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Abstract To enable low-cost mobile devices and robots equipped with monocular
cameras to obtain accurate position information in GPS-denied environments, we
propose to use pre-collected lidar or other prior data to rectify imprecise visual si-
multaneous localization and mapping (SLAM) results. This leads to a novel and
nontrivial problem that fuses vision and prior/lidar data acquired at different per-
spectives and time. In fact, the lidar inputs can be replaced by other prior mapping
inputs as long as we can extract vertical planes from these inputs. Hence, they are
referred as prior/lidar data in general. We exploit the planar structure extracted from
both vision and prior/lidar data and use it as the anchoring information to fuse the
heterogeneous maps. We formulate a constrained global bundle adjustment using
coplanarity constraints and solve it using a penalty-barrier approach. By error anal-
ysis we prove that the coplanarity constraints help reduce the estimation uncertain-
ties. We have implemented the system and tested it with real data. The initial results
show that our algorithm significantly reduces the absolute trajectory error of visual
SLAM by as much as 68.3%.
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1 Introduction

Since GPS signals are often challenged in indoor or urban environments, many
researchers focus on developing simultaneous localization and mapping (SLAM)
algorithms using onboard sensors for robots or mobile devices. Nowadays regular
cameras are the most available and inexpensive sensor which relies on visual SLAM
algorithms. RGB-D cameras become more available but are unreliable in strong sun-
light. A lidar is often considered as the most reliable mapping sensor, but it is too
power hungry, bulky, and expensive for many mobile robots or devices. A mobile
device or a small robot often can only rely on a monocular camera due to power and
size constraints.

Lidar 
SLAM

Monocular 
SLAM

Rectified Map
Fusion

Fig. 1: The inputs of our map fusion include a low-quality 3D map produced by a
monocular visual SLAM, and a high-precision prior map generated by lidar SLAM
other methods. The map fusion rectifies the 3D map by leveraging vertical planes
commonly available in both maps and outputs a more accurate 3D map.

However, monocular visual SLAM algorithms often generate low-quality maps
due to scale and angular drift, as illustrated in Figure 1. To address these problems,
we propose to pre-scan the environment with a high-precision 2D or 3D lidar. The
lidar generated map (see Figure 1) will be shared among mobile devices or other
robots with only monocular cameras. If we can rectify the low-quality visual SLAM
map to the lidar-level accuracy (see Figure 1), mobile device users and robots will
enjoy high localization accuracy by just using low-cost cameras, which has a large
advantage in many applications. In fact, we can also take other prior maps as inputs
to rectify visual SLAM results instead of lidar inputs. The only requirement is that
we can extract vertical planes from these prior mapping inputs. For example, Google
maps™ often contains building exterior planes.
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Since lidar point clouds or prior maps and image feature points cannot be directly
registered to each other, this requires us to fuse the spatial knowledge (i.e. land-
marks of maps) asynchronously captured from different perspectives and platforms
by the heterogeneous sensors, which presents a new research problem. We detect
high-level landmarks such as vertical planes that can be identified in both sensing
modalities. We formulate a constrained global bundle adjustment using coplanarity
constraints and solve the problem using a penalty-barrier approach. By error anal-
ysis we prove that the coplanarity constraints help reduce the estimation uncertain-
ties. We have implemented the system and tested it with real data. The initial results
show that our algorithm significantly reduces the absolute trajectory error of visual
SLAM by as much as 68.3%.

2 RELATED WORK

The map fusion problem can be viewed as a post processing step in visual SLAM,
which is a fast developing area. More specifically, this paper builds upon recent
works including optimization techniques, different sensor and feature configura-
tions, and collaborative map merging for multiple robots.

An SLAM algorithm simultaneously estimates camera/robot poses and landmark
positions, which is a fundamental problem in robotics [33] and computer vision. A
full fledged SLAM framework consists of subproblems such as tracking, mapping,
and loop closing. For efficiency, recent systems [17, 31, 29, 9, 23] implement a
front-end and back-end system running in parallel, where the front-end performs
tracking in real-time while the back-end refines both the resulting trajectory and the
map, and closes loops occasionally. To increase the speed of the back-end, different
optimization techniques are proposed. Recent optimization methods take advantage
of sparse matrix structures in the SLAM problem. In [20], an implementation of
a hypergraph-based sparse non-linear optimization framework called g2o is pre-
sented. An optimization method known as iSAM2 [16] uses a Bayes tree to incre-
mentally update the sparse matrix for an on-line SLAM system. Building on the g2o
framework to exploit sparse matrix computation, our proposed map fusion can be
viewed as a back-end system which runs asynchronously from a front-end tracking
and mapping process.

SLAM can be performed with different exteroceptive sensors or their combina-
tions including regular cameras, lidars, and RGB-D cameras. Regular camera-based
SLAM is referred as visual SLAM, where two main approaches exist: filtering and
structure-from-motion (SFM) using an optimization approach. For filtering, the ex-
tended Kalman filters (EKF) or its variants have been used extensively [7, 26, 5],
whereas the dominating method for SFM is bundle adjustment (BA) [27, 19]. The
BA method is an optimization-based method which minimizes the reprojection error
over multiple image frames. Strasdat et al. [30] have compared EKF against BA and
pointed out that unless in high uncertainty situations, BA has a better performance
and accuracy than EKF. Our proposed method uses a batch optimization to estimate
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the fused map. However, monocular vision-based SLAM is the most difficult prob-
lem due to the infamous scale drifting issue. Stereo vision can relieve the issue but
is often limited by the baseline and power constraints of small devices.

Depth sensors such as RGB-D cameras or lidars [14, 8, 24] can help address the
scale drifting issue in monocular vision. While RGB-D cameras are widely used for
indoor environments, lidars are still the most favorable sensor due to longer sensing
range, wide field of view, and robustness to lighting conditions, making it suitable
for both indoor and outdoor applications [12]. Kohlbrecher et al. [18] register 2D
lidar scans to a 2D occupancy grid map based on an image registration technique.
Zhang and Singh [34] use a 2-axis lidar and develop a real-time 3D mapping method
with low-drift by separating the odometry and mapping task. In these methods, the
lidar map is accurate enough so that post-processing is not required.

Combining both vision and lidar inputs to utilize the benefit of each sensor has
been proposed as well. Newman et al. [25] employ a 3D lidar to map buildings
and use vision to detect loop closure. Zhang and Singh [35] use vision to handle
rapid motion while the lidar warrants low-drift and robustness to lighting changes.
However, these methods require that the vision and lidar data are synchronized and
captured by the same robot. The resulting map is also limited to the hosting robot
for the localization usage. Our method is intended to fuse the vision and lidar maps
acquired by different robots and generate maps that can help different cameras or
mobile device users. Caselitz et al. [4] study localizing a monocular camera within
a lidar map, but do not investigate the map fusion problem.

Map merging has been studied for multi-robot systems in indoor environments.
Dedeoglu and Sukhatme [6] combine topological maps using landmarks detected by
sonar, vision, and laser. Fox et al. [11] merge lidar maps with robots actively detect-
ing each other to estimate their relative positions. Carpin [3] proposes a map merg-
ing technique based on Hough transforms to merge occupancy grid maps. Baudouin
et al. [1] propose a method that merges robot paths with different scales generated
by multi-modal vision sensors such as perspective, fish-eye, or omnidirectional cam-
eras. These prior works shed light on our problem but they focus on map building
with the same type of sensors.

In a lidar map or other prior map, the most visible features are wall planes.
Many studies make use of the fact that indoor/urban environments have planar struc-
tures [13, 2, 22]. Lu and Song introduce a multilayer feature graph (MFG) [21] for
a visual SLAM approach using heterogeneous landmarks including planes. Taguchi
et al. [32] use an RGB-D camera and propose a method that uses combinations of
primitives, i.e. points and planes, for faster pose estimation. More recently, Salas-
Moreno et al. [28] have proposed a dense planar SLAM using an RGB-D camera.

3 Problem Definition

A robot equipped with a monocular camera navigates in an area for which a lidar
map or other prior map is given. From the prior/lidar map ML, a set of line segments
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are extracted to represent major vertical planes from a top down perspective. We
assume 1) the camera is calibrated, and 2) the vertical direction is known which
can be obtained through either analyzing vanishing points from images or sensing
gravity direction from inertial sensors.

Let the camera pose at time k ∈ N be Tk ∈ SE(3). Define Tk = {T1, · · · ,Tk} as
the collection of camera poses up to time k. Let MV denote the 3D map built by
visual SLAM, which consists of a set of 3D points pi = [xi,yi,zi]

T ∈ R3.
The problem is: Given MV and Tk up to time k, rectify MV and Tk with ML.

4 Map Fusion and Uncertainty Analysis

The map built by visual SLAM is inevitably subject to drift. To rectify it, we period-
ically detect vertical planes from MV and associate them with those in ML. We then
incorporate the plane information from ML as additional constraints into the bundle
adjustment of visual SLAM to rectify MV and Tk. Next we first present our map
fusion algorithm including plane detection and bundle adjustment, and then perform
uncertainty analysis to show the benefit of including additional plane information in
visual SLAM.

4.1 Map Fusion

4.1.1 Plane Detection and Matching

In visual SLAM we periodically detect vertical planes from 3D points using se-
quential RANSAC [10]. To keep the problem manageable, we only consider a fixed
number of recent points that are visible in at least three adjacent keyframes. At each
iteration of RANSAC, we randomly pick three points from the pool and compute
a candidate plane. As we know the vertical direction, we can filter out candidate
planes in the first place. Then we check how many points support this candidate
plane by computing a consensus score for each point in the pool. If enough support
points are found, we add the plane to MV and remove the support points from the
pool. The RANSAC process keeps going until the maximum number of iterations is
reached.

In this process, the consensus score is key to properly evaluate whether a point
supports a candidate plane. An intuitive way is to compute the perpendicular point-
to-plane distance in 3D as the consensus score. However, the map is only up-to-scale
in monocular SLAM, which poses difficulty to choosing a proper threshold for the
scores. Here we propose a novel consensus score in image space. Given a 3D point
p and a 3D plane π , suppose p is observed by camera at times k ∈K . As illustrated
in Figure 2, we first find the point p′ lying on π that is closest to p, then define
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Fig. 2 Consensus score for
evaluating whether a 3D point
supports a plane. Defined in
image space, it avoids the
scale ambiguity in monocular
visual SLAM.

p p’ π 

...

)T,()T,( kk 'pp  

dIMG(p,π) = max
k∈K
‖φ(p,Tk)−φ(p′,Tk)‖, (1)

where φ(·, ·) is the camera projection function. Defined in image space, this metric
is independent of the absolute map scale and eases the task of setting thresholds.

Once a vertical plane is detected from MV , we need to match it against ML.
This problem can be solved by topology graph matching, or using manual inputs if
the number of planes is small. We ignore planes in MV that do not correspond to a
physical plane, which can be achieved by detecting appearance consistency.

4.1.2 Optimization

Since prior/lidar map ML is much more accurate than MV , we assume ML to be
error-free. Our goal is to register MV against ML so that the mapping error in MV is
minimized. This is achieved by leveraging plane correspondences. Suppose by time
k we have found correspondences for planes π j, j ∈ Jk. We formulate the following
optimization problem to rectify MV and Tk.

min
MV ,Tk

k

∑
κ=1

∑
i∈I (κ)

‖φ(pi,Tκ)−mi,κ‖2
Σi,κ

(2)

s.t. d⊥(p,π j) = 0, ∀p ∈ π j, j ∈ Jk

where I (κ) collects all indexes of points visible by camera at time κ , mi,κ is the
image observation for pi at time κ , Σi,κ is the covariance of the measurement noise
of mi,κ , ‖ ·‖Σ denotes Mahalanobis distance, and d⊥(·, ·) represents the perpendicu-
lar Euclidean distance between a point and a plane in 3D. Here we abuse the notation
p ∈ π j to indicate the relation that p is supposed to reside on plane π j. The exact
position of π j in (2) is retrieved from ML.

Eq. (2) is a constrained optimization problem. To solve it, we convert it to an
unconstrained optimization problem by adding a penalty function as follows
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min
MV ,Tk

k

∑
κ=1

∑
i∈I (κ)

‖φ(pi,Tκ)−mi,κ‖2
Σi,κ

+w ∑
j∈Jk

∑
p∈π j

d⊥(p,π j)
2 (3)

The first term is the same re-projection errors as in (2), and the second term is a
penalty term. We first solve (3) with a relatively small weight w, and use the solution
as initial point to solve (3) again with an increased w. We repeat this process until
the change in the solution is negligible. It is worth noting that we use d⊥(·, ·) instead
of dIMG(·, ·) in (2) and (3) because the scale ambiguity does not cause problems in
optimization.

4.2 Uncertainty Analysis

In this section we show the effect of incorporating known plane information in visual
SLAM by analyzing the estimation uncertainties. To simplify the analysis, we as-
sume the first two camera poses are given, which essentially fixes the absolute scale
for visual SLAM. Upon time k, we want to estimate all k−2 camera poses and all n
map points. Let y :=

[
TT

3 , · · · ,TT
k

]T be the vector comprising camera poses, where
Tk is minimally parameterized. Without loss of generality, we assume that the last m
points are from a plane π . Furthermore, we choose a world coordinate system such
that its X-Y plane is parallel to π . This leads to the following coplanarity constraint.

Definition 1 (Coplanarity). Points {pi|i = n−m+1, · · · ,n} reside on a known 3D
plane π , which is parallel to the X-Y plane. Thus the Z-coordinates of all points on
π are a constant, denoted by zπ .

We next analyze the estimation uncertainties of the camera poses and points with-
out and with using the coplanarity constraint, respectively.

4.2.1 No Coplanarity

In this case, we do not consider the coplanarity in Definition 1 by treating each point
as independent. Let z1 :=

[
pT

1 , · · · ,pT
n−m
]T comprise points not residing on π , and

z2 :=
[
pT

n−m+1, · · · ,pT
n
]T comprise points on π . We reorder the elements of z2 such

that

z2 = [xn−m+1,yn−m+1, · · · ,xn,yn︸ ︷︷ ︸
:=zT

XY

, zn−m+1, · · · ,zn︸ ︷︷ ︸
:=zT

Z

]T =
[
zT

XY ,z
T
Z
]T

.

Let x =
[
yT ,zT

1 ,z
T
2
]T

=
[

yT ,zT
1 ,z

T
XY︸ ︷︷ ︸

:=xT
1

,zT
Z
]T

=
[
xT

1 ,z
T
Z
]T . Define a measurement

error function
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Φ(x) =


...

φ(pi,Tκ)−mi,κ
...

 (4)

∀κ = 1, · · · ,k,∀i ∈I (κ).

Recall that mi,κ is the image observation of pi at time κ , and I (κ) collects the
point indexes visible at time κ .

We estimate x by

min
x

Φ (x)T
Σ
−1

Φ (x) (5)

where Σ = diag(· · · ,Σi,κ , · · ·), with Σi,κ being the covariance of mi,κ .

Lemma 1. Let x∗ =
[
x∗T1 ,z∗TZ

]T be the solution of the problem in (5). Under Gaus-
sian noise assumption, the first order approximation of the covariance of x∗1 is

Cov(x∗1) =
(

JT
x1

Σ
−1Jx1 −JT

x1
Σ
−1JzZ

(
JT

zZ
Σ
−1JzZ

)−1 JT
zZ

Σ
−1Jx1

)−1
(6)

where Jx1 =
∂Φ

∂x1

∣∣∣∣
x1=x∗1

, JzZ = ∂Φ

∂zZ

∣∣∣∣
zZ=z∗Z

.

4.2.2 Apply Coplanarity

In this case, we explicitly model coplanarity in Definition 1. As a result, ∀i ∈ [n−
m+ 1, · · · ,n], we have pi = [xi,yi,zπ ]

T , and thus φ (pi,Tκ) = φ

(
[xi,yi,zπ ]

T ,Tκ

)
.

Recall x1 =
[
yT ,zT

1 ,z
T
XY
]T

. In this case, x1 consists of all the parameters we need
to estimate. Define a measurement error function

Φ
′(x1) =


...

φ(pi,Tκ)−mi,κ
...

 (7)

∀κ = 1, · · · ,k,∀i ∈I (κ).

We estimate x1 by

min
x1

Φ
′ (x1)

T
Σ
−1

Φ
′ (x1) . (8)

Lemma 2. Let x′∗1 be the solution of the problem in (8). Under Gaussian noise as-
sumption, the first order approximation of the covariance of x′∗1 is



Sharing Heterogeneous Spatial Knowledge 9

Cov(x′∗1) =
(

J′Tx1
Σ
−1J′x1

)−1
(9)

where J′x1 =
∂Φ

∂x1

∣∣∣∣
x1=x′∗1

.

4.2.3 Uncertainty Reduction

Now we have estimated x1 under two scenarios and its respective covariances
Cov(x∗1) and Cov(x′∗1). The following theorem reveals how the coplanarity constraint
affects the estimation uncertainty.

Theorem 1. The coplanarity in Definition 1 reduces the estimation uncertainty of
the parameters in x1. Specifically,

λ j
(
Cov

(
x′∗1
))

< λ j (Cov(x∗1)) , 0≤ j ≤ len(x1) (10)

where λ j(·) denotes the j-th largest eigenvalue, len(·) is the length of a vector, and
x′∗1 and x∗1 are the optimal estimation of x1 with and without knowing the copla-
narity, respectively.

Proof. Let us write M1 �M2 if matrices M1 and M2 are real symmetric and M1−M2
is positive definite.

As x∗ and x′∗1 are the global optimal solution to (5) and (8), respectively, it is easy
to see x∗1 = x′∗1, and z∗Z = [zπ , · · · ,zπ ]

T . Consequently, Jx1 = J′x1 . From Lemma 1
and Lemma 2, we derive that

Cov
(
x′∗1
)−1−Cov(x∗1)

−1 = JT
x1

Σ
−1JzZ

(
JT

zZ
Σ
−1JzZ

)−1 JT
zZ

Σ
−1Jx1 .

Since we use minimal parameterization for x1 and zZ , it holds that

JT
x1

Σ
−1JzZ

(
JT

zZ
Σ
−1JzZ

)−1 JT
zZ

Σ
−1Jx1 � 0,

which leads to Cov
(
x′∗1
)−1 � Cov(x∗1)

−1 . According to Theorem 7.7.3 in [15], it
holds

Cov
(
x′∗1
)−1 � Cov(x∗1)

−1⇔ Cov(x∗1)� Cov
(
x′∗1
)
,

which further leads to (10) per Corollary 7.7.4 in [15]. ut

It is worth noting that Theorem 1 can be easily generalized when the plane is not
parallel to X-Y plane, but an arbitrary plane. Furthermore, when more planes are
known, it is intuitive to see that the estimation uncertainties can be further reduced.
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5 Experiments

In this section, we first verify Theorem 1 by simulated experiments, and then evalu-
ate our proposed method using real world data.

5.1 Simulation

In this simulation the robot navigates through an L-shaped corridor as illustrated in
Figure 3(a). The corridor consists of 4 walls: Plane A, B, C, and D, and each wall
has around 50 randomly distributed points. The robot starts at the origin, first moves
forward and then turns right at the corner. The image resolution is 640× 480 and
the camera focal length is 500. As assumed in Section 4.2 the first two camera poses
are given.

We first compute the uncertainties using (6) which takes no coplanarity informa-
tion into account. Figure 3(b) shows the uncertainties of all camera positions and 3D
points. As expected the uncertainties gradually increase as the robot moves forward.

Now consider the constraint that a set of points reside on Plane B whose position
is known. The uncertainties of map points and camera poses are computed using (9)
and illustrated in Figure 3(c). Compared with Figure 3(b), it is obvious that all the
uncertainties are reduced.

To illustrate how the plane position affects the uncertainty reduction, we consider
the coplanarity of Plane C instead and show the resulted uncertainties in Figure 3(d).
Compared with Figure 3(b), it is also obvious that the uncertainties are reduced.
However, by comparing Figure 3(c) and Figure 3(d), we see the different effects.
Figure 4 further compares the determinants of all camera pose covariances for the
three scenarios described above.

5.2 Real World Test

We have implemented our system based on ORB-SLAM [23], a state-of-the-art
monocular visual SLAM system, though our method is applicable to any other
monocular visual SLAM. We evaluate our system on one indoor and two outdoor
datasets, as described below.

• HRBB4: This is a sequence of 12,000 images collected in an office corridor en-
vironment with the ground truth of camera trajectory provided [21]. To evaluate
our method, we collected lidar data using a Hokuyo (UTM-30LX) in the same
environment two years after the images were acquired. We generate a lidar map
using Hector-SLAM [18] and extract major line segments (i.e. vertical planes) as
illustrated in Figure 5(a).
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Plane C

Plane D

(a) (b)

(c) (d)

Fig. 3: (a) The simulation setup. An L-shaped corridor comprises four walls, Plane
A, B, C and D, each consisting of around 50 points. The camera starts from the
origin, moves forward first and turns right at the corner. (b-d) The uncertainties
of camera positions and points in the case of (b) no coplanarity being considered,
(c) the coplanarity constraint for Plane B being applied, and (d) the coplanarity
constraint for Plane C being applied.

• KITTI-07: This is an outdoor image sequence from the KITTI dataset [12], con-
sisting of 1101 images recorded by an autonomous driving platform. The ground
truth of camera trajectory is provided by a high-grade GPS-INS system. We gen-
erate a 3D lidar map from the accompanied velodyne data using LOAM [34]
and treat it as a 2D map by projecting it to the ground plane as illustrated in
Figure 6(a).

• KITTI-00: This is another outdoor image sequence from the KITTI dataset [12],
consisting of 4541 images. We use Google satellite map of the corresponding
area as our prior map, as shown in Figure 7(a).

To evaluate the SLAM accuracy, we compute the statistics of absolute trajec-
tory errors (ATE), including RMS (root-mean-square) error, SD (standard devia-
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Fig. 4 Determinants of cam-
era pose covariances under
different scenarios. Note how
the coplanarity reduces the
uncertainties. Note that the
vertical axis uses log scale.

(a) (b)

Fig. 5: (a) Vertical planes (red and green lines) overlaid on the HRBB4 lidar map
(black). Red lines indicate the planes that are matched and thus used for map fusion.
(b) Camera trajectory ground truth and estimates for the HRBB4 dataset.

tion), Max(maximum), and the ratio of RMS error over the trajectory length for my
method and ORB-SLAM. Note that loop closing is disabled in ORB-SLAM for fair
comparison. In Table 1 we see that our algorithm significantly reduces the ATE by
leveraging the prior 2D maps. The estimated camera trajectories versus the ground
truth are shown in Figures 5(b), 6(b), and 7(b). Compared with ORB-SLAM, our
method reduces the RMS error by 60.6% for the HRBB4 dataset, by 69.8% for the
KITTI-07 dataset, and by 74.4% for the KITTI-00 dataset. On average our method
reduces the RMS error by 68.3%.
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(a) (b)

Fig. 6: (a) Vertical planes (red and green lines) overlaid on the KITTI-07 lidar map
(gray). Red lines indicate the planes that are matched and thus used for map fusion.
(b) Camera trajectory ground truth and estimates for the KITTI-07 dataset.

Table 1: Absolute Trajectory Errors (m)

Dataset ORB-SLAM Our method

RMS(m) SD(m) Max(m) RMS/Traj RMS(m) SD(m) Max(m) RMS/Traj

HRBB4 1.32 0.68 3.2 1.89% 0.52 0.27 1.37 0.74%

KITTI-07 15.06 8.61 36.99 2.17% 4.55 2.82 15.04 0.65%

KITTI-00 62.08 30.04 144.68 1.67% 15.92 8.04 34.04 0.43%

6 Conclusions

We presented a method that fuses two maps generated from different sensory modal-
ities, i.e. monocular vision and prior/lidar data, to assist low-cost devices/robots to
obtain high quality localization information. The prior/lidar data can be either maps
constructed from lidar inputs or other prior map inputs as along as we can extract
vertical planes from them. We exploited the planar structure extracted from both
vision and prior/lidar data and use it as the anchoring information to fuse the het-
erogeneous maps. We formulated a constrained nonlinear optimization problem un-
der global bundle adjustment framework using coplanarity constraints. We solved
the problem using a penalty-barrier approach. By error analysis we proved that the
coplanarity constraints help reduce the estimation uncertainties. We implemented
the system and tested it with real data. The results showed that our algorithm signif-
icantly reduced the absolute trajectory error of visual SLAM by as much as 68.3%.
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(a) (b)

Fig. 7: (a) Vertical planes (red and green lines) overlaid on the Google satellite
map for the KITTI-00 dataset. Red lines indicate the planes that are matched and
thus used for map fusion. (b) Camera trajectory ground truth and estimates for the
KITTI-00 dataset.

For future work, we will test our method on different indoor environments. One
shortcoming of the proposed method is the reliance on vertical plane distribution.
Although most indoor environments are dominated by vertical planes, this method
would fail in an environment with very few vertical planes. We are interested in
extracting other signatures such as object boundary points to handle the problem.
We will also explore distributed implementations for the optimization framework.
Finally, we are interested in developing cloud-based schemes to further allow algo-
rithms and positional information to be shared among low-cost devices.
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