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Abstract— We report an autonomous observation system with
multiple pan-tilt-zoom (PTZ) cameras assisted by a fixed wide-
angle camera. The wide-angle camera provides large but low
resolution coverage and detects and tracks all moving objects
in the scene. Based on the output of the wide-angle camera,
the system generates spatiotemporal observation requestsfor
each moving object, which are candidates for close-up views
using PTZ cameras. Due to the fact that there are usually much
more objects than the number of PTZ cameras, the system first
assigns a subset of the requests/objects to each PTZ camera.The
PTZ cameras then select the parameter settings that best satisfy
the assigned competing requests to provide high resolution
views of the moving objects. We solve the request assignment
and the camera parameter selection problems in real time. The
effectiveness of the proposed system is validated in comparison
with an existing work using simulation. The simulation results
show that in heavy traffic scenarios, our algorithm increases
the number of observed objects by over 200%.

I. I NTRODUCTION

Consider a wide-angle camera installed at an airport
for human activity surveillance or in a forest for wildlife
observation. The wide-angle camera can provide large, low
resolution coverage of the scene. However, recognition and
identification of humans and animals usually require close-
up views at high resolution which need PTZ cameras. The
resulting autonomous observation system consists of a fixed
wide-angle camera with multiple PTZ cameras as illustrated
in Figure 1. The wide-angle camera monitors the entire field
to detect and track all moving objects. Each PTZ camera
selectively covers a subset of the objects.

However there are usually more moving objects than
the number of PTZ cameras. With these competing spa-
tiotemporal observation requests, the major challenge is the
control and scheduling of the PTZ cameras to maximize the
“satisfaction” to the competing requests. The system design
emphasizes the “satisfaction” to the requests which takes into
account 1) the camera coverage over objects, 2) camera zoom
level selection, and 3) camera traveling time. We approach
the control and scheduling problem in two steps. In the
first step, a subset of the requests/objects is assigned to
each PTZ camera. In the second step, each PTZ camera
selects its PTZ parameters to cover the assigned objects. We
formulate the problems in both steps and solved them in real
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time. We implemented the system and conducted numerical
simulations. The experiment results show that our method
outperforms an existing work by increasing the number of
observed objects by over 200% in heavy traffic scenarios.

II. RELATED WORK

The proposed autonomous observation system relates to
the existing works on active video surveillance systems and
the frame selection problem.

In the recent decade, multiple camera surveillance sys-
tems, especially those with both static and active cameras
have attracted growing attention of research. Most of the
works are master-slave camera configuration [1]. The master
static camera(s) provide the general information about the
wide-angle scene while the slave active cameras acquire the
localized high-resolution imagery of the regions of interest.
This is a relatively new research area with many directions
to explore. A very recent live system in this category can be
found in [2]. Our work belongs to this category.

Most works in this category schedule the active cameras
based on simple heuristic rules. Zhou et al. [1] choose the
object closest to the current camera setting as the next
observation object. Hampapur et al. [3] adopt the simple
round robin sampling. Bodor et al. [4] and Fiore et al. [5]
propose a dual-camera system with one wide-angle static
camera and a PTZ camera for pedestrian surveillance. Human
activities (walking, running, etc.) are prioritized basedon
the preliminary recognition by the wide-angle camera. The
PTZ camera focuses to the activity with the highest priority
for further analysis. Costello et al. [6] are the first to
formulate the single camera scheduling problem based on
network packet scheduling literatures. The authors propose
and compare several greedy scheduling policies. With differ-
ent assumptions towards the observation scene and objects,
various scheduling formulation and schemes are proposed.
In Lim et al. [7], the scheduling problem is formulated as a
graph matching problem. Bimbo and Pernici [8] truncate the
continuous scheduling problem by a predefined observation
deadline and each truncated camera scheduling problem is
formulated as an online dynamic vehicle routing problem
(DVRP). However these methods assign only one object to
one active camera. Our system assigns multiple objects to
individual cameras by selecting PTZ camera parameters such
that the camera coverage-resolution tradeoff is achieved.This
also enables group watching which is very meaningful in
many applications.
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Fig. 1. System architecture.

Very few work considers the selection of the zoom level
of active cameras and assigns multiple objects to individual
cameras. Lim et al. [9] construct the observation task for
each single object as a “task visibility interval” (TVI) based
on its predicted states and corresponding camera settings.
When TVIs have non-empty intersection, they are grouped
to form a “multiple task visibility interval” (MTVI). Based
on the order of the starting time of (M)TVIs, a directed
acyclic graph (DAG) is constructed. The scheduling problem
is formulated as a maximal flow problem. A greedy algorithm
and a dynamic programming scheme are proposed to solve
it. Zhang et al. [10] construct a semantic saliency map to
indicate the observation requests. An exhaustive algorithm
finds the optimal single frame that minimizes the information
loss. Sommerlade and Reid [11] use an information-theoretic
framework to study how to select a single active camera’s
zoom level for tracking single object so as to balance the
chances of loosing the tracked object and that of loosing trace
of other objects. In contrast to these works, our scheduling
dose not require accurate motion prediction for the entire
duration of objects in the FOV as in [9]. The assignment
of multiple objects to individual PTZ cameras is carried out
by selecting the camera parameters to achieve the tradeoff
between coverage and resolution.

Our group focuses on developing intelligent vision systems
and algorithms using robotic cameras for a variety of appli-
cations such as construction monitoring, distance learning,
panorama construction and natural observation [12]. In the
context of using PTZ camera for the collaborative observa-
tion, competing observation requests need to be covered by
camera frame(s) to maximize the overall observation reward.
This issue is formulated as the frame selection problem
[13]. A series of algorithms for single frame selection (SFS)
problem have been proposed [13], [14]. Song et al. [15]
propose an autonomous observation system in which a single
PTZ camera is used to fulfill competing spatiotemporal
observation requests. In this work, multiple PTZ cameras
are used to increase the observation coverage. Recently,
an approximation algorithm for the multi-frame selection
problem is proposed [16]. The algorithm coordinatesp (p ≥
1) camera frames to covern (n ≥ p) competing obser-

vation requests inO(n/ǫ3 + p2/ǫ6) time, whereǫ is the
approximation bound. This algorithm inspires the direction
of simultaneous multi-object observation using multiple PTZ
cameras as in this work.

III. SYSTEM ARCHITECTURE AND TIMELINE

Figure 1 shows the architecture of the system. The system
consists ofp (p ≥ 1) PTZ cameras and a wide-angle camera.
All cameras are calibrated. The wide-angle camera detects
and labels all moving objects in the scene. The states of the
objects (e.g., size, position and velocity) in the 2D image
space are tracked and predicted. Based on the prediction,
the observation request generation module generates the
competing spatiotemporal observation requests (shadowed
ellipses) for all objects. Then the request assignment module
assigns a subset of the objects/requests to each PTZ camera
by computing thep-frame settings that best satisfy the
requests. Each PTZ camera tracks the objects assigned to
it by selecting the PTZ parameter settings that best satisfy
these requests to capture high resolution images/videos of
the objects.

Figure 2 shows the timeline of the system. An observation
cycle starts at timet = t0. The states of the objects at
time t = t0 + δl are predicted, whereδl is termed as “lead
time”. Based on the predicted states, the system generates
the observation request at timet = t0 + δl for each object.
A subset of these objects is then assigned to each PTZ
camera. Then the system starts to adjust the PTZ cameras
according to the request assignment. The camera traveling
time is bounded by the “lead time”δl so that the cameras
intercept the objects at timet = t0 + δl. After that, each
PTZ camera tracks its object subset for timeδr until the
beginning of the next observation cycle.δr is termed as
“recording time” and is evenly divided intonr intervals with
each of lengthτ . Based on the state prediction, the PTZ
camera parameter selection module computes each camera’s
setting at the end of each interval. Then each camera micro-
adjusts its settings for up toτ time and prepares for the
next interval. By capturing images/videos forδr time, the
request assignment module re-initiates and the operations
above repeat.T = δl + δr is called one observation cycle.
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Fig. 2. System timeline. An observation cycle starts att = t0. Within each cycle timeT = δl + δr , all PTZ cameras first take no more thanδl time to
adjust the PTZ parameters based on the request assignment. Then each PTZ camera micro-adjusts its parameters within interval τ to track the assigned
subset of objects. This tracking lastsδr time until a new observation cycle starts.

IV. CAMERA SCHEDULING ALGORITHM

For p PTZ cameras, there are usually much more objects.
With the competing spatiotemporal requests, we need to con-
trol and schedule the PTZ cameras to capture sequences of
images/videos that best satisfy the requests. Frame selection
and camera scheduling module is developed for this purpose.

A. Observation request generation

The wide-angle camera detects all motions and tracks them
continuously. Each object is represented by an iso-oriented
elliptic region which is determined by a 4-parameter vector,

[u, v, a, b]T , (1)

where(u, v) indicates the center of the ellipse in the image
space;a andb denote the two axes of the ellipse, respectively.
Thus the state of the object at timet can be represented by

x(t) = [u(t), v(t), a(t), b(t), u̇(t), v̇(t)]T , (2)

where(u̇(t), v̇(t)) indicates the velocity of the ellipse center
in the image space at timet.

A non-parametric Gaussian background subtraction model
[17] is used to detect and label any moving objects. A
kernel-based mean-shift [18] algorithm is used to track the
segmented objects. For predicting the object state, each
labeled object is assigned a Kalman filter. A commonly used
constant velocity model is adopted. Kalman filter is also
able to handle short-term occlusion by predicting the object
motion. It is worth mentioning that a lot of existing tracking
algorithms [19] can be applied here.

Given the predicted state ofi-th object at timet is

x̂i(t) = [ûi(t), v̂i(t), âi(t), b̂i(t), ˆ̇ui(t), ˆ̇vi(t)]
T ,

we define the spatiotemporal observation request as,

ri(t) = [ûi(t), v̂i(t), âi(t), b̂i(t), zi, ωi(t)]
T , (3)

whereû(t), v̂(t), âi(t) andb̂i(t) define the desired rectangu-
lar requested region in the same way asu, v, a andb in (1);
zi indicates the desirable resolution andωi(t) is the temporal

weight, which indicates the emergency/importance level of
the i-th object at timet. ωi(t) plays an important role in
balancing the observation service across all the objects and
will be discussed in details later.

B. Request assignment

As shown in Figure 2, at the beginning of each recording
time δr, we need to coordinatep PTZ cameras so that each
camera is assigned a subset of the objects. We choose the
p-frame settings that best satisfy all the requests at that time.
In our system, the PTZ camera setting is parameterized by
a 3-vector,

c = [x, y, z]T ,

where(x, y) is the center point of the camera frame, which
essentially indicates pan and tilt settings;z is the resolution
of the frame. With a fixed aspect ratio (e.g., 4:3),z also
determines the size of the frame.

The “satisfaction” to the observation request is quantified
by a metric. We extend the Resolution Ratio with Non-
partial Coverage (RRNPC) metric in [16] to cope with the
spatiotemporal requests. Given a requestri(t) and a frame
c, we derive the definition of the satisfaction function as,

s(c, ri(t)) = ωi(t) · I(c, ri(t)) · min(
zi

z
, 1), (4)

whereI(c, ri(t)) is an indicator function,

I(c, ri(t)) =

{

1 if ri(t) ⊆ c,

0 otherwise.
(5)

The termmin( zi

z
, 1) indicates the resolution ratio. It reaches

the maximum of 1 when the resolution level of the camera
frame is better than that of the request. In (5) we abuse
the set operator⊆ in the way ri(t) ⊆ c indicates that the
requested region is fully contained in that of the frame.
This means we do not accept partial coverage over the
request. This is necessary for many purposes such as object
recognition and identification. To maximize the overall cov-
erage of thep frames, we also restrict that any two camera



frames do not fully contain a request region in common.
This constraint also avoids multiple count for one request.
Therefore, the overall satisfaction of ap-frame setCp(t) =
{c1(t), c2(t), ..., cp(t)} over n requests is the sum of the
satisfaction to each individual requestri(t), i = 1, 2, ..., n,

s(Cp(t)) =

n
∑

i=1

p
∑

u=1

s(cu(t), ri(t)) (6)

=

n
∑

i=1

p
∑

u=1

ωi(t) · I(cu(t), ri(t)) · min(
zi

zu(t)
, 1).

Thus the request assignment problem is formulated as finding
the optimal p-frame settings that maximizes the overall
satisfaction,

Cp∗(t) = arg max
Cp(t)

s(Cp(t)). (7)

This problem can be solved in [16] with running time
O(n/ǫ3 + p2/ǫ6), where ǫ is the approximation bound.
After assigning the requests by finding the optimalp frame
settings, we find the best camera-setting pairs that minimize
the time for adjusting the PTZ cameras.

We summarize the request assignment scheme in Algo-
rithm 1. We assume the states of the objects can be predicted
trivially ahead of time. This is usually true for Kalman filter
predictor.

Algorithm 1 : Request Assignment (RA)

Input : Current timeσ; predicted object states at time
ξ, (ξ ≥ σ + δl), X̂(ξ) = {x̂1(ξ), x̂2(ξ), ..., x̂n(ξ)}.

Output : p-frame settingsCp∗(ξ) = {c∗1(ξ), c
∗

2(ξ), ..., c
∗

p(ξ)},
with i-th camera being assigned an object subset.

Generate requests at timet, R(ξ) = {r1(ξ), r2(ξ), ..., rn(ξ)}1

based onX̂(ξ); O(n)
ComputeCp∗(ξ) as in (7); O(n/ǫ3 + p2/ǫ6)2
Find pairs of camera and setting that minimize the camera3

traveling time; O(p2 log p)
Adjust p cameras based onCp∗(ξ) by t = ξ; O(1)4

Theorem 1: Algorithm RA runs in O(n/ǫ3 + p2/ǫ6 +
p2 log p) time.

C. PTZ camera parameter selection

After each camera is assigned a subset of objects, the
camera tries to track these objects for the recording time
δr. This requires to select the camera parameter setting such
that the satisfaction is maximized for each recording interval.
Given each recording interval is represented as[t − τ, t)
and thei-th camera is assigned a subset of objects with
predicted states at timet, X̂i(t) = {x̂1(t), x̂2(t), ...}. The
corresponding observation requests are generatedRi(t) =
{r1(t), r2(t), ...}. The camera setting at timet, c∗(t), is then
determined by maximizing the satisfaction toRi(t),

c∗(t) = argmax
c

∑

ri(t)∈Ri(t)

s(c, ri(t)). (8)

This problem can be solved in [14] with running time
O(|X̂i|/ǫ3), where |X̂i| is the cardinality ofX̂i and ǫ is

the approximation bound. However, (8) does not consider
the fact that within timeτ , the PTZ camera can only micro-
adjust within a limited setting range. We assume the pan,
tilt and zoom motion of the camera are independent. The
reachable ranges for pan, tilt and zoom settings within time
τ areα, β andγ, respectively. Then we rewrite (8) as,

c∗(t) = arg max
c∈α×β×γ

∑

ri(t)∈Ri(t)

s(c, ri(t)). (9)

It is worth mention that most PTZ cameras’ pan and
tilt motion is fast enough to keep tracking most objects in
the scene. For example, the empirically estimated transition
speed of the Panasonic HCM 280 camera is300◦/sec.
for pan, 200◦/sec. for tilt and 5 levels/sec. for zoom.
Considering the camera has21× zoom levels and only less
than 50◦ FOV, the time for changing pan and tilt settings
is much less than the time for changing the camera zoom.
Changing the zoom level when the camera is moving also
creates significant motion blurring and requires re-focusing.
Therefore, in practice, we only search for the pan and tilt
settings inα × β while remain the zoom level.

We summarize the PTZ camera parameter selection
scheme in Algorithm 2. Note

∑p
i |X̂i| ≤ n.

Algorithm 2 : PTZ Camera Parameter Selection (PTZ-CPS)

Input : Current timeξ; i-th camera current settingc∗i (ξ);
predicted object subset states
X̂i(ξ + τ ) = {x̂1(ξ + τ ), x̂2(ξ + τ ), ...}.

Output : i-th camera setting at timeξ + τ , c∗i (ξ + τ ).
Generate requestsRi(ξ + τ ) = {r1(ξ + τ ), r2(ξ + τ ), ...}1

based onX̂i(ξ + τ ); O(|X̂i|)
Computeα, β, γ based onc∗i (ξ); O(1)2

Computec∗(ξ + τ ) as in (9); O(|X̂i|/ǫ3)3
Micro-adjusti-th camera based onc∗i (ξ + τ ) by4
t = ξ + τ ; O(1)

Theorem 2: Algorithm PTZ-CPS runs inO(|X̂i|/ǫ3)
time, where|X̂i| is the cardinality ofX̂i. Computing pa-
rameters for allp cameras takesO(n/ǫ3) time.

D. Dynamic weighting

If we keep the request weight in (3) unchanged, the system
will create a “biased frame selection” model that always
prefers certain objects instead of balancing the camera re-
source for all objects. We address this issue by carefully
designing the temporal weightωi(t) based on two intuitions:
1) object exiting FOV sooner is of more importance and
2) object less satisfied in history is of more importance.
The first intuition is derived from the earliest deadline first
(EDF) policy [6]. The policy addresses the emergency of the
requests. The second intuition addresses sharing the camera
resource for all objects to achieve balanced observation over
time. We define,

ωi(t) = µi(t) · νi(t),

whereµi(t) andνi(t) address the first and second intuitions,
respectively. One candidate form ofµi(t) is,

µi(t) = min(ρ(d̂i−t), 1), (10)
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Fig. 3. Simulated scene. Each object is represented as an ellipse and
enters the scene from one of the four sides following a Poisson process. The
orientation is bounded within[−40◦, 40◦] with respect to the perpendicular
of the side. The object maintains constant velocity and its time to exit the
scene is predicted.

where d̂i is the predicted deadline fori-th object to exit
the FOV and0 < ρ < 1 is a parameter that controls how
quick the emergency increases. Whent → d̂i, µi(t) → 1, as
maximum.

To designνi(t) we need to first define the accumulative
unweighted satisfaction (AUS)ηi(t),

ηi(t) =

p
∑

j=1

∑

tk≤t

s(cj(tk), ri(tk))

ωi(tk)
, (11)

where the variabletk refers to the discrete times when
cameras take frames. The AUS essentially reflects how well
an object is satisfied in history. We designνi(t) as,

νi(t) = max(1 −
ηi(t)

ne

, 0), (12)

wherene is a parameter indicating the extent to which an
object need to be observed. Whenηi(t) ≥ ne, νi(t) is zero
and we contend the object is fully satisfied and needs no
observation any longer. Bothµi(t) and νi(t) are bounded
in range[0, 1], which keeps the satisfaction metric in (4) a
standard metric.

V. EXPERIMENT

We carry out a simulation for evaluating the scheduling
scheme based on random inputs. The system is programmed
in Microsoft Visual C++. The simulation is carried out on a
Windows XP desktop PC with 2.0 GB RAM, 300 GB hard
disk space and a 3.2 GHz Pentium CPU.

A. Simulation setup

As shown in Figure 3, a simulated80×60 meters scene is
constructed. There are 4 entrances on each side. The size of
the entrance is 30 meter. Each object enters the scene through
one side and maintains a constant velocity. Seven random
numbers are needed to characterize each object. First, a
random integer number ranging from 1 to 4 is generated
to indicate which side the object enters through. Then a
random real number in[0, 1] is generated to indicate the
entering point along the side. After that, the orientation of
the object is determined by a random angle within the range

[−40◦, 40◦] with respect to the perpendicular of the side. The
object speed is generated from a truncated Gaussian with a
mean of 1.5 m/s and standard deviation of 0.5 m/s, which
is basically the speed of a walking people. The lengths of
the two axes of the ellipse that represents the object are
randomly generated from a range[1.5, 2.5] m. Finally, the
desirable resolution of the object is generated from a range
[1, 21] (magnification), which is also the Panasonic HCM280
camera zoom range. The cameras run in 10 fps, which means
τ = 0.1 s. Then α = 30◦ and β = 20◦. 5000 objects
arrive in the scene following a Poisson process with arrival
rate λ, which represents the congestion level of the scene.
We set the lead timeδl = 4s, which guarantees that in the
request assignment phase, camera adjustment is completed
before cameras intercept the objects. We setδr = 6s, which
is equivalent tonr = 60 frames. We set the parameter
ne = nr in (12) andρ = 0.5 in (10) andǫ = 0.25. Two
PTZ cameras are used, i.e.,p = 2. We set the approximation
boundǫ = 0.25.

B. Metric and results

We compare our scheduling scheme with the earliest dead-
line first (EDF) policy proposed in [6]. EDF is a heuristic
scheme where the camera always picks the object with
earliest deadline. With each congestion setting, 20 trialsare
carried out for average performance. We first compare the
two schemes based on the ratio of number of objects that
are observed for at leastnr/2 times to the total number
of objects pass through the scene. We term this metric as
Mn. This metric essentially indicates how many objects
the system can capture and observe for a period of time.
Figure 4(a) shows the comparison result. It is shown that
when the Poisson arrival rateλ is small, i.e., there are few
objects in the scene, both scheduling schemes can reach
almost best possible ratio (100%). Whenλ increases, i.e.,
the traffic in the scene becomes heavy, the performance of
EDF deteriorates significantly quicker than our method. In
the heavy traffic scenario, our method outperforms the EDF
by over 200%.

We also compare based on the satisfaction to the objects
since it takes into account not only the times that an object
is observed, but also the resolution of the observation. As
mentioned earlier, the AUS as defined in (11) indicates how
well an object is satisfied. We define the second metric
Ms as the ratio of average AUS to the maximum possible
satisfaction for each object (i.e.,ne). Figure 4(b) summarizes
the comparison based onMs. It is shown that our method
deteriorates even slower asλ increases. In the heavy traffic
scenario, our method outperforms the EDF by 250 %. This is
not surprising since in heavy traffic situations, objects tends
to be close to each other, where multi-object coverage has
much greater advantage.

The computation time for both request assignment and
camera parameter selection depends on the value ofλ. In
the heaviest scenario (i.e.,λ = 1), the maximum number of
object in the scene at any time is less than 100. In this case,
the computation time for request assignment is less than 0.5
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(a) Comparison of scheduling poli-
cies based onMn.
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(b) Comparison of scheduling poli-
cies based onMs.

second which is significantly less thanδl. The computation
time for all PTZ cameras’ parameter selection is less than
0.05 second which is also less thanτ .

Careful analysis reveals that our satisfaction formulation in
(4) is actually a generalization of many existing scheduling
schemes. For example, if we tune parameterρ in (10)
approaching to zero, then the change inµi(t) dominates
the change in the overall weight. That means we extremely
care the emergency of the request and thus the scheduling
converges to the earliest deadline first (EDF) policy [6]. Also,
given we set the requested resolution close to highest camera
resolution, or we change the resolution ratio termmin( zi

z
, 1)

in (4) to indicator functionI(zi ≥ z). This means we only
accept the images with least requested resolution. Then the
frame selection algorithm would assign at least single object
to each PTZ camera in the worst case, which is exactly
the scheduling scheme based on single object tracking as
in almost all existing works. This is also one reason our
scheduling scheme outperforms the existing work.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present an autonomous vision system that
consists of multiple robotic PTZ cameras and a fixed wide-
angle camera for observing multiple objets simultaneously.
We present the system with observation request generation,
request assignment and PTZ camera parameter selection
modules. We formulate the PTZ camera scheduling as a se-
quence of request assignment and camera parameter selection
problems with objective of maximizing the satisfaction to
requests. The problems are solved by our recent algorithms
on frame selection problem. We compare the system with
an existing work based on simulation. The simulation re-
sults show our system significantly enhances the observation
performance especially in heavy traffic situations.

In the future, we will investigate how different frame selec-
tion formulation would impact the system performance and
how they fit human user need in practice. Another interesting
extension is to consider the camera traveling time within the
request assignment. Intuitively, asynchronized observation by
multiple PTZ cameras would further enhance the system
performance. The camera content delivery through internet
would be another interesting topic especially when number
of camera increases.
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