal length of the camera divided by the side length of a pixel.
Let q = [u v 1]T and q = [u v 1]T be a pair of corresponding points in F

and F , respectively. Define Q = [xw, yw, zw]T as their corresponding point in
WCS. Let Q

c
= [xc y

c
zc]

T and Qc = [xc yc zc]T be Q’s position in the CCSs
of F and F , respectively. Also, we know that Q

c
and Qc can be expressed as,

Q
c

= RX(−t)Q + W, and Qc = RX(−t)Q + W. (3)

The following holds according to the pin-hole camera model,

q =
1
zc

P

[
Q
1

]
=

1
zc

KQ
c
, and q =

1
zc

P

[
Q
1

]
=

1
zc

KQc. (4)

From (3), we know Q
c

= Qc + (W −W ), namely,

xc = xc − xw(0), y
c

= yc − zw(0)s(t), and zc = zc − zw(0)c(t). (5)

From (4) and (5), we obtain,

q =
1

zc − zw(0)c(t)
(
zcq + K(W −W )

)
. (6)

Since K, W , W , q, and q are known, (6) consists of a system of equations with
zc as an unknown quantity. There is one unknown variable and a total of two
equations (e.g. the first two equations in (6)). This is an overly-determined
equation system. A typical approach would be to apply a least-square (LS)
method [27]. Using the solution from LS method would result in a high-order
polynomial when analyzing the depth error. Solving the high-order polyno-
mial is computationally inefficient. Another method is to simply discard one
equation and solve it directly. This method has a speed advantage and its
solution quality is slightly worse than that of the LS method. The advan-
tage is that the format of solution can be expressed in simpler format that
allows us to derive the depth error distribution. Actually, a worse solution
can actually provide a more conservative error bound than that of the LS
method. Employing the method and solving the first equation in (6), we have
zc = xw(0)f−uzw(0)c(t)

u−u . From (3), we know zw = zc

(
v
f s(t) + c(t)

)
. Hence,

zw =
xw(0)f − uzw(0)

u− u

(
v

f
s(t) + c(t)

)
. (7)

Depth zw describes the distance from the robot to an obstacle along the
z-axis of the WCS. Its error directly affects the robot’s collision avoidance
performance.
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Fig. 2. An illustration of depth error
caused by the image correspondence error
in F . The intersection zone between the
ray from q, and the pyramid from q is
the error range. If the error range projects
onto the z axis, it is always bound between
zw(u + r, v + r) and zw(u− r, v − r).

4.2 Estimating the Depth Error Range

For the given pair of corresponding points (q, q) from (F , F ) with camera
centers (c, c), the geometric interpretation of the above triangulation process
is the following. If we back project a ray from c through q, it intersects with
the ray generated by back-projecting from c through q, provided that both q
and q are accurate. The intersection point in the 3D space is Q; see Fig. 2.

However, for a given point q, finding the accurate q is unlikely due to noises
and pixelization errors. According to our assumptions, the corresponding
errors in u and v are independently distributed according to U(−r, r), where
r is usually 0.5-2 pixels in length. This means that q is distributed in a small
square on F . When we back project the square, it forms a pyramid in 3D
space as illustrated in Fig. 2. When the pyramid meets the ray that is back-
projected from q, it has a range of intersections instead of a single point.
The estimated depth zw is a function of random variables (u, v) and can be
expressed as zw(u, v). It is apparent that zw is a random variable that could
take any value in this intersection zone.

To compute the intersection zone, we need to compute the intersection
points between the ray from c through q and all four side planes of the
pyramid. However, the solution cannot be expressed in a closed-form for
further analysis. Instead, we employ the upper and the lower bounds of the
length of the intersection zone as illustrated in Fig. 2. Then the bound of the
maximum length of the intersection zone is defined as |e∆|, where

e∆ = zw(u + r, v + r)− zw(u− r, v − r). (8)

We skip the process of deriving the bound due to the page limit. The intuition
is that any line segment bounded inside the pyramid truncated between plane
zw(u + r, v + r) and zw(u − r, v − r) is shorter than e∆. Similarly, another
choice is zw(u− r, v + r)− zw(u + r, v − r). Since both the analysis method
and results are similar, we use (8) in the rest of the paper.

|e∆| describes the range of the depth error and is employed as the metric
to measure the quality of the stereo reconstruction. To simplify the notation
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in computing e∆, we define the following intermediate variables for (7).

λ = βv + c(t), ζd = u− u, β =
s(t)
f

, ζn = xw(0)f − uzw(0). (9)

Then zw = λ ζn

ζd
according to (7) and (9). Substituting them into (8), we have,

e∆ = (λ + rβ)
ζn

ζd + r
− (λ− rβ)

ζn

ζd − r
= ζn

2r(βζd − λ)
ζ2
d − r2

. (10)

Eq. (10) illustrates e∆ in the ICS. For robot navigation purposes, we are
interested in e∆ in the x-z plane of the WCS. Hence u, u and v in (10) should
be transformed into functions of xw and zw. Recall that s(·) and c(·) denote
sin(·) and cos(·), respectively. From (4), (7), and (9), we know u = xwf

zc
=

fλxw

zw
, and yw =

(
v
f c(t)− s(t)

)
zc + h. Since we are interested in obstacles

on the x-z plane, yw = 0, we have v = f(zws(t)−hc(t))
zwc(t)+hs(t) . Similarly, from (4), (7),

and (9), we know u = αxxw + α0, where αx = f
zc−zw(0)c(t) = fλ

zw−zw(0)c(t)λ ,

and α0 = −xw(0)αx. Plugging into (9), we obtain the intermediate variables
λ, ζn, and ζd, in terms of xw and zw.

λ =
zw

zwc(t) + hs(t)
, ζn = nxxw + n0, and ζd =

nxλ

zw
xw +

n0λ

zw
,

where nx = −zw(0)c(t)αx and n0 = xw(0)zwαx/λ. Plugging them into (10),
we obtain e∆ as a function of xw and zw,

e∆ =
2rβλzw(nxxw + n0)2 − 2rλz2

w(nxxw + n0)
λ2(nxxw + n0)2 − r2z2

w

. (11)

For an obstacle located at (xw, 0, zw), Eq. (11) allows us to estimate e∆.
It is clear that the depth error range varies dramatically in different regions,
and thus should be considered in robot navigation to avoid obstacles.

4.3 Predicting Untrusted Area

For a given frame pair with the corresponding robot locations, we can par-
tition Ri using a preset depth error threshold et > 0. We are now ready to
predict Au by computing its boundary using Eq. (11).

Partition Ri According to the Sign of e∆. To find the regions corre-
sponding to |e∆| < et, there are two possible cases to consider: e∆ < 0 and
e∆ > 0. We can rewrite (11) as,

e∆ =
2rλzw(xw − µn1)(xw − µn2)

(xw − µd1)(xw − µd2)
, (12)
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where

µn1 =
xw(0)

zw(0)λc(t)
zw, µn2 =

xw(0)
zw(0)λc(t)

zw − zw(zw − zw(0)λc(t))
fzw(0)λβc(t)

,

µd1 =
xw(0)

zw(0)λc(t)
zw +

rzw(zw − zw(0)λc(t))
fzw(0)λ2c(t)

,

µd2 =
xw(0)

zw(0)λc(t)
zw − rzw(zw − zw(0)λc(t))

fzw(0)λ2c(t)
.

Recall that t is the camera tilt angle and a typical camera setup has 0 ≤ t ≤
30◦. A regular camera would have a focal length of 5-100 mm and pixel side
length of 5-10 µm. Therefore, f ≥ 100. Since β = s(t)/f ,

0 < β ≤ sin(30◦)/100 = 0.005. (13)

Also we know that

λ = βv + c(t) = s(t)
v

f
+ c(t) > β (14)

because | vf | < 1 for any camera with a vertical field of view less than 90◦.
Combining this information, we have 0 < β < r/λ and β < λ. For obstacles
in Ri, zw > 0 according to the definition of the WCS. Also zw(0) < 0 as
illustrated in Fig. 1. Hence, we have

zw(zw − zw(0)λc(t))
fzw(0)λc(t)

< 0. (15)

Combining the inequalities above, we can derive the following relationship:

µd1 < µn1 < µd2 < µn2. (16)

Combining (16) with (12), we have,

e∆ > 0 if µn1 < xw < µd2 or xw < µd1, (17)
e∆ < 0 if µd2 < xw < µn2 or µd1 < xw < µn1. (18)

We ignore the region xw > µn2 in e∆ > 0 as this region is always outside of
the camera’s coverage.

We are now ready to compute Au for the two cases defined in (17) and
(18).

Computing Au for e∆ > 0. This is the case illustrated in Fig. 2(a). Recall
that the untrusted area satisfies e∆ > et. It is worth mentioning that the error
threshold et is usually not a fixed number but a function of zw. Recall that
et = ρzw where ρ is the relative error threshold. There are two cases: Case
(i): xw < µd1 and Case (ii): µn1 < xw < µd2.
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Case (i): when xw < µd1, the denominator of e∆ in (12) is positive. Plug
(12) into e∆ > et, and we have

(etλ
2 − 2rβλzw)n2

xx2
w + (2(etλ

2 − 2rβλzw)nxn0 + 2rλnxz2
w)xw+

(etλ
2 − 2rβλzw)n2

0 − etr
2z2

w + 2rλn0z
2
w < 0. (19)

The solution to the quadratic inequality (19) is

−κ1 −
√

κ2
1 − 4κ2κ0

2κ2
< xw <

−κ1 +
√

κ2
1 − 4κ2κ0

2κ2
, (20)

where

κ2 = (etλ
2 − 2rβλzw)n2

x, κ1 = 2(etλ
2 − 2rβλzw)nxn0 + 2rλnxz2

w,

κ0 = (etλ
2 − 2rβλzw)n2

0 − etr
2z2

w + 2rλn0z
2
w.

The untrusted area is the region that satisfies (20) and xw < µd1. To
compute the intersection, we need to understand the relationship between
the solution in (20) and the coefficients in (12). Combining them, we know,

µd1 − −κ1 −
√

κ2
1 − 4κ2κ0

2κ2
=

rzw(zw − zw(0)λc(t))
fzw(0)λ2c(t)

(
1− λ +

√
λ2 + ρ2λ2 − 2rβλρ

ρλ− 2rβ

)
.

Notice that 0 < r ≤ 2, 0 < ρ < 1, β is very small according to (13), and
λ > 0 according to (14). Therefore, 2rβ and 2rβλρ are close to zero. Hence,

we approximate
(

1− λ+
√

λ2+ρ2λ2−2rβλρ

ρλ−2rβ

)
≈ 1 − 2

ρ < 0. Combining this

equation with (15), we know,

µd1 >
−κ1 −

√
κ2

1 − 4κ2κ0

2κ2
. (21)

Similarly, we can obtain

µd1 <
−κ1 +

√
κ2

1 − 4κ2κ0

2κ2
. (22)

According to (20), (21), (22), and xw < µd1, the untrusted area for this case
is given by,

−κ1 −
√

κ2
1 − 4κ2κ0

2κ2
< xw < µd1. (23)

Case (ii): when µn1 < xw < µd2, from (16), we know that the denominator
of (12) is negative. Hence, κ2x

2
w + κ1xw + κ0 > 0. Similar to the analysis in

Case (i), we obtain,

−κ1 +
√

κ2
1 − 4κ2κ0

2κ2
< xw < µd2. (24)
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Computing Au for e∆ < 0. In this case, the untrusted area is the region
that satisfies e∆ < −et. There are also two cases including Case (i): µd2 <
xw < µn2 and Case (ii): µd1 < xw < µn1. Similar to the analysis in the
previous cases, we obtain,

µd2 < xw <
−κ′1 −

√
κ′1

2 − 4κ′2κ
′
0

2κ′2
and µd1 < xw <

−κ′1 +
√

κ′1
2 − 4κ′2κ

′
0

2κ′2
.

(25)

where,

κ′2 = (−etλ
2 − 2rβλzw)n2

x, κ′1 = 2(−etλ
2 − 2rβλzw)nxn0 + 2rλnxz2

w,

κ′0 = (−etλ
2 − 2rβλzw)n2

0 + etr
2z2

w + 2rλn0z
2
w.

Computing the Overall Au. The overall Au is the union of solution sets
of the four cases given by (23), (24), and (25). Let us observe the relationship
between the two inner boundaries in Au,

−κ1 +
√

κ2
1 − 4κ2κ0

2κ2
−
−κ′1 +

√
κ′1

2 − 4κ′2κ
′
0

2κ′2
≈ 0

because 2rβρλ ≈ 0 and 2rβ ≈ 0. Hence, we have

Au =
{

(xw, zw)|0 ≤ zw ≤ zM ,

−κ1 −
√

κ2
1 − 4κ2κ0

2κ2
< xw <

−κ′1 −
√

κ′1
2 − 4κ′2κ

′
0

2κ′2

}
. (26)

Eq. (26) also tells us how to obtain the boundaries of Au. Represented as
a function of xw, we define the lower boundary and the upper boundary of
Au as x−w and x+

w , respectively. Hence we have the two boundaries

x∓w(zw, xw(0), zw(0)) =
xw(0)zw

zw(0)λc(t)
+

rzw(zw − zw(0)λc(t))
fzw(0)λc(t)(±etλ2 − 2rβλzw)

(zwλ +
√

λ2z2
w + e2

t λ
2 ∓ 2retβλzw).

(27)

5 Experiments

We have verified our analysis for the depth error estimation using a three-
wheeled mobile robot. The robot has two front driving wheels and one rear
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castor. The robot is 30 cm long, 30 cm wide, 33 cm tall and can travel at a
speed of 25 cm/s with a 25 lbs payload. It is also equipped with two wheel
encoders and a digital compass. The camera mounted on the robot is a Canon
VCC4 pan-tilt-zoom camera with a 47.5◦ horizontal field of view. The camera
mounting height h = 44 cm. The intrinsic camera parameters are estimated
using the Matlab calibration toolbox [28]. During the experiment, we set
zM = 4 m and t = 15◦ according to our robot and camera configurations.
We conducted the experiments in the H. R. Bright Bldg. at Texas A&M
University. The obstacles used in the experiments are books and blocks with
a size of 20 cm × 14.5 cm × 10 cm.
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Fig. 3. (a) An illustration of |e∆|. Robot positions are set to be xw(0) = 10 cm,
zw(0) = −50 cm. (b) Aus with different robot positions (xw(0), zw(0)), which are
the black dots in the figure. We set the threshold et = 0.2zw.

Fig. 3(a) illustrates how |e∆| is distributed on the road plane yw = 0
according to our analysis. The 3D mesh is just an approximation of actual
|e∆| distribution because it is generated by a finite set of testing locations.
The illustration avoids the points on the baseline because the corresponding
error range is infinite. It is apparent that the depth error is excessive in the
area that is close to the camera baseline.

The second test is to show to how the different camera perspectives affect
the location of Au. Fig. 3(b) gives three examples of Au for different camera
perspectives (xw(0), zw(0)). It is clear that the selection of perspective can
determine the location of Au.

We also compared the depth error for objects inside and outside Au in
actual robot navigation. To facilitate the comparison, we defined the relative
depth error in percentage er = |e|

zw
×100, where zw is the measured depth that

is used as a ground truth. We compare er for objects inside and outside the
Au for two scenarios: (a) the different depth of objects and (b) different robot
positions as illustrated in Fig. 4. In (a), in each trial, the testing objects are
randomly placed with a fixed depth. In (b), we change the relative position
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Fig. 4. The effectiveness of depth error reduction. The height of the bar is the mean
value of er and the vertical interval represents the variance of er. The number in
the parenthesis is the total number of trials.

between two camera perspectives to verify the depth error with respect to
Au. Obstacles are randomly placed in each trial. The accurate total number
of trials for each setup is shown above the bars in the figures. In both (a) and
(b), we first compute the obstacle depth using stereo vision and then compare
it with the measured ground truth by computing er. Note that the mean and
the variance of er are significantly reduced if the robot stays outside Au.

6 Conclusion and Future Work

We analyzed the depth error range distribution across the camera coverage
for a mobile robot equipped with a single camera. For SFM-based stereo vi-
sion for navigation, we showed that the depth error can be excessively large
and hence cause collisions in robot navigation. We defined and modeled the
untrusted area where the depth error range is beyond a preset threshold.
Physical experiment results confirmed our analysis. In the future, we will
apply the analysis into a new robot motion planning algorithm that will pur-
posefully generate trajectories to avoid the untrusted area. The introduction
of the untrusted area will help us to add more camera perspectives for the
SFM. The introduction of the predictive model of the untrusted area opens a
door to add depth-error aware planning into a variety of applications involv-
ing the monocular vision system. It is possible to use the untrusted area to
guide the visual landmark selection for SLAM. Similarly, the untrusted area
can be used to improve visual tracking performance when the robot plans to
follow a moving target.
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