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Abstract— We report our system and algorithm developments
that enable a single mobile robot equipped with a directional
antenna to simultaneously localize multiple unknown tran-
sient radio sources. Due to signal source anonymity, short
transmission durations, and dynamic transmission patterns,
the robot cannot treat the radio sources as continuous radio
beacons. We model the radio source behaviors using a novel spa-
tiotemporal probability occupancy grid (SPOG) that captures
transient characteristics of radio transmissions and tracks the
spatiotemporal posterior probability distribution of the radio
transmissions. As a Monte Carlo method, we propose a ridge
walking motion planning algorithm that enables the robot to
efficiently traverse the high probability regions to accelerate the
convergence of the posterior probability distribution. We have
implemented the algorithms and the experiment results show
that our method consistently outperforms methods such as a
random walk or a fixed-route patrol mechanism.

I. INTRODUCTION

A sensor network is usually composed of a large number

of miniature wireless sensor nodes with ad hoc networking

capabilities and may be used as a new espionage tool

that threatens our security and privacy. Assume that only

one robot is available as illustrated in Figure 1. Since the

robot is equipped with a directional antenna and on-board

positional sensors, the robot can detect radio signal strength

(RSS) as it travels in the field of radio sources. In an

unknown network, the robot cannot treat the radio sources

as continuous radio beacons due to unknown number of

radio sources, signal source anonymity, short transmission

durations, and dynamic/intermittent transmission patterns.

To deal with this challenging localization problem, we

model the radio source behaviors using a novel spatiotempo-

ral probability occupancy grid (SPOG) that captures transient

characteristics of radio transmissions and tracks their poste-

rior probability distributions. Based on SPOG, We propose

a Monte Carlo motion planning algorithm that enables the

robot to efficiently traverse high probability regions to accel-

erate the convergence of the posterior probability distribu-

tions of radio sources. We have implemented the algorithms

and extensively tested them in comparison to a random

walk and a fixed-route patrol mechanism. In experiments,

our algorithms have shown consistently superior performance

over its the two heuristics.
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(a) Schematics. (b) The robot.

Fig. 1. Schematics of deploying a single mobile robot to localize unknown
transient radio sources. The radio sources with dashed circles indicate that
they are sending radio signals.

II. RELATED WORK

Localization of unknown transient radio sources relates

to a variety of research fields including radio frequency-

based localization, Simultaneous Localization and Mapping

(SLAM), and occupancy grid methods.

The recent development of radio frequency-based local-

ization can be viewed as the localization of “friendly” radio

sources because researchers either assume that an individual

radio source that continuously transmits radio signals (similar

to a lighthouse) [1]–[3] or assume that the robot/receiver is

a part of the network which understands the detailed packet

information [4]–[6]. However, such information is not always

available in an unknown network.

In robotics research, SLAM is defined as the process of

mapping the environment and localizing robot position at the

same time [7]–[9]. Although both SLAM and our approach

are Bayesian approaches, SLAM assumes that the environ-

ment is static or close to static. Directly applying SLAM

methods to our problem is not appropriate because networked

radio sources create a highly dynamic environment where the

signal transmission patterns change very quickly.

Since Elfes and Moravec [10], [11] introduce occupancy

grid maps as a probabilistic sensor model, the occupancy

grid has been proved to be an elegant representation of

the sensor coverage for mobile robot applications such as

localization and mapping [12]. Thrun and his colleagues [13]

further improve occupancy grid maps to incorporate multi-

sensor fusion, an inverse sensor model, and a forward sensor

model. The existing occupancy grid-based methods focus

on using the spatial probabilistic representation to describe

sensing uncertainty and are not capable of dealing with

time-variant environments. Our work extends the occupancy

grid methods into the temporal dimension to deal with the

dynamic characteristics of the transient radio transmissions.

In our previous work [14], we use a particle filter-based

approach based on the assumption that the carrier sensing
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Fig. 2. An illustration of system diagram and timing.

multiple access (CSMA)-based protocol is used among the

networked radio sources. Here we relax the assumption and

develop a protocol-independent localization scheme.

III. SYSTEM DESIGN

Fig. 2(a) illustrates system architecture. From the robot

perspective, the input is the RSSs from the antenna with the

corresponding antenna positions and orientations. The output

of the system is the planned trajectory for the robot to execute

in the following period. The entire system is built around the

SPOG, which tracks each cell’s probability of containing a

radio source and its transmission rate.

On the one hand, the system updates the SPOG whenever

a radio transmission is detected by the antenna. The antenna

model outputs the posterior probability distribution of the

signal source as the inputs to the SPOG. This update process

is described by a continuous time system. We use t to denote

the continuous time throughout the paper. On the other hand,

the robot plans its motion periodically with period index k ∈
N. We define the period length as τ0, which is carefully

chosen to ensure the robot has enough time to execute the

planned trajectory. At the beginning of each period, the robot

plans its trajectory based on the current SPOG.

Fig. 2(b) illustrates the relationship between the continu-

ous time system and the discrete time system. Let tk ∈ R be

the exact continuous time at the moment of the discrete time

k. We define the k-th period as the time interval between

tk−1 and tk. Hence tk − tk−1 = τ0 for k > 1. We also

define tkj ∈ R as the exact continuous time when the j-th

radio transmission occurs in the k-th period: tk−1 ≤ tkj < tk.

j is set to zero at the beginning of each period.

IV. PROBLEM DEFINITION

To setup the localization problem, we have the following.

1) Both the robot and radio sources are located in a free

2D Euclidean space. 2) The network traffic is light and each

transmission is short, which are the typical characteristics

of a low power sensor network. 3) The directional antenna

on the robot has high sensitivity and can listen to all traffic

because the robot has space and power advantage over sensor

nodes. 4) The radio sources are static nodes. 5) Radio trans-

missions have the same power level. This assumption can be

relaxed if the robot is equipped with an orthogonal antenna

pair, which can provide directional information regardless

of the transmission power. 6) The radiation pattern of radio

sources is circular because most miniature wireless sensors

are equipped with omni-directional antennas. Due to the

transient transmission and signal anonymity, the robot cannot

simply triangulate the signal source. Since only one robot

is considered, the single perspective makes it more difficult

than cases with multiple robots or receivers.

A. Spatiotemporal Probability Occupancy Grid

We introduce SPOG to track the posterior spatiotemporal

distributions of radio sources. To define the SPOG, we

partition the entire field into equally-sized square cells using

a grid. Let us define cell index set I := {1, ..., n}, where

n is the total number of cells. Define i ∈ I as a cell index

variable. The size of each cell is determined by the RSS

resolution of the antenna. Inside each cell, we approximate

radio source locations using cell center locations. Define Ci

as the event that cell i contains at least one radio source and

P (Ci) as the probability that event Ci occurs.

At tkj , a transmission occurs. We define C1
i as the event

that cell i is the active radio source at time tkj . Define C0
i as

the event that cell i is inactive at time tkj . Hence

P (C0
i ) + P (C1

i ) = 1 and
∑

i∈I

P (C1
i ) = 1 (1)

because there is only one active transmission when the

transmission is detected. We ignore the collision case because

we read the RSS as soon as the transmission is initiated. The

probability of two or more transmissions that are initiated at

the exact same moment is negligible in a light traffic network.

C1
i is determined by the relative radio transmission rate and

is the temporal part of the SPOG. Unlike a regular occupancy

grid, the SPOG is unique because each cell is described by

two types of correlated random events: the spatial event Ci

and the temporal events C0
i and C1

i .

B. Problem Formulation

Fig. 2(a) suggests that the overall localization problem

can be divided into two sub problems: a sensing problem

and a motion planning problem. Let random variable Zk
j ∈

[1, 255] ∩ N be the corresponding RSS at time tkj . Note

that the RSSs are from a receiver with a resolution of eight

bits. Define Z(Zk
j ) as the set of all RSSs sensed from the

beginning of the localization process to the moment when

Zk
j is sensed. We also define set Z

−(Zk
j ) := Z(Zk

j )−{Zk
j },

which is the set of all RSSs from the beginning of the

localization process to the moment right before Zk
j is sensed.

Define P (Ci|Z(Zk
j )) as the conditional probability that cell

i contains at least one radio source given the RSS set Z(Zk
j ).

Similarly, we define the P (Ci|Z−(Zk
j )), P (C1

i |Z(Zk
j )), and

P (C1
i |Z

−(Zk
j )). The sensing problem updates the SPOG

when a new transmission is detected,

Problem 1 (Sensing Problem): Given the current sensed

RSS Zk
j , previous RSS set Z

−(Zk
j ), P (Ci|Z−(Zk

j )),



P (C1
i |Z

−(Zk
j )), and the corresponding robot configurations,

compute P (Ci|Z(Zk
j )) and P (C1

i |Z(Zk
j )) for each cell i.

At the beginning of each period k, we plan the robot

trajectory for the period. Let us define the robot position

and orientation as r(t) = [x(t), y(t), θ(t)]T ∈ R2×S, where

S = (−π, π] is the orientation angle set. Since the antenna

is fixed on the robot and points to the robot forwarding

direction, θ(t) is also the antenna orientation. Define jmax

as the index for the last transmission sensed in period k.

Therefore, we can define the Monte Carlo motion planning

problem for time k (or tk) as,

Problem 2 (Radio Source Localization Motion Planning):

Given the current SPOG, which are sets

{P (Ci|Z(Zk
jmax

))|i ∈ I} and {P (C1
i |Z(Zk

jmax
))|i ∈ I},

plan robot trajectory {r(t)|tk ≤ t < tk+1} that enables the

robot to quickly localize radio sources.

V. MODELING

A. Sensing Problem

We address the sensing problem first. The sensing problem

actually has two components: an antenna model and an

SPOG update process.

(a) Antenna photo
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Fig. 3. HyperGain HG2415G parabolic directional antenna properties.

1) Antenna Model: Figure 3 illustrates the antenna in our

system. Bearing and distance are the two most important

variables in an antenna model [15]. Let (xk
j , yk

j , θk
j ) be

the robot configuration when the j-th radio transmission in

the k-th period is sensed. Let (xi, yi) be the cell center

location. Define dk
ij =

√

(xk
j − xi)2 + (yk

j − yi)2 as the

distance from robot to the center of the cell. Let φk
ij =

atan2(xk
j − xi, y

k
j − yi) − θk

j be the bearing of the cell

with respect to the robot. Assume the active radio source

is located in cell i, the expected RSS si of the directional

antenna is approximated as si = C · (dk
ij)

−βs(φk
ij), where

C is a constant depending on radio transmission power and

(dk
ij)

−β is the signal decay function. The directivity of the

antenna is captured by the term s(φk
ij), which describes the

radiation pattern of the antenna. We obtain C = 1.77 and

the decay factor β = 2.65 for our antenna from calibration.

Since our receiver uses dBm as RSS unit, we have to take

a 10 log 10 with respect to si,

z0 = 10
(

log10 C − β log10 dk
ij + log10 s(φk

ij)
)

, (2)

where z0 is the expected RSS in units of dBm. From the

antenna theory and the results from antenna calibration, we

perform curve-fitting to obtain the radiation pattern function

as illustrated Fig. 3(b),

s(φk
ij) =

{

cos2 (4φk
ij) if − 20◦ ≤ φk

ij ≤ 20◦,
cos2 (80◦) otherwise.

(3)

Note that the peak at the zero bearing in Fig. 3(b) is about 15

dBm higher than the average of non-peak regions. Although

the data in Fig. 3(b) is obtained from the antenna calibration,

the result conforms to antenna specifications well.

Eqs. (2) and (3) describe the expected RSS given that

the radio transmission is from cell i. However, the sensed

RSS is not a constant but a random variable due to the

uncertainties in radio transmissions. Define Zk
j as the sensed

RSS. Therefore, the mean value of Zk
j is z0. From the

antenna calibration, we know that Zk
j conforms to the

truncated normal distribution with a density function of

g(z) =
1

σ
f(

z−z0

σ
)

F (
zmax−z0

σ
)−F (

zmin−z0

σ
)
, where the value of σ is 3.3

that is obtained from the antenna calibration, z is the sensed

RSS, f(·) is the probability density function (PDF) of a

normal distribution with zero mean and unit variance, F (·)
is the cumulative distribution function (CDF) of f(·), and

zmin and zmax are the minimum and the maximum RSS that

the antenna can sense, respectively. Let G(z) =
∫ z

zmin
g(z)dz

be the CDF of the truncated normal distribution.

Define P (Zk
j = z|C1

i ) as the conditional probability that

the sensed signal strength is an integer z given cell i contains

at least an active radio source. Since Zk
j can only take integer

values, P (Zk
j = z|C1

i ) actually is the overall antenna model,

P (Zk
j = z|C1

i ) = G(z + 0.5) − G(z − 0.5). (4)

2) Updating Probability Occupancy Grid: When a radio

transmission with an RSS of z is sensed, we are interested in

P (Ci|Zk
j = z), which is the conditional probability that cell

i contains at least one radio source given the sensed RSS is

z. According to (1), we have

P (Ci|Z
k
j = z) = P (Ci, C

1
i |Z

k
j = z) + P (Ci, C

0
i |Z

k
j = z).

Since event C1
i implies event Ci, the joint event (Ci, C

1
i ) is

the same as C1
i . Hence,

P (Ci|Z
k
j = z) = P (C1

i |Z
k
j = z)+P (Ci, C

0
i |Z

k
j = z). (5)

According to Bayes’ theorem,

P (C1
i |Z

k
j = z) =

P (Zk
j = z|C1

i )P (C1
i )

∑

i∈I P (Zk
j = z|C1

i )P (C1
i )

. (6)

The second term P (Ci, C
0
i |Z

k
j = z) in (5) is the joint

conditional probability that there is at least one radio source

in cell i and none of the radio sources in cell i transmits

given the sensed RSS is z. Joint event (Ci, C
0
i ) implies the

following information:

• Since cell i is not transmitting, condition Zk
j = z

cannot provide additional information for event Ci,

which implies P (Ci|Zk
j = z) = P (Ci).



• There must be one active cell s, s ∈ I and s 6= i.
• Joint conditional event (Ci, C

0
i |Z

k
j = z) is equivalent

to the union of the collection of events {(Ci, C
1
s |Z

k
j =

z), s 6= i, s ∈ I} because of no collision.

• Events Ci and C1
s are independent.

Therefore, we can obtain,

P (Ci, C
0
i |Z

k
j = z) = P (Ci)

∑

s6=i,s∈I

P (C1
s |Z

k
j = z) (7)

Note that P (C1
s |Z

k
j = z) can be computed using (6).

Plugging (6) and (7) into (5), we get,

P (Ci|Z
k
j = z) =

(

P (Zk
j = z|C1

i )P (C1
i )+

P (Ci)
∑

s6=i,s∈I P (Zk
j = z|C1

s )P (C1
s )

)

∑

i∈I P (Zk
j = z|C1

i )P (C1
i )

(8)

Unfortunately, (6) and (8) cannot be directly used in the

system because P (Ci) and P (C1
i ) are not available. We have

to rely on the conditional versions of P (Ci) and P (C1
i )

that build on the observation Z
−(Zk

j ). We can derive the

following from (6) by adding Z
−(Zk

j ) as the condition,

P (C1
i |{Z

k
j = z} ∪ Z

−(Zk
j )) =

P (Zk
j = z|C1

i ,Z−(Zk
j ))P (C1

i |Z
−(Zk

j ))
∑

i∈I P (Zk
j = z|C1

i ,Z−(Zk
j ))P (C1

i |Z
−(Zk

j ))
. (9)

Since the conditional event Zk
j = z is independent of

the previous RSSs Z
−(Zk

j ) given C1
i , we know P (Zk

j =

z|C1
i ,Z−(Zk

j )) = P (Zk
j = z|C1

i ). According to the defini-

tion, {Zk
j = z}∪Z

−(Zk
j ) = Z(Zk

j ). Eq. (9) can be rewritten

as,

P (C1
i |Z(Zk

j )) =
P (Zk

j = z|C1
i )P (C1

i |Z
−(Zk

j ))
∑

i∈I P (Zk
j = z|C1

i )P (C1
i |Z

−(Zk
j ))

.

(10)

Similarly, from (8), we can derive the following,

P (Ci|Z(Zk
j )) =





P (Zk
j = z|C1

i )P (C1
i |Z

−(Zk
j ))+

P (Ci|Z−(Zk
j ))×

∑

s6=i,s∈I P (Zk
j = z|C1

s )P (C1
s |Z

−(Zk
j ))





∑

i∈I P (Zk
j = z|C1

i )P (C1
i |Z

−(Zk
j ))

(11)

Eqs. (10) and (11) provide a recursive formulation for

updating SPOG when a new radio transmission is sensed.

Eqs. (10) and (11) suggest that the update of the SPOG

largely depends the antenna model P (Zk
j = z|C1

i ), which

actually is a function of robot configurations. Since we

threshold P (Ci|Z(Zk
j )) to determine if cell i contains at least

a radio source, the convergence rate of the SPOG determines

localization speed and accuracy. Hence, the convergence of

the SPOG and the corresponding convergence speed really

depend on the robot motion planning.

B. Robot Motion Planner

The intuition is to accelerate the rate that P (Ci|Z(Zk
j )) →

1 for cells that contains radio sources with high proba-

bilities through effective robot motions. Eq. (11) suggests

that the update process contains two parts: P (Ci|Z(Zk
j )) =

P (C1
i |Z(Zk

j )) + P (Ci, C
0
i |Z(Zk

j )), where

P (Ci, C
0
i |Z(Zk

j )) =

P (Ci|Z−(Zk
j ))

∑

s6=i,s∈I P (Zk
j = z|C1

s )P (C1
s |Z

−(Zk
j ))

∑

i∈I P (Zk
j = z|C1

i )P (C1
i |Z

−(Zk
j ))

.

(12)

Since joint event (Ci, C
0
i ) offers no more information re-

garding Ci, we ignore this part. Therefore, to increase the

value of P (Ci|Z(Zk
j )), we want to increase P (C1

i |Z(Zk
j ))

as much as possible. According to (10), this means

max
z

P (C1
i |Z

−(Zk
j )). (13)

We omit the process of deriving the optimal solution for

(13) for brevity. Eq. (13) achieves its maximum when z is

at its maximum. This means that the robot has to place its

antenna’s most sensitive region over the cell that has a high

probability of containing radio sources.

Eqs. (2) and (3) suggest that the most sensitive region is

located at zero bearing angle and at the nearest distance.

Combining this, it is clear that the principle of the motion

planning is to place the robot into the cells with the high

P (Ci|Z(Zk
j )) values and force the robot to face these cells

as much as possible. This principle inspires us to develop

a Ridge Walking Algorithm (RWA) for the robot motion

planning.
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Fig. 4. (a) An example of P (Ci|Z(Zk
j )) distribution, (b) Radio source

locations, a sample level set L(0.3), and ridges over a 50 × 50 grid
for the case. The radio source locations are shown in black dots. Level
set is bounded inside the blue solid lines. The red dashed lines are the
corresponding ridges for the level set components.

Fig. 4(a) illustrates an example of the distribution of

P (Ci|Z(Zk
j )) over a 50 × 50 grid. The actual radio source

positions are shown as black dots in Fig. 4(b). P (Ci|Z(Zk
j ))

value is much larger in the area adjacent to radio sources

than that of other areas. To study the spatial distribution of

P (Ci|Z(Zk
j )), we introduce level set L(p), p ∈ (0, 1] as

follows,

L(p) = {i|P (Ci|Z(Zk
j )) ≥ p, i ∈ I}. (14)

Let us envision that a plane parallel to the ground plane inter-



sects the mountain-like P (Ci|Z(Zk
j )) distribution at height p

in Fig. 4(a). The intersection generates L(p) which contains

all cells with P (Ci|Z(Zk
j )) above the plane. Fig. 4(b)

illustrates the level set L(0.3) for the example in Fig. 4(a).

Fig. 4(b) also shows that L(p) usually consists of several

disconnected components. Define lmax as the total number of

the disconnected components and Ll as the l-th component,

l = 1, ..., lmax. Therefore, L(p) = L1 ∪L2 ∪ ...∪Llmax
, and

Ll ∩ Lm = ∅, where m 6= l and m = 1, 2, .., lmax. For the

l-th component, we define its ridge Rl as the line segment

defined by points (x′, y′) and (x′′, y′′) on Ll,

Rl = {(x, y)|x = (1 − α)x′ + αx′′,

y = (1 − α)y′ + αy′′, α ∈ [0, 1]}, (15)

where points (x′, y′) and (x′′, y′′) are the two points on Ll

such that the distance between (x′, y′) and (x′′, y′′) is the

maximum.

If the robot walks on the ridge, the probability that the

robot is close to a potential radio source is very high. Due to

the walking direction, the antenna is always pointed along the

ridge, which ensures the most sensitive reception region of

the antenna to overlap with the l-th component. In the RWA

algorithm, there are two types of robot motion: on-ridge

movements and off-ridge movements. Since the on-ridge

movement is the effective movement for the localization

purpose, it is desirable for the robot to allocate its time

to on-ridge movements as much as possible. The off-ridge

movement refers to the travel in-between ridges for the robot.

Since we have a fixed time period, we set the robot to

travel at its fastest speed along the shortest path for off-ridge

movements to save time for on-ridge movements.

Since each ridge is usually short, we can approximate

each ridge as a vertex. We define edges as the line segments

connecting different vertices on the 2D plane. With a vertex

set V , an edge set E and a graph G(V, E), to find the

shortest path for the off-ridge movement is an instance of

the traveling salesman problem (TSP) problem. Although

the decision version of the planar TSP problem is NP-

complete, we can use the 3-opt heuristics to solve it [17].

If a better approximation result is needed, we can use other

approximation algorithms [18]. Those algorithms give us a

close to the shortest off-ridge movement trajectory. Define

vmax as the maximum velocity that the robot can travel. The

time available for on-ridge movements tON is,

tON = τ0 − dOFF/vmax, (16)

where dOFF is the total length of off-ridge edges. We allocate

tON to each ridge proportional to the probability that the corre-

sponding component contains a radio source. For component

l, we define the time the robot spend on the ridge Rl as τl.

Therefore,

τl =

∑

i∈Ll
P (Ci|Z(Zk

j ))
∑

i∈L(p) P (Ci|Z(Zk
j ))

tON. (17)

With τl and the length of each ridge, it is trivial to find the

robot velocity for the ridge.

VI. ALGORITHMS

To summarize our analysis, we present two algorithms

including an SPOG update algorithm and the RWA. Corre-

sponding to the sensing problem in Section IV-B, the SPOG

update algorithm runs when a radio signal is detected. Define

set C∗ as the set of cells that contain radio sources with

initial value C
∗ = ∅. Define pt as the probability threshold

for finding the radio source. The robot reports the cells

that satisfy P (Ci|Z(Zk
j )) > pt as the cells that contain at

least one radio source. Recall that n is the total number

Algorithm 1: SPOG Update Algorithm

input : the received RF signal strength Zk
j = z

output: P (Ci|Z(Zk
j )), P (C1

i |Z(Zk
j )), i ∈ I , and C∗

for i ∈ I do O(n)
Compute distance dk

ij and φk
ij ; O(1)

Compute radiation pattern s(φk
ij) using (3); O(1)

Compute z0 using (2); O(1)
Compute g(z) and G(z); O(1)
Compute P (Zk

j = z|C1
i ) using (4); O(1)

for i ∈ I do O(n)
Compute P (C1

i |Z(Zk
j )) using (10); O(n)

Compute P (Ci|Z(Zk
j )) using (11); O(n)

if P (Ci|Z(Zk
j )) > pt and i /∈ C∗ then

C∗ = C∗ ∪ {i}; O(1)

of cells. It is clear that the SPOG update algorithm runs

O(n2). The initial value settings are P (Ci|Z(Z0
0 )) = 0 and

P (C1
i |Z(Z0

0 )) = 1/n.

The RWA algorithm runs every τ0 time. As illustrated in

Algorithm 2, the robot performs random walking until set

L(p) 6= ∅ at the initialization stage. Then the robot switches

into the normal ridge walking mode. The robot stops when no

additional radio source has been found in kmax consecutive

periods where kmax is a preset iteration number. Algorithm 2

uses exhaustive search to find the exact TSP tour. The overall

complexity is O(n+(lmax−1)!). Although the 3-opt heuristic

can accelerate the computation of the TSP, it cannot change

the worst case complexity.

Algorithm 2: Ridge Walking Algorithm

input : P (Ci|Z(Zk
j )), P (C1

i |Z(Zk
j )), i ∈ I

output: Robot motion {r(t)|tk ≤ t < tk+1} and C∗

Compute L(p); O(n)
if L(p) = ∅ then

{r(t)|tk ≤ t < tk+1} = random walk; O(1)

else
Find all disconnected components in L(p); O(n)
Compute Rl for each Ll; O(n)
Construct graph G and solve TSP; O((lmax − 1)!)
Compute dOFF; O(lmax)
Compute tON using (16); O(1)
Compute τl for each ridge using (17); O(1)
Output robot motion {r(t)|tk ≤ t < tk+1}; O(1)

VII. EXPERIMENTS

We have implemented the algorithms and the simula-

tion platform using Microsoft Visual C++ .NET 2005 with



OpenGL on a PC Desktop with an Intel 2.13GHz Core 2

Duo CPU, 2GB RAM, and Windows XP. The algorithms

are tested in the simulation. The radio sources are XBeeT

with ZigBeeT/802.15.4 OEM radio frequency Modules by

MaxStream, Inc. The antenna is calibrated first with the radio

sources. The calibration is conducted at 328 configurations

and 6560 readings have been collected. We use the data from

the real hardware to drive the simulation experiments below.

The grid is a square with 50 × 50 cells. Each grid cell

has a size of 5.08 × 5.08 cm2. Each radio source generates

radio transmission signals according to an independently

and identically distributed Poisson process with a rate of

λ = 0.012 packets per second. The threshold pt = 0.8
and the level set parameter p = 6

n

∑

i P (Ci|Z(Zk
j )), where

the constant 6 is determined by many experimental trials.

During each trial of the simulation, we randomly generate

radio source locations in the 50 × 50 grid.

Fig. 5(a) illustrates how P (Ci|Z(Zk
j )) converges at the

radio source for a sample case with six radio sources. The

location of the six radio sources is shown in Fig. 4(b). It

is clear that P (Ci|Z(Zk
j )) grows monotonically toward 1.

This is what we expect to see: P (Ci|Z(Zk
j )) → 1 for cells

contains radio sources.
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Fig. 5. (a) Convergence of P (Ci|Z(Zk
j )) at radio source locations for a

six-radio source case. (b) Localization performance comparison among the
RWA, the random walk, and the fixed-route patrol.

We also compare our algorithms to a random walk and

a fixed-route patrol. The random walk is chosen because

it is considered as the most conservative approach which

covers the entire field in long run. The fixed-route patrol

traverses the field using a pre-defined route. It is considered

as energy efficient but might not treat each cell equally due

to the route selection. We increase the radio source number

from 2 to 10 to observe the performance of each method. For

each trial, we test all three methods. We repeat for 10 trials

for each radio source number and compute the average time

required for localizing all radio sources. Fig. 5(b) illustrates

comparison results. It is clear that the RWA significantly

outperforms the two heuristics. It is also surprising that the

fixed route patrol is no much better than the random walk.

However, the result can be explained that the robot motion

for the two heuristics does not consider sensor location

distribution and hence cannot achieve good performance.

VIII. CONCLUSIONS AND FUTURE WORK

We report our system and algorithm developments that

enable a mobile robot equipped with a directional antenna

to localize unknown transient radio sources. We modeled the

radio transmission activities using an SPOG and proposed

an SPOG update algorithm and an RWA algorithm for robot

motion planning. We tested the algorithm using simulation

with the data from the real hardware. In the experiment,

we compared our algorithms with a random walk and a

fixed-route patrol heuristics. Our algorithms showed a consis-

tently superior performance over the two heuristics. We are

currently testing our algorithm using physical experiments.

Results will be reported in subsequent journal version.
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