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Abstract— In this paper, we present a trajectory tracking
control algorithm for an autonomous motorcycle for the DARPA
Grand Challenge. The mathematical dynamic model of the
autonomous motorcycle is based on the existing work in modeling
a bicycle and is extended to capture the steering effect on
self-stabilization. The trajectory tracking control is designed
using an external/internal model decomposition approach, and
the motorcycle balancing is developed by the nonlinear control
methods. The motorcycle balancing is guaranteed by the system
internal equilibria calculation and by the trajectory and system
dynamics requirements. The motion planning algorithms are
based on the fused global positioning systems (GPS) and on-board
computer vision systems information. The proposed control
system is validated by numerical simulations, which are based
on a real prototype motorcycle system.

I. INTRODUCTION

Single-track vehicles, such as motorcycles and bicycles,
provide flexible maneuverability and deployments. Particularly
for off-road environments such as deserts, mountains, and
forests, single-track vehicles have a superior performance
in comparison to double-track vehicles. Moreover, the light
weight of motorcycles also provides attractive properties such
as high energy efficiency and fast acceleration. Motivated by
this observation, an autonomous motorcycle platform is em-
ployed, designed, and built for the DARPA Grand Challenge
competition1, a racing competition of autonomous ground
vehicles on off-road trails in the desert in southern California.

In this paper, we present a trajectory tracking and balancing
control design for the autonomous motorcycle. The mathemat-
ical model and control algorithms of the autonomous motorcy-
cle are developed and extended on the existing research results
in [1]. This mathematical model for motorcycles has several
attractive features when compared with other models in the
literature. First, multibody dynamics models in the literature
are very complex and are not suitable for the control design
system. Simple inverted pendulum models such as the one
used in [2] cannot capture all of the dynamics characteristics
of the motorcycle system, such as under-actuation and non-
holonomic constraints. The model used in this paper has some
simplifications from the multibody dynamics model, but also
keeps the nonholonomic constraint properties of the system.
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Therefore, the model provides enough accuracy of the system
and is manageable for the purposes of control system design.
We extend this model and take considerations of motorcycle
trail and caster angle, which are important geometric param-
eters in motorcycle dynamics and are neglected in [1]. The
control algorithms guarantee the asymptotic tracking of the
desired trajectory given by the motion planning module. The
motion planning is based on the fusion of an on-board global
positioning system (GPS) and a computer vision system.
We demonstrate the integrated motion planning, trajectory
tracking, and balancing control of the autonomous motorcycle
through numerical simulations. The experimental testing of the
proposed algorithms on a real motorcycle prototype is ongoing
under the current research.

The rest of this paper is organized as follows. We begin with
a review of the related work in section II. In section III, we
discuss the mathematical model for the motorcycle dynamics.
Section IV presents the control system design for a trajectory
following and balancing stabilization control. Motion planning
for the motorcycle system is discussed in section V. Numerical
simulation results of the autonomous motorcycle system are
presented in section VI. Finally, the conclusion remarks and
future direction are given in section VII.

II. RELATED WORK

Modeling and control of a bicycle or a motorcycle is a
challenging task. There are quite a few research works that
study bicycle or motorcycle stability and dynamics. Sharp [3]
discusses mathematical models of a motorcycle with a rider
using Lagrange’s equation. Sharp [4] studies the multibody dy-
namics motorcycle model using dynamics simulation packages
AutoSim and Matlab. Independently, Cossalter and Lot [5],
Cossalter [6], and Kessler [7] study a nonlinear multibody
dynamics model of a motorcycle. The model developed in [5]
is very comprehensive and contains front and rear chassis,
steering system, suspension, and tires. The model was im-
plemented in a simulation package called FastBike for the
purposes of real-time simulations. The FastBike simulation
results are also compared with experimental data in [5]. Mo-
torcycle tire models are developed in [8], [9]. Modal analysis
and steering characteristics of a motorcycle are discussed
in [4], [10] based on the multibody dynamics developed by
the authors, respectively. Experimental study of the motorcycle
handling is compared with the mathematical dynamics model
of a motorcycle with the rider in [11].

Bicycles share many similar properties with motorcycles.
Jones [12] studies the stability properties of a bicycle. In [12],



the non-significance of the gyroscopic effect of the front wheel
has been verified experimentally. The author proposes that the
geometry of the bicycle (trail) is the most important factor
for the bicycle stability. Lowell and McKell [13] analyze a
simplified bicycle model to explain the stability. Fajans [14]
discusses the steering of a bicycle or a motorcycle using a
simple mathematical model and some numerical simulations.
The simplified models in [13], [14] are derived from Newto-
nian force and momentum balance principles, and balancing
by the rider is the main concern of these studies. Recently,
Åström et al. [15] review and discuss bicycle dynamics from
the perspective of automatic controls.

The concept of an autonomous bicycle has been proposed
by several researchers. Getz and Marsden [16] utilize an in-
put/output linearization method to design a trajectory tracking
controller for an autonomous bicycle. Under such a trajec-
tory tracking control, the bicycle is balanced to its internal
equilibria. Simulation study has been carried out to show the
effectiveness of the proposed control. In [17], an autonomous
bicycle is designed and balanced using gyroscopic actuators.
The controller is designed based on a linearized bicycle model,
and the experiments are not successful for tracking a given
trajectory. Tanaka and Murakami [2] use a simplified inverted
pendulum model for bicycle balancing. A proportional deriva-
tive (PD) controller with a disturbance observer is designed to
balance the bicycle in an indoor laboratory setup. Balancing
is the main concern and no trajectory tracking control is
discussed in [2]. In this paper, we extend the model and
control algorithms in [1] and take considerations of motorcycle
trail and caster angle. We also integrate the control algorithms
with the GPS/vision-based motion planning system to design a
control system, which guarantees that the motorcycle follows
the off-road tracks.

III. MOTORCYCLE DYNAMICS

Nomenclature

m Motorcycle mass
g Gravity constant g = 9.8 m/s2

L Motorcycle wheelbase
h Height of the motorcycle center of mass
b Horizontal distance between rear wheel contact point

and the motorcycle center of mass
R Motorcycle turning radius
η Caster angle
∆ Motorcycle trail
θ Roll (camber) angle of the motorcycle frame (rear

wheel)
ψ Yaw angle of the motorcycle frame (rear wheel)
φ Steering angle
β Front wheel direction angle (effective steering angle)

We consider the motorcycle as a point mass with two wheel
contacts with the ground. For simplicity, we consider a rear-
wheel driving and front-wheel steering motorcycle with the
following assumptions.

Assumption 1: Motorcycle system assumptions.

1. The front and rear wheel tires are thin, and we do not
consider the thickness of the tire.

2. No slip angle is considered for both front and rear tires,
i.e. the wheel speed is aligned with wheel planes.

3. The moments of mass of the front and rear wheels are
neglected.

4. The moments of mass of the motorcycle are neglected,
i.e. the motorcycle is considered as a point mass at the
mass center.

5. Only rear wheel longitudinal force has been considered.
The front wheel longitudinal force is neglected.

6. The motorcycle is moving in a flat plane XOY , and no
vertical motion is considered.

Fig. 1 shows a schematic diagram of an autonomous mo-
torcycle. Two variables are considered for the control input:
the steering angle φ and the rear-wheel driving torque τ .

Consider that the generalized coordinates of the motorcycle
are (x, y, ψ, θ, σ), where (x, y) are the Cartesian coordinates
of the rear wheel contact point C2. For roll angle θ, we define
tilting right from the vertical line is positive and for steering
angle φ, turning left is the positive direction. Denote the radius
of the trajectory of the rear-wheel contact point C2 as R and
the trajectory curvature is defined as σ

σ =
1

R
=

tanβ

L
. (1)

From the equation above, we take the time derivative and
obtain

β̇ =
L

1 + tan2 β
σ̇ =

L

1 + L2σ2
σ̇. (2)

From the geometry of the front wheel steering mechanism,
we can find the following relationship among the steering
angle φ, direction angle β, roll angle θ, and caster angle η,

tanβ cos θ = tanφ sin η . (3)

From Fig. 1(b), we can calculate the relationship between
(x, y) and yaw angle ψ as

[

ẋ
ẏ

]

=

[

cosψ − sinψ
sinψ cosψ

] [

vr
v⊥

]

, (4)

where vr is the rear wheel longitudinal velocity and v⊥ is the
lateral velocity. The nonholonomic constraint of the rear wheel
implies the following equalities [1].

{

ψ̇ = σvr

v⊥ = 0 .
(5)

In [1], the author assumes that the steering axis is ver-
tical. This assumption simplifies the motorcycle dynamics
and neglects a significant geometric stabilization mechanism,
“motorcycle trail” (denoted as ∆ in Fig. 1(a)) discussed in [6],
[12]–[14]. The resulting model of the motorcycle dynamics
cannot capture the influence of the steering angle φ on the
roll dynamics when vr = 0. Namely, one cannot use steering
to stabilize the motorcycle when it is still.

In order to capture the stabilization mechanism of the
motorcycle at a low moving velocity, we can modify the
constructed motorcycle Lagrangian Lc by considering the
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Fig. 1. A kinematic diagram of the motorcycle dynamics. (a) Schematic
view of a motorcycle on a plane, (b) top-view of the motorcycle.

mass center gravity change due to steering. The change of
the mass center position due to the steering action can be
calculated by the estimate of the motorcycle frame rotation
angle δ in the horizontal plane XOY (as shown in Fig. 1(b)).
From [6], δ can be estimated approximately as

δ =
∆sin η

L
β . (6)

The reduction of the mass center height can be calculated as

hG∆ = δb sin θ =
b∆sin η

L
β sin θ ≈ b∆σ sin η sin θ . (7)

Therefore, we can derive the constrained motorcycle La-

grangian as

Lc = −mg (h cos θ − b∆σ sin η sin θ) +
1

2
Jsφ̇

2 +
1

2
mv2

G

= −mg (h cos θ − b∆σ sin η sin θ) +
1

2
Jsφ̇

2 +

1

2
m
[

(vr + hσvr sin θ)2 + h2θ̇2 sin2 θ +

(bσvr − hθ̇ cos θ)2
]

, (8)

where Js is the moment of inertia of the steering mechanism,
and vG is the translational velocity of the motorcycle mass
center.

Following the same derivation in [1] with the modified
Lagrangian (8), we can obtain the motorcycle dynamics as

σ̇ = ωσ (9)

M

[

θ̈
v̈r

]

= K + B

[

ωσ
Fr

]

, (10)

where ωσ is the virtual steering angular velocity input, Fr is
the longitudinal tracking force at the rear wheel and

M =

[

h2 −bhσ cos θ
−bhσ cos θ b2σ2 + (1 + hσ sin θ)2

]

,

B =

[

bhvr cos θ 0
−
[

b2σ + h sin θ(1 + hσ sin θ)
]

vr
1
m

]

and

K =

[

g(h sin θ + b∆σ sin η cos θ) + (1 + hσ sin θ)hσv2
r cos θ

−2hσvr θ̇(1 + hσ sin θ) cos θ − bhσθ̇2 sin θ

]

.

Remark 1: Eq. (9) is obtained through the variable substi-
tution of steering angle φ with the generalized coordinate σ.
From Eq. (3) and a small angle approximation, we obtain

β̇ = φ̇ sin η =
L

1 + L2σ2
σ̇

and
1

2
Jsφ̇

2 =
1

2

(

Js
L2

(1 + L2σ2)2 sin2 η

)

σ̇2 =
1

2
J(σ)σ̇2 ,

where J(σ) is the generalized moment of inertia of the steering
mechanism. Using the constrained Lagrangian Lc defined by
Eq. (8), we can obtain the dynamics of σ as

J(σ)σ̈ − 1

2

dJ(σ)

dσ
σ̇2 −mgb∆sin η cos θ = τs − Ffy∆cos η ,

(11)
where τs is the steering torque by the steering motor and
Ff is the lateral friction force at the front wheel (the lateral
friction force Fry at the rear wheel is neglected here). Using
the assumption of the fast actuation of the steering systems
and the small moment of inertia of the front-wheel steering
mechanism, we simplify the dynamics of σ (11) into Eq. (9).
Due to the relationship (2), the steering input ωσ can be
considered as the desired angular velocity of the steering. For
a realistic model, we can consider a first-order approximation
modeling of the steering system instead of the pure integral
form given in Eq. (9).

Therefore, the control inputs in Eqs. (9) and (10) are the
virtual steering control ωσ and the rear-wheel force Fr.



IV. CONTROL SYSTEM DESIGN

The control of an autonomous motorcycle has to satisfy
two specifications. First, the motorcycle has to be balanced so
it will not fall down. Second, the motorcycle must follow the
desired trajectory. The desired trajectory is normally generated
by a motion planning scheme. In this section, we assume that
the desired trajectory (xd(t), yd(t)) is given, and in the next
section, we will briefly describe how to obtain such a desired
trajectory based on GPS and vision systems in real-time. The
control system design follows the external/internal convertible
form approach proposed in [1]. We consider a more realistic
motorcycle model given by Eqs. (9) and (10) and also design a
balance stabilization controller when the vehicle is still. In the
following, we first describe the control design for a moving
vehicle. Then we discuss a balance stabilization control when
the motorcycle is stationary.

A. Trajectory tracking control

First, we rewrite the system dynamics (9) and (10) into
an external/internal convertible form [1]. Using the input
transformation

Fr = B−1
22 M22

[

−M−1
22

(

−M21θ̈ +K2 +B21ωσ

)

+ ar

]

,

Eq. (10) becomes
{

v̇r = ar

M11θ̈ = K1 −M12ar +B11ωσ ,
(12)

where Mij (Bij) is the element of matrix M (B) and Ki is the
ith element of vector K. In order to connect the outputs (x, y)
of the rear wheel contact point to the inputs, we differentiate
the outputs (x, y) three times and obtain

[

x(3)

y(3)

]

=

[

−2v̇rψ̇ sinψ − vrψ̇
2 cosψ

2v̇rψ̇ cosψ − vrψ̇
2 sinψ

]

+

[

cosψ −vr sinψ
sinψ vr cosψ

] [

v̈r
ψ̈

]

.

Define the new input variables

ur = v̈r = ȧr, uψ = ψ̈ = v̇rσ + vrσ̇ = arσ + vrωσ . (13)

With the new inputs ur and uψ , we can rewrite the motorcycle
dynamics (9) and (12) in terms of (x, y, θ) as

[

x(3)

y(3)

]

=

[

−2v̇r sinψ − vrψ̇ cosψ

2v̇r cosψ − vrψ̇ sinψ

]

ψ̇ +

[

cosψ −vr sinψ
sinψ vr cosψ

] [

ur
uψ

]

(14a)

θ̈ =
g

h

(

sin θ +
b∆ψ̇

hvr
cos θ

)

+

1

h

(

1 +
hψ̇

vr
sin θ

)

ψ̇vr cos θ +
b

h
uψ cos θ . (14b)

We can design an external system controller to track the
desired trajectory (xd(t), yd(t)) asymptotically as
[

ur0
uψ0

]

=

[

cosψ sinψ

− sinψ
vr

cosψ
vr

](

−
[

−2v̇r sinψ − vrψ̇ cosψ

2v̇r cosψ − vrψ̇ sinψ

]

ψ̇

+

[

ux
uy

])

, (15)

where
[

ux
uy

]

=

[

x
(3)
d

y
(3)
d

]

−
3
∑

i=1

γi

[

x(i−1) − x
(i−1)
d

y(i−1) − y
(i−1)
d

]

. (16)

The constants γi, i = 1, 2, 3, are chosen such that the
polynomial equation s3 + γ3s

2 + γ2s+ γ1 = 0 is Hurwitz.
By external control (15), the internal (roll) equilibrium angle

is given by substituting uψ0 into the dynamics of θ in Eq. (14),
and therefore we obtain that the roll angle equilibrium θe must
satisfy the following algebraic equation

g

h

(

tan θe +
b∆ψ̇

hvr
sin η

)

+

1

h

(

1 +
hψ̇

vr
sin θe

)

ψ̇vr +
b

h
uψ0 = 0 . (17)

Then the final control system is designed as

ur = ur0 (18)

uψ =

(

b

h
cos θ

)−1 [

− g

h

(

sin θ +
b∆ψ̇

hvr
sin η cos θ

)

− 1

h

(

1 +
hψ̇

vr
sin θ

)

ψ̇vr cos θ + vψ

]

, (19)

where
vψ = θ̈e − β2(θ̇ − θ̇e) − β1(θ − θe)

and constants β1 and β2 are chosen such that the polynomial
equation s2 + β2s+ β1 = 0 is Hurwitz. The calculation of θ̈e
and θ̇e in the above equation is estimated by dynamic inversion
of θe. Details can be found in [1].

The equilibrium of the internal state, roll angle θe, is
calculated by the implicit function in Eq. (17). However, the
motorcycle dynamics we considered here do not include the
lateral friction forces, and therefore solution of Eq. (17) cannot
guarantee θe ≤ θmax, where θmax is the maximum roll angle
allowed at a given motorcycle state. The maximum roll angle
θmax is directly related to the motorcycle tire/road charac-
teristics and dynamics. We can estimate θmax approximately
as follows. When the motorcycle is running under normal
conditions with roll angle θ, the tire/road contact points, C1

and C2, are not sliding on the ground. The friction forces
Ffy and Fry balance the centrifugal force. From a balance
relationship of static forces and moments, we can calculate
the roll angle as

θ = tan−1

(

v2
r

gR

)

.



The lateral friction force Fy has been studied in [6], [9]. In
this study we only consider the static lateral force with the tire
slip angle λ = 0. The lateral friction force can be modeled as

Fy = kλλ+ kθθ = kθθ ,

where kλ and kθ are the tire sideslip stiffness and camber stiff-
ness coefficients, respectively. Assuming the static tire/road
friction coefficient is µs, then we can estimate θmax as

θmax =
µs
kθ
. (20)

For motorcycle balance stabilization, we have to maintain
θ ≤ θmax for all time. We can design the desired trajectory to
satisfy θe ≤ θmax and the tracking control given by Eqs. (18),
and (19) will maintain that the roll angle converges to the
internal equilibrium manifold.

B. Balance stabilization at zero velocity

When the motorcycle is still, i.e. vr = 0, the dynamics are
reduced to

{

σ̇ = ωσ

θ̈ = g
h

(

sin θ + b∆ sin η
h

σ cos θ
)

.
(21)

We can design a robust sliding mode control for the roll angle
θ as follows. Consider the input of the system (21) as the
steering angle φ, which is related to σ by relationship (1)
and (2). We can rewrite Eq (21) as

θ̈ = f1(θ) + f2(θ)u ,

where f1(θ) = g
h

sin θ, f2(θ) = gb∆ sin η
h2L

cos θ, and u = tanβ.
For motorcycle stability, we have |θ| ≤ θmax, where θmax

is the known maximum stabilizing roll angle. Denote the
measured roll angle as θ̂ and real roll angle θ. Define cos θ0 =√

cos θmax cos 0 =
√

cos θmax. Therefore, we can obtain

f1(θ) = f̄1(θ̂) + δf1, f2(θ) = f̄2 · δf2 , (22)

where

f̄1(θ̂) =
g

h
sin θ̂ , |δf1| =

∣

∣

∣

g

h

(

sin θ − sin θ̂
)
∣

∣

∣
≤ α =

2g

h

and

f̄2 =
gb∆sin η

h2L
cos θ0 , δf2 =

cos θ̂

cos θ0
.

Define βmin = cos θmax

cos θ0
and sliding surface s = ε̇+λε, where

ε = θ− θd, and θd = 0 is the desired roll angle. Consider the
following virtual control algorithm

uv = − 1

f̄2

(

λ
ˆ̇
θ + f̄1(θ̂) +Ks

)

(23)

with

K =
1

βmin

[

(1 − βmin|λ ˆ̇
θ + f̄1(θ̂)| + α+ ζ

]

and ζ > 0. It can be proven [18] that under the virtual control
law (23)

sṡ ≤ −ζs2 .

In order to smooth the actual input steering angle, we use a
low-pass filter to smooth the virtual input uv as

τf u̇+ u = uv ,

where τf is the filter coefficient. It can be proven that the use
of the low-pass filter will not affect the stability results [19].

V. MOTORCYCLE MOTION PLANNING

In section IV, we design the trajectory control algorithms
to guide the motorcycle to follow the desired trajectory while
achieving self-stability. The desired trajectory is provided by
the on-board motion planning module. The equipped GPS
cannot provide enough information for obstacle avoidance and
vehicle navigation. We propose to fuse the computer vision and
GPS signals to generate the motorcycle navigation trajectory
in real-time. We briefly describe the combined vision/GPS
navigation algorithms. More detailed information about such
algorithms will be reported separately.
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Fig. 2. An example of motorcycle trajectory from point A (with coordinates
(0, 0)) to point B (with coordinates (1000m, 1000m) (large red squares
represent GPS waypoints and smaller green squares represent the fused
vision/GPS target points).

As shown in Fig. 2, GPS signals only provide limited
waypoint information about the unpaved motorcycle trail.
In order to guarantee that the motorcycle follows such a
trail, we use an on-board vision system to provide unpaved
road information. The computer vision algorithms provide
a set of vehicle direction candidates using a so-called V-
space approach. By weighting these with GPS information,
the algorithms provide a motion planning output to the lower-
level motorcycle controller given in section IV. Fig. 3 shows
an example of the fused GPS/vision direction output on an
offroad trail in the desert in southern California.

The motion planning scheme generates the desired trajec-
tory of the motorcycle for a fixed-period ∆T based on the
current states, such as position, velocity, and other kinematics
constraints. As shown in Fig. 4, for a small ∆T , the desired
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trajectory can be approximated by a circular curve Γk that
connects current motorcycle position pk and the next target
point Tk+1. A pre-defined radius rk around the current target
point Tk is used to eliminate Tk from the candidate set for the
next target point if |pk−Tk| ≤ rk. At motorcycle position pk,
the motion planning output can be represented by a triplet

Tk(t) = {vk(t), Rk, dk}, t ∈ [0,∆T ), (24)

where vk(t) is the desired velocity (magnitude) profile within
the period [0,∆T ), Rk is the desired trajectory radius, and
dk is a binary direction variable to indicate on which side the
trajectory Γk is located relative to the current velocity vector
v. For example, dk = 1 indicates that the desired trajectory
Γk is on the right side of the current velocity direction v, and
dk = −1 if Γk is on the left side of v. The desired velocity
profile vk will be determined by the motorcycle kinematic
constraints and also the turning radius Rk. Since the trajectory
tracking controller is asymptotically stable, the real motorcycle
position pk+1 at the end of each time period ∆T is close to

the target point Tk+1. Then, we start the next motion planning
period from location pk+1.

VI. SIMULATION RESULTS

In this section, we only show some simulation results of
the integrated trajectory tracking control systems based on
the prototype hardware systems. The GPS/vision-based motion
planning algorithms have been implemented and tested on
a two-wheeled mobile robot. The experimental results are
reported separately. The proposed trajectory tracking control
system is undergoing tests on real autonomous motorcycle
systems with the motion planning module. We will report the
experimental results once they are available.

A. Autonomous motorcycle

Fig. 5 shows the autonomous motorcycle built by the Blue
team for the DARPA Grand Challenge. The motorcycle is built
on a commercial system with significant modifications. The
motorcycle is equipped with sensors, actuators and several
computing systems. The on-board sensing devices have the
capability to measure the motorcycle’s linear velocity and ac-
celeration, roll angle, roll rate and acceleration, steering angle,
and global position etc. in real time. The controlled actuations
are traction/braking and front-wheel steering. Table I shows
the parameter estimations of the motorcycle shown in Fig. 5.
We use these parameters in the simulation.

Fig. 5. A picture of the Blue team autonomous motorcycle.

TABLE I

GEOMETRIC PARAMETERS OF THE AUTONOMOUS MOTORCYCLE

Variables L (m) b (m) h (m) ∆ (m) η (deg.)
Values 1.2 0.8 0.6 0.2 70

B. Model calibration and simulation results

1) Trajectory tracking: Fig. 6 shows the simulation results
of the trajectory-following algorithms for the example trail
given in Fig. 2. The motion planning period is updated every 3
s, i.e. ∆T = 3 s. The desired velocity vk(t) in each planning
period ∆T is simply calculated as a function of trajectory
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Fig. 6. Simulation results of the motorcycle trajectory tracking control with measurement noise. (a) velocity, (b) position error with center of the road, (c)
roll angle θ, (d) controlled steering angle φ.

curvature. Smoothing the velocity profile is not considered in
the simulation, and thus there could be a significant velocity
change if the trajectory curvature changes suddenly. In the
simulation, we add white noise with standard variations 0.02
m/s, 0.005 m/s2, 0.3◦, and 0.6◦ for linear velocity and
acceleration, roll angle, and yaw angle, respectively.

Assuming that the motorcycle position is known exactly
(by GPS), we find that the integrated trajectory tracking
controller works very well, and the position errors (defined
as the difference with the desired trajectory) are within 1
m (Fig. 6(b)). Fig. 6(a) shows that the motorcycle velocity
follows the desired values given by motion planning. Since
the trajectory turning radii are not small (the smallest one
is around 40 m), the controlled steering angle φ shown in

Fig. 6(d) is within a 2◦ magnitude range. However, the roll
angle θ shows a significant change during the motorcycle
turns (Fig. 6(c)). The high frequency variations in the steering
and roll angles come from added sensing noise and fast
dynamics given in the motorcycle models. We believe that the
mechanical damping of real system components will smooth
signals in the experimental results more than those shown in
Fig. 6.

The simulation results shown in Fig. 6 clearly demonstrate
that the integrated vision/GPS-based motion planning and
trajectory tracking control systems perform very well.

2) Balancing control with zero velocity: For motorcycle
stabilization control at zero velocity, we have tested the control
laws in the simulation. Fig. 7 shows the simulation results of



the motorcycle roll angle and the controlled steering angle
under an initial roll angle θ0 = 11◦. The measurement noise
for the roll angle θ and roll angle rate θ̇ are modeled as
white noises with standard variation 0.6◦ and 0.6◦/s. From
the simulation results, we can clearly see that the designed
controller can stabilize the motorcycle from a relatively large
disturbance when the vehicle is still.
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Fig. 7. Simulation results of the motorcycle stabilization control under zero
velocity and measurement noises. (a) roll angle θ, (b) controlled steering angle
φ.

VII. CONCLUSIONS

In this paper, we present a mathematical modeling and a
trajectory-following control system of an autonomous motor-
cycle system. We first develop a mathematical model for the
autonomous motorcycle. Compared with the existing motor-
cycle dynamic models, the proposed model can capture the
realistic motorcycle dynamics with a manageable complexity

from the perspective of control system design. The trajectory
following and self-balancing controller is developed based on a
nonlinear control approach, and asymptotic tracking capability
is guaranteed. The desired trajectory profile is generated
using GPS/vision-based algorithms, which have been tested
experimentally. The simulation results show that the proposed
autonomous motorcycle navigation and control systems can
work well on an arbitrary narrow track. The experimental
implementation and validation of the proposed algorithms
are undergoing, and we will report the results once they are
available.
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