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Abstract— To enable robots to grasp unknown objects, we
have developed a new type of fingertip-mounted sensor that can
detect distance, material type, and interior structure without
making contact with the object to be grasped. Due to its
working principle, the sensor is named as Dual-Modal and Dual
Sensing Mechanisms (DMDSM) pretouch sensor. To enable the
wide deployment of the DMDSM sensor, we need to scan a
large number of common household items using the sensor
to establish an object/material database. Here we report our
progress in designing an automatic object scanning system and
the sensor calibration algorithm with the new sensor. The object
scanning system is constructed by a refitted 3D printer with a
motorized turntable mounted on its printing stage. The extruder
of the 3D printer is replaced by the sensor to perform 3D
translation. The turntable rotates the object of interest to allow
a full-body scan. A prototype of the scanning system has been
built, and a new calibration algorithm has been developed to
estimate the parameters of both the sensor and the scanning
system. The system design and ranging accuracy have been
verified by physical experiments, and the collected data from
seven types of common household objects have shown promising
prospects of using DMDSM sensors in grasping.

I. INTRODUCTION

To enable robots to grasp unknown objects is of great
importance in the field of robotics [1], [2]. It is considered
a grand challenge because of unknown factors such as
object shape, surface friction, material type, impact/contact
characteristics, etc. For unknown objects, detecting object
shape/interior structure prior to grasping contact is necessary
for devising a successful grasping plan. In our previous
works [3]–[6], we have developed a new generation of
fingertip-mounted dual-modal and dual sensing mechanisms
(DMDSM)-based pretouch sensor for object ranging and
material/structure sensing based on pulse-echo ultrasound
(US) and optoacoustics (OA) (Fig. 1(a)). The new sensor can
provide information about shape, material type, and interior
structure about the unknown object of interest.

To enable the successful deployment of this new sensor,
we need to scan object signatures for common household
items. The scanning will form a database that can be used
to assist real-time perception and recognition. The collected
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Fig. 1. Schematics of (a) the DMDSM sensor design (US: pulse-
echo ultrasound; OA: optoacoustics). The hardware design (b) and system
diagram (c) of the object scanning system.

database can provide both training and testing datasets.
Building such a database is a large-scale data collection pro-
cess which demands automatic object scanning. Therefore,
we design an object scanning system, which is the main focus
of this paper.

We build our scanning system by refitting a 3-dimension
(3D) printer. We mount a motorized turntable on the 3D
stages of the 3D printer. We present the system hardware
design (Fig. 1(b)), electronic design (Fig. 1(c)). We develop
a new calibration algorithm that considers characteristics
of the new sensor to enable the automatic object scanning
system and future sensor deployment. We have constructed a
prototype system and the experimental results show that our
system and algorithm design is successful. We are able to au-
tomatically scan and analyze the collected data for common
household items with a size profile of less than 27×27×43
cm3. The experimental results show the calibrated object
scanning system achieves a contour reconstruction accuracy
of 0.06 mm with a standard deviation of 0.06 mm when
using the OA modality. The material recognition classifies
7 common household objects with over 98.5% accuracy
for objects with artificial materials and 79.0% accuracy for
objects with organic material.

II. RELATED WORK

The main purpose of our work is to design an object
scanning system and a calibration algorithm for creating a



material database to facilitate perception algorithm develop-
ment and the deployment of the new DMDSM sensor [3]–
[6]. The related works include existing efforts in grasping
databases and calibration algorithms.

The idea of building a material database for object grasp-
ing has been inspired by many existing efforts on grasp-
ing datasets in vision and tactile sensing domains. Image-
based material datasets include [7]–[9], where Sharan et
al.’s dataset [7] has 10 categories and contains 100 images
of each category. Bell et al.’s database [9] has 23 material
categories and over 20,000 images. Texture and reflectance
datasets like [10], [11] have been built by taking photos of
specific samples. Dana et al.’s dataset [10] contains images
of 61 material samples under over 200 different lighting and
viewing conditions. These image-based datasets that have
been built are designed to use existing sensors such as regular
or RGB-D cameras. While the calibration and scanning
are well understood for cameras, we need to develop new
algorithms and systems to enable an object scanning system
with the new DMDSM sensor.

Beyond camera images, existing datasets also include
depth images [12], [13] or 4-Dimension (4D) Light-Fields
[14] to help material classification. Tactile material classi-
fication datasets vary because of the difference in tactile
sensors. Murali et al.’s dataset [15] is a grasping force
dataset with 7800 samples of 52 objects. Besides contact
force, Erickson et al.’s dataset [16] also contains temperature
measurements. Culbertson et al.’s dataset [17] and Strese
et al.’s dataset [18] both contain sample texture images as
well as accelerometer and contact force sensor readings. In
[19], texture images, sliding acceleration, contact sound, and
force are recorded on 69 surfaces. Erickson et al.’s datasets
[20], [21] are the only non-contact material classification
datasets which [20] contain 5 categories. Each category has
10 different materials and readings from 2 spectroscopes with
different wavelengths recorded, [21] has both texture images
and spectroscope readings of 144 objects from 8 material
categories. The YCB set [22] is a set of household objects
for the grasping evaluation purpose. Due to a different sensor
design, our scanning system will generate different data
types. However, the existing efforts in grasping datasets shed
light on how to build such databases.

One significant component of the object scanning system
is calibration, by considering the characteristics of the new
DMDSM sensor. Calibration is a fundamental task in devel-
oping and maintaining a robotic system [23], [24], which
has two common types: sensor calibration and robot mecha-
nism calibration. Sensor calibration focuses on estimating
the parameters of a sensing model of a sensor such as
RADAR [25], [26], camera [27], IMU [28] and LIDAR [29],
[30]. Robot mechanism calibration focuses on estimating
robot kinematic or inertial parameters from actuator inputs
and sensor measurements [31], [32]. Hand-eye calibration
is a subtopic of robot mechanism calibration that aims at
estimating the transformation between a robot end-effector
and a mounted-on camera [33], [34]. The calibration of
our scanning system is similar to a hand-eye calibration

but includes different sensor measurement characteristics.
We focus on estimating the sensor parameters between our
DMDSM sensor and the actuator frame by designing a new
calibration rig, a calibration procedure, and an algorithm.

III. SYSTEM DESIGN

We review our DMDSM sensor before introducing the
overall scanning system design.

1) DMDSM Sensor Review: As shown in Fig. 1(a), the
new dual-modal and dual sensing mechanisms (DMDSM)-
based pretouch sensor [6] utilizes both US and OA modal-
ities to detect object distance, material type, and interior
structure. The sensor transmits co-centered and co-registered
ultrasound and laser pulses from its side window onto the
target, and detects the reflected US and induced OA signals.

OA effect refers to the phenomenon that when a short
laser pulse is incident on the target surface, part of its
energy is absorbed and converted into a heat pulse to create
a fast transient temperature rising, thermal expansion, and
contraction, which induces the ultrasound generation. It is
worth noting that the OA effect is used in both sensing
modalities, and one laser pulse triggers the collection of both
US and OA signals. For the US modality, the pulsed laser
beams drive the ultrasound transmitter inside the sensor to
send both low- and high-frequency (wideband) ultrasound
pulses to the target, and the ultrasound echoes are received
by the ring-shaped transducer. For OA modality, the laser
pulses directly pass through the center hole of the ultrasound
transmitter and are directly incident on the target surface,
and the induced wideband OA signals are also collected
by the same ring-shaped transducer. In both modalities, the
signal temporal delay is used to determine the target-sensor
distance for ranging, while their frequency spectra are used to
extract distinctive features for classifying the target materials
or interior structures. Details of the DMDSM sensor design
can be found in our previous paper [6].

Using the OA effect in both modalities allows generating
acoustic waves with wide bandwidth, which is important for
material type and interior structure recognition. One can view
the two modalities as indirect OA vs. direct OA. Direct OA
tends to better contain the target information, however, for
the transparent or highly-reflective targets, direct OA can fail.
That is the reason why indirect OA is also included in the
sensor design.

2) Scanning System Design: Now let us introduce the
hardware and electronic design of our object scanning sys-
tem.

The hardware design of the object scanning system is
shown in Fig. 1(b), it has three main mechanical components:
a DMDSM sensor, a motorized turntable (TBVECHI™
HT03RA100), and a motorized three-axis linear stage which
is from an existing 3D printer (Anycubic™ Chiron). The
sensor is mounted on the X-axis linear rail of the linear
stage, and the turntable is mounted on the Y axis linear rail.
The relative pose between the sensor and target object placed
on the turntable is adjusted by actuating the linear stages



and turntable, which enables the sensor to scan the vertical
surface of the object.

The electronic design of the object scanning system is
shown in Fig. 1(c), it has two main parts controlled by a
PC through the serial port. The perception part is driven
by a sensor controller (STM32™ NUCLEO-H743ZI) with
internal ADC and triggered by the photo detector upon the
firing of a laser pulse to sample the pre-amplified signal
from the sensor. The actuation part is driven by an actuator
controller (Atmel™ ATmega2560), which interprets control
commands from PC to driving signals of the linear stage and
turntable.

IV. SENSOR AND SCANNING SYSTEM CALIBRATION

Just like any other sensors, deploying a DMDSM sensor
requires a calibration process. This step is not only for
building an object scanning system but also necessary for
future deployment of the sensor to other robotic grasping
applications.

A. Calibration Parameters

To mount DMDSM in our object scanning system or any
other robotic end-effector for grasping, we need to calibrate
its installation parameter. Ultimately, our DMDSM sensor
is a 1-dimensional (1D) scanning senor. The key sensor
parameter is the scanning beam vector in the frame of
reference. In our object scanning system, it is the coordinate
of our 3D linear stages. In a general grasping application,
the frame of reference can be its world frame. The scanning
beam direction vector v is the direction of output laser and
ultrasound beams (marked with yellow arrows in Fig. 2(a)).
Here we assume the output laser beam and ultrasound signal
are co-directional and co-axial due to our sensor design.
The two modalities share the same scanning beam vector.
Therefore, we only need to estimate the laser beam direction
due to the fact that it is better focused than that of the
ultrasonic beam. In fact, each beam is a focused beam
reflected by the same parabolic mirror as shown in Fig. 1(a).

The rest of the parameters pertain to the scanning system
itself, which is the pose of the turntable in the 3D coordinate
system. The pose is uniquely defined by the rotation axis
vector (i.e. normal of turntable plane surface) and its center
location which is the yellow vector n and its position
XR as shown in Fig. 2(b). Before detailing calibration rig
design and mesurements, we introduce common notations as
follows.

B. Nomenclature

S2 is the unit 2-sphere in 3D Euclidean coordinate system,
TqS2 is the tangent space at point q ∈ S2.
{0} represents sensor initial frame, it is a right-handed 3D

Euclidean system defined by sensor initial position. Its
origin is at the intersection point of output laser beam
and outer surface of the robotic fingertip. Its X-, Y -
and Z-axis are parallel to X , Y and Z direction of the
3D linear stages, respectively. All variables are default
in {0}.

n is the turntable surface normal vector, n ∈ S2.
v is the sensor output laser beam direction vector, v ∈ S2.
S is a sensor position reading from linear stage, S ∈ R3.
X is a point in 3D Euclidean space, X ∈ R3.
E is an edge in 3D Euclidean space. E = [[q]× m], where

q ∈ S2 is its unit length direction vector and m ∈
TqS2 is its moment vector in Plücker coordinate [1].
[·]× denotes the skew-symmetric matrix.

C. Calibration Rig Design and Measurements

The calibration rig is designed to provide precise mea-
surements for calibration. The calibration rig includes a
thin straight rigid graphite filament and a 3D printed base
frame. The dark color of graphite generates strong OA signal
responses, and the thin filament structure provides a precise
point and edge measurement during scanning. The base
frame is used to hold the filament either horizontally or
vertically for scanning (Fig. 2).

A raw point is perceived when the DMDSM senor’s laser
beam hits the object surface, and the response signal is
received by the sensor. The 3D position of a raw point is
recovered from sensor depth measurements d, sensor position
readings S from the linear stages, and the sensor parameter
v. The filament is either horizontally pointing toward the
sensor scanning window (Fig. 2(a)) or vertically (Figs. 2(b)
and 2(c)). Points from the former are called tip points while
points from the latter are called edge points.

Multiple raw points are aggregated into a 2D frame scan
by applying an X-Z planar linear stage motion to the sensor
during scanning, where this motion is called the in-frame
motion (green dash arrows in Figs. 2(a) and 2(b)). The
bottom-right black boxes in Figs. 2(a) and 2(b) show the
response signal amplitude heatmap of the perceived points
in a frame when the filament is held horizontally or vertically,
respectively.

With a frame scan of the filament, the center point(s) in
a frame is determined based on the thresholded response
signal of the raw points. The center point is the rudimentary
element used in our calibration. Subscript i is used to note
frame index, and j is used to note center point index, point
index is omitted if there is only one center point in a frame.
For example, center point Xij denotes the j-th center point
scanned in the i-th frame. For a tip scan, the tip center point
(red dot in the bottom-right black box of Fig. 2(a)) is the
average of all thresholded tip points scanned with the X-Z
planar motion. For an edge scan, the edge center points (red
dots in the bottom-right black box of Fig. 2(b)) is the average
of thresholded edge points scanned with X-axis motion. For
a center point Xij calculated from n raw points, by the
central limit theorem, the noise in its corresponding sensor
position reading Sij from the linear stage follows a Gaussian
distribution N (0,Σij), where Σij =

1
nΣPij is the covariance

matrix of the noise, and ΣPij is the covariance matrix of the
raw points’ sensor position readings. The noise in the sensor
depth measurement dij of a center point follows a similar
derivation and has a variance σij =

1
nσPij where σPij is the

variance of the raw points’ sensor depth readings.



Multiple frames are generated by moving the sensor and
rig with linear stage and turntable to obtain frame scans
of the rig from different depth settings or perspectives,
where this motion is called the between-frame motion (black
solid arrows in Fig. 2). In the between-frame motion, the
rotation motion applied between the i-th and k-th frame
scan is determined by turntable rotation angle readings θik,
the turntable normal vector n and center XR. The noise
in turntable rotation angle readings θik follows a Gaussian
distribution N (0, σik), where σik is the turntable precision.

D. Calibration Procedure

The calibration procedure begins with estimating the sen-
sor parameter v first and then calibrating scanning system
parameter n and XR. As shown in Fig. 2, both steps
employ in-frame motions and between-frame motions. The
calibration rig is mounted on the turntable rigidly, and the
turntable base is fixed on the 3D linear stages. The relative
motion is generated by the 1D rotation or the 3D linear
motions.

1) Sensor Parameter Calibration Procedure: As shown
in Fig. 2(a), for sensor parameter calibration, the graphite
filament is held horizontally to point its tip toward the laser
beam from the sensor. Firstly, in-frame motion is applied
on the sensor to obtain one frame scan of the filament tip.
The tip center point Xc in the c-th frame is determined
following the process mentioned in Sec. IV-C, and its corre-
sponding depth measurements and position readings (dc,Sc)
are recorded. An example of the obtained frame is shown in
the bottom-right black box of Fig. 2(a), and the tip center
point is marked with a red dot. After obtaining one frame,
between-frame translational motions along Y axis is applied
on the sensor, followed by another round of in-frame motion
to get a frame scan of the tip from a different depth. The
beam direction vector v is estimated from at least two tip
frame scans with the raw measurements of one tip center
point in each frame.

2) Scanning System Parameters Calibration Procedure:
As shown in Fig. 2(b), for scanning system parameters
calibration, the graphite filament is held vertically to allow
for frame scans to capture edge points along the filament.
In-frame motion is applied to obtain one frame scan of the
filament edge. Similar to the previous step, edge center points
Xij are determined from a frame and their corresponding
raw measurements (dij ,Sij) are recorded. An example of
the obtained frame scan is shown in the bottom-right black
box of Fig. 2(b), and the edge center points are marked with
red dots. Between-frame motions in this step include sensor
translational motions and rig rotation motion with angle θik,
it is followed by by another round of in-frame motion to
get a frame scan of the edge from different perspectives.
Raw measurements (dkj ,Skj) of the new edge center points
from the frame are recorded to pair with their pre-rotation
counterparts. The the turntable surface normal vector n and
center XR are estimated from at least two edge frame scans
with the raw measurements of no less than two edge center
points in each frame.
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Fig. 2. Illustration of calibration procedure and resulting data (best viewed
in color), in-frame motions and between-frame motions are marked with
green dash arrows and black solid arrows, respectively. In (a) and (b), the
gray 3D rectangle is DMDSM sensor with scanning window shooting out
green focusing signal beams. Typical signal readings in one frame scan
is shown in the bottom-right black box. (a) Beam direction estimation
procedure and typical tip point readings in a frame. (b) Turntable center and
normal estimation procedure and sample edge point readings. (c) A photo
of actual scanning set up. The DMDSM sensor is wrapped in aluminum foil
for electromagnetic shielding. The filament is mounted vertically. (d) The
overall view of the scanning system with a water bottle on the turntable.

E. Problem Definition

The calibration of our object scanning system is a two-
step process. The first step is a 2 degrees-of-freedom (DoF)
sensor parameter calibration problem, followed by a 4 DoF
scanning system parameters calibration problem.

Definition 1 (Sensor Parameter Calibration): Given tip
center points’ sensor depth measurements and position
readings (dc,Sc), estimate sensor parameter v.

Definition 2 (Scanning System Parameters Calibration):
Given sensor parameter v, turntable rotation angle readings
θik between a pair of edge Ei and Ek, and their edge
center points’ sensor depth measurements and position
readings (dij ,Sij) and (dkj ,Skj), estimate scanning system
parameters n and XR.

F. Calibration Algorithm

Now the calibration algorithm is presented for our prob-
lem, it starts with estimating sensor parameter v and scan-
ning system parameter n and XR, then jointly optimize the
estimations with a Maximum Likelihood Estimation (MLE)
method.

1) Estimate Sensor Parameter v: Before elaborating the
beam direction estimation scheme, we first show how a
center point is recovered from sensor depth measurements
dc and sensor position Sc from linear stage readings.

As shown in Fig. 2(a), during the c-th frame scan, sensor
output laser beam starts from sensor position Sc and travel



distance dc along direction vector v until it hits point Xc on
the graphite filament. Therefore, point Xc satisfies

Xc = Sc + dcv (1)

In sensor parameter calibration, laser beam direction v is
estimated from the tip center points in multiple frame scans
(red dot in the bottom-right black box of Fig. 2(a)). Denote
the set of frame indices collected in this step as I1. Because
all frames capture the same point XC on the filament tip
from different depth as tip center points, ideally we should
have Xc = Sc + dcv = XC for all frame index c ∈ I1.
That means when scanning the tip, all sensor position Sc are
collinear and parallel to v. Therefore

(Sc − S̄c)× v = 0, (2)

where S̄c = 1
|I1|

∑
c∈I1

Sc is the averaged tip center points’

corresponding sensor position, and × is the cross product.
By stacking (2) for all the points Sc with i ∈ I1, the least-
squares estimation of beam direction v is obtained using
singular value decomposition (SVD).

2) Estimate Scanning System Parameters n and XR:
In scanning system parameters calibration, n and XR are
estimated from the rotation motion using edge center points
in multiple frame scans (red dots in the bottom-right black
box of Fig. 2(b)). We start with estimating edges from edge
center points, then elaborate the rotation motion and show
how to utilize the edges to obtain n and XR from the motion.

An edge is estimated from at least two center points
lying on it, and edge center points are determined from the
estimated v and raw measurements following the derivation
of (2). Denote the filament scanned in the i-th frame as edge
Ei, Xij is the j-th edge center point on Ei, and the set of
point indices collected in this step is denoted as I2. The
direction vector qi of Ei is parallel to the vector between
any two points on the edge

(Xij − X̄i)× qi = 0, (3)

where X̄i =
1

|I2|
∑
j∈I2

Xij is the averaged edge center points

on Ei. The moment vector mi of Ei is calculated by

mi = X̄i × qi (4)

following the conventions in [1]. By stacking (3) for all
the edge points Xij on Ei, the least-squares estimation
of the direction vector qi is obtained using singular value
decomposition (SVD). The moment vector mi of edge Ei

is solved from (4), which completes the estimation of Ei =
[[qi]× mi]. Edge Ek is estimated in the same manner from
its raw measurements (dkj ,Skj).

The rotation motion TR between two consecutive frame
scans can be decomposed into three steps. First, we translate
the origin of {0} to the turntable center. Then we apply the
rotating motion. Finally, we translate the origin back. The

rotation motion TR can be written as

TR =

[
I XR

0 1

] [
Rn(θ) 0

0 1

] [
I −XR

0 1

]
=

[
Rn(θ) (I3×3 −Rn(θ))XR

0 1

]
,

(5)

where Rn(θ) = I3×3 + sin θ[n]× + (1 − cos θ)[n]2× is the
Rodrigues’ formula for axis-angle rotation, n is the normal
vector of turntable surface, and θ is the rotation angle of the
motion. XR is the center of turntable.

Using at least two edges and their underlying rotation
motion, the scanning system parameters n and XR can
be estimated. Let Ek be the counterpart of edge Ei after
applying the rotation motion TR. The direction vector qi of
edge Ei is parallel to its counterpart qk after rotation

Rn(θ)qi × qk = 0. (6)

Besides, a point Xij on edge Ei lies on the transformed edge
Ek after rotation

Ek(TRXi) = 0, (7)

where Xi =

[
. . . ,

[
Xij

1

]
, . . .

]
are all the edge points on Ei.

Combining (6) and (7), the turntable normal n and center
XR can be solved using SVD.

3) MLE Estimation: Given the least-squares estimations
of v, n and XR obtained from previous steps, a Maximum
Likelihood Estimation (MLE) problem that jointly estimates
the parameters is formulated to obtain the optimal estima-
tions under the Gaussian noise assumption.

Suppose that Ek is the counterpart of edge Ei after
applying the rotation motion TR. The collection of raw
measurements from the two frames is denoted as Xik =
[θik,d

T
i ,S

T
i ,d

T
k ,S

T
k ]

T. Here θik is the turntable angle read-
ing of rotation motion between the i-th and k-th frame.
di = [. . . , dij , . . .]

T and Si = [. . . ,Sij , . . .]
T are depth and

sensor position readings of edge center points on edge Ei,
dk and Sk are those for edge Ek.

The Maximum Likelihood Estimation (MLE) optimization
problem is formulated as follows

min
X̂ik

∑
i̸=k

∥∥∥Xik − X̂ik

∥∥∥2
Σik

s.t. C(X̂ik) = 0,

(8)

where ∥·∥2Σik
is Mahalanobis distance with covarience ma-

trix Σik of Xik, and Σik = Diag(σik,ΣSi,Σdi,ΣSk,Σdk).
Covariance matrices ΣSi = Diag(. . . ,Σij , . . .) and Σdi =
Diag(. . . , σij , . . .) are obtained from Sec. IV-C, and the same
apply for σik, ΣSk and Σdk. Constraint function C(X̂ik) is
a concatenation of (3), (6) and (7). The MLE problem is
solved using the Levenberg-Marquardt algorithm.

V. EXPERIMENTS AND RESULTS

The proposed object scanning system and calibration al-
gorithm have been validated with physical experiments. The
experiment setup is shown in Fig. 2(c) and Fig. 2(d). We



first show the calibration experiment results, then present
the household object scanning experiment results.

A. Calibration Experiment

1) Calibration Experiment Data and Results: The calibra-
tion dataset is collected by following the procedure described
in Sec.IV-D. In the dataset, 4 tip center points are extracted
from 70 tip point measurements, and 14 edge center points
are extracted from 88 edge point measurements in two edge
frame scans, between which the rotation angle is θ01 =
π. Using the collected dataset, calibration parameters are
estimated with the algorithm mentioned in Sec.IV-F, and
their values are shown in Table. I.

TABLE I
ESTIMATED CALIBRATION PARAMETERS

v [ 0.0656; 0.9955; -0.0678]
n [ -0.0007; 0.0022; 0.9999]

XR (mm) [ 235.21; 288.17; 0.00]

2) Calibration Result Validation: The estimated calibra-
tion parameters and co-directional alignment of the OA and
US beams are validated by reconstructing an aluminum block
with a known shape. The reconstructed points are compared
with the ground-truth measurements from the vernier caliper.
The error metric e = d(Xij ,Ei) is defined based on the
Euclidean distance function d between a reconstructed point
Xij and its corresponding ground-truth contour line Ei.

The reconstruction error and standard deviation of OA and
US are (0.06± 0.06) and (0.15± 0.11) mm, respectively.
The reconstruction result using OA and US signals is visu-
alized in Fig. 3.
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Fig. 3. Aluminum block contour reconstruction for validating the system
parameters. (a) Aluminum block with scanning path. (b) Reconstructed
Contour. The unit of X-Y axes is centimeter. Symbols ‘□’ and ‘×’ represent
OA and US scanned points, respectively. The red and blue boxes represent
the OA and US fitted contours, respectively.

The results show both OA and US reconstruction achiev-
ing a reconstruction accuracy level on par with the DMDSM
sensor. For the depth measurements, the sensor has lower
than 0.10 mm average error and deviation for the OA
modality, and around 0.15 mm average error and 0.11 mm
deviations for the US modality, respectively. These results
verify the calibration result and indicate that the two co-
directional signal beams are aligned well.

B. Household Object Scanning Experiment Results

After validating the calibration experiment result, house-
hold object scanning experiments are conducted on seven
common household objects to demonstrate the shape and

material sensing capability of our scanning system. The
scanning experiment includes a contour reconstruction test
and a material classification test.

1) Contour Reconstruction Test: The contour reconstruc-
tion test aims at showing the shape sensing capability of the
system. The six scanned items and their responses to OA
and US signals are listed in Fig. 4.

As shown in Fig. 4, it is not uncommon that one of
the OA and US signals is not perceivable on some objects.
For transparent or reflective objects, the OA signal will not
be presented due to lacks of light absorptive material. For
porous objects, the US signal will not be presented due
to sound absorptive material [6]. Nonetheless, our scanning
system is still able to reconstruct the contour of the scanned
items by utilizing our DMDSM sensor.

OA & US US Only

Steel Bottle Glass Jar Plastic Box Paper Box Apple Foam

OA Only

Fig. 4. Object Contour Reconstruction Results. The first row shows
working modality on each object. The second row shows object photos with
scanning paths. The third row illustrates their reconstructed contours. The
unit of X-Y axes is the centimeter. The symbols ‘□’ and ’×’ represent the
OA and US scanned points, respectively. The red and blue lines represent
the OA and US connected lines between adjacent points, respectively.

2) Material Differentiation Test: The material differenti-
ation test aims at showing the material sensing capability
of the system. Similar to our previous works [3]–[6], the
BOSS classifier is used to distinguish the materials of the
seven objects mentioned above using 50 random trials and
a 3:1 ratio of training and testing data. Fig. 5 shows the
confusion matrix of the material differentiation test, and it
shows that we are able to achieve over 98.5% accuracy for
objects with artificial materials and 79.5% for organic object
(apple). The lower accuracy of the apple may result from the
non-uniformity of acoustic impedance in organic materials
and the signal discrepancy caused by the varied incidence
angles of the sensor signal beams. More organic objects and
objects with complex shapes will be scanned in the future to
optimize the training and classification algorithm.

VI. CONCLUSION AND FUTURE WORK

In this paper, the design of an object scanning system and a
calibration algorithm with the new DMDSM sensor has been
demonstrated. The collected data from seven types of com-
mon household objects have established an object/material
database to assist real-time perception and recognition, which
shows promising prospects of using the DMDSM sensor
in robotic grasping. In the future, we plan to scan more
objects to optimize the training and classification algorithm,
improve the scanning flexibility and speed, and establish the
3D contour/material database. After that, we will integrate



the DMDSM sensor onto a robot hand to enable real-time
close-loop grasping.
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Fig. 5. The classification confusion matrix of the seven materials.
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