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Abstract— We develop a decentralized algorithm to coordi-
nate a group of mobile robots to search for unknown and
transient radio sources. In addition to limited mobility and
ranges of communication and sensing, the robot team has
to deal with challenges from signal source anonymity, short
transmission duration, and variable transmission power. We
propose a two-step approach: first, we decentralize belief func-
tions that robots use to track source locations using checkpoint-
based synchronization, and second, we propose a decentralized
planning strategy to coordinate robots to ensure the existence
of checkpoints. We analyze memory usage, data amount in
communication, and searching time for the proposed algorithm.
We have implemented the proposed algorithm and compared
it with two heuristics. The experiment results show that our
algorithm successfully trades a modest amount of memory for
the fastest searching time among the three methods.

I. INTRODUCTION

The fast development of wireless sensor network (WSN)

technology provides great tools to collect information. How-

ever, WSNs can also be a significant threat to our security

and privacy (e.g. an enemy may deploy a sensor field to

detect troop movements). The large number of miniature

sensors in a large field makes it difficult to manually search

and neutralize the sensors. We are developing algorithms to

enable a team of mobile robots to perform the task. In this

“robot network” vs. “sensor network” setup, each party has

its own advantages and limitations. Robots have mobility

while sensors do not. Robots know their own locations and

received signal strength (RSS) readings. However, robots

cannot decode the protocol of the sensor network and have

to treat sensors as plain radio sources. Therefore, signal

anonymity, short transmission duration, variable transmission

power, and the unknown source number challenge robots in

addition to communication and sensing range constraints.

Building on our prior work, we propose a two-step ap-

proach: first we decentralize belief functions that robots use

to track source locations using checkpoint-based synchro-

nization, and second we propose a decentralized planning

strategy to coordinate robots to ensure the existence of

checkpoints. We formally show that our planning algorithm

ensures the decentralized belief functions to be synchronized

periodically with explicit analysis on memory and commu-

nication requirements. Furthermore, the expected searching

time of our algorithm is insensitive to the number of radio

sources. We have implemented the proposed algorithm and

compared it with two heuristics in simulation based on real
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sensory data. The experiment results show that our algorithm

successfully trades a modest amount of memory for the

fastest searching time among the three methods.

II. RELATED WORK

Searching for multiple transient radio sources relates to

radio frequency (RF)-based localization and multi-robot mo-

tion estimation & planning.

The recent development of RF-based localization can be

viewed as the localization of “friendly” radio sources because

researchers either assume that an individual radio source

continuously transmits radio signals (similar to a lighthouse)

[1], [2], or assume that robots/receivers are a part of the

network and understand the detailed packet information [3],

[4]. However, such information is not always available for an

unknown network. When signal sources are not cooperative,

RSS readings are the primary information for localization

because RSS attenuates over distance. When signal trans-

mission power at the source is not available, ratios between

RSS readings from dislocated listeners [5], [6] or an antenna

array [7] have been proven to be effective in obtaining

bearing and/or range readings.

In multi-robot research area, decentralized estimation of

robot positions and poses has recently gained a lot of

attention. Durrant-Whyte et al. [8] develop the decentralized

estimation technology based on the distributed Kalman filter

framework. Leung et al. [9] also tackle the decentralized

multi-robot localization problem by a concept of check-

points, which represent delayed synchronization of obser-

vation after exchanging observations between robots. Re-

searchers extend the concept to the decentralized information

transfer scheme [10] based on communication constraints.

Our problem is similar in the way that we can benefit from

the range and heading sensory models, but it is different

because we focus on estimating positions of transient targets

instead of robots themselves.

Also in multi-robots research, Pereira et al. [11] propose

the decentralized planning under sensing and communication

constraints while keeping connectivity with the neighbors.

By using decentralized multi-robots, Bhadauria et al. [12]

address the Data Gathering Problem (DGP) in which multiple

robots gather information from deployed sensor networks.

In this work, they formulate the DGP as Travel Salesman

Problem (TSP) instances, and propose a two sub tour plans.

One tour is a counterclockwise tour and the other is a

clockwise tour to ensure that the two tours cover entire

deployed sensor nodes. Another aspect in the decentralized

planning is synchronization. Martinez et al. [13], [14] an-

alyze motion synchronization of decentralized multi-robots

introducing a network of locally connected agents on the



tour using the agree-and-pursue algorithm. These works on

communication and sensing constraints inspire our work.

Unlike the popular pursuit-evasion game, radio sources in

our problem do not move. However, the stationary nodes

do not make the problem simpler because radio sources are

transient and can very transmission power which leads to a

different type of problem.

Our group studies the transient radio source searching

problem under different setups and constraints [15], [16]. The

most relevant prior work is the Bayesian localization scheme

proposed in [17], [18] for using a single robot and their

extension to multiple robots [19]. This paper differs from

existing searching methods by decentralizing belief functions

and proposing a new decentralized planning algorithm.

III. PROBLEM DEFINITION

Our problem setup and assumptions are:

1) Robots and radio sources reside in an open 2D space.

2) Each robot has a limited communication range and a

limited sensing range.

3) Each robot knows its position using the Global Posi-

tioning System (GPS). GPS clocks also provide accu-

rate time for the synchronization purpose.

4) Transmission powers of radio sources are unknown to

robots and may change from time to time. However,

locations of radio sources do not change.

For the new decentralized approach, we will follow the

same problem definition in the corresponding centralized ver-

sions [17]–[19], where the searching problem is partitioned

into two sub problems:

Definition 1 (Sensing Problem): Given the RSS readings

and corresponding locations from robots, update robot belief

functions for radio source locations.

Definition 2 (Planning Problem): Given the belief func-

tions, plan robot trajectories to increase searching efficiency.

We will concretely define the belief functions in detail later

in the paper. This is a Monte Carlo type algorithmic approach

with the following stopping time for radio source detection,

Searching Condition: A radio source is considered as found

if the belief function is bigger than a preset threshold pt.
Now let us begin with the sensing problem.

IV. DECENTRALIZED BELIEF FUNCTIONS

Belief functions track the radio source distribution based

on RSS readings and robot locations. They are usually built

on a Bayesian framework and antenna models to allow

incremental update. In our previous work [17], [19] on

the centralized localization of transient and unknown radio

sources, we propose a Spatial Temporal Occupancy Grid

(SPOG) as the robots’ common belief functions. Let us

review it first and then we will decentralize SPOG.

A. A Brief Review of SPOG

SPOG partitions the searching region into small and equal-

sized grid cells. Define i ∈ N as the cell index variable

where N := {1, ..., n} is the grid cell index set and n is the

total number of cells. SPOG tracks two types of probabilistic

events: Ci represents the event that cell i contains a radio

source and C1
i represents the event that cell i is the active

source when a transmission is detected. C1
i actually reflects

the relative transmission rates among multiple sources, which

is a temporal dimension signature. Define P (C) as the

probability for event C. P (Ci) and P (C1
i ) characterize

spatiotemporal behaviors of transient radio sources.

Let l ∈ M := {1, ...,m} be the robot index variable where

m is the total number of robots and M is the robot index

set. Note that m is always an even number since we will

pair robots up later. Discrete time k or the corresponding

continuous time tk refers to each moment when a trans-

mission is detected by robots. Let x
k
l := [xk

l , y
k
l ]

T be the

location of robot l at time k and X
k := [xk

1 , ...,x
k
m]T be a

set of all robot locations at time k. Let the discrete random

variable Z̃k
l be the RSS reading of the l-th robot at time k.

Define Z̃
k := [Z̃k

1 , ..., Z̃
k
m]T as a discrete random vector of

all the RSS readings at time k and let z̃k := [z̃k1 , ..., z̃
k
m]T be

corresponding values. As a convention, we use lower cases

of random variables or vectors to denote their values. Define

Z1:k := {z̃1, ..., z̃k} as the set of all RSSs sensed from

the beginning of the searching to tk. Define P (Ci|Z
1:k) as

the conditional probability that cell i contains at least one

radio source given Z1:k. Similarly, we define P (Ci|Z
1:k−1),

P (C1
i |Z

1:k), and P (C1
i |Z

1:k−1). At time k, event Z̃k = z̃
k

is perceived by robots. The posterior probability P (Ci|Z1:k)
over the grid needs to be updated. According to [17], [20],

this is actually a nested multivariate Bayesian process. As

more RSS readings enter the system over time, P (Ci|Z
1:k)

converges until P (Ci|Z
1:k) > pt which means that searching

condition in Sec. III is satisfied.

B. Decentralized SPOG (D-SPOG):

In the decentralized system, each robot has to maintain its

own local SPOG by accumulating RSS readings internally

and exchanging information with other robots whenever

other robots move into its communication range. However,

the centralized SPOG in [17] depends on the strict order

of complete observation set Z1:k. Robots cannot arbitrarily

use their partial receptions to generate a local SPOG. Fur-

thermore, robots cannot keep their readings forever for future

information exchange due to limited onboard memory space.

Before we address this problem, let us take a close look

at the decentralized system. There are three types of discrete

events in the decentralized system: detection events referring

to moments when a transmission is detected by robots,

rendezvous events describing moments when a robot moves

into another robot’s communication range, and planning

events describing moments when a robot starts a new path

planning. Recall that k is the time index variable for the

detection event. Denote j and κ as the rendezvous event and

the planning event, respectively. Define tj,kκ to describe the

three events in the continuous time domain as a convention

in the paper. To reduce cluttering, we may also use a reduced

version such as tk and tj for the corresponding event time.

tκ indicates the beginning of the κ-th planning period.



An effective coordination plan should allow robots to

exchange information among each other so that all robots

have the same set of observations Z1:k at time j, tj ≥ tk.

This is the time that all robots can update their SPOG

up to time k. In such a way, the centralized SPOG can

be decentralized and synchronized among all robots. The

“delayed synchronization” concept is proposed as a check-

point by Leung et al. [9]. Let us denote Y (tk, tj) as the

checkpoint. Note that each checkpoint for a robot always

has two time variables: it begins with an early detection

event time and ends with a future rendezvous event time

because information is always generated by detection events

and synchronized by rendezvous events.

Robot

Pair 1

1~ +kz 2~ +kz
3~ +kz 4~ +kz

k
t

2,1 ++ kjt
k

3,1 ++ kjt
k

kjt ,
1-k

3,2 ++ kjt
k

4,3

1

++

+

kjt
k

1,1 ++ kjt
k

4,2 ++ kjt
k

1, +kjt
k

1+k
t

Robot

Pair 2

Robot

Pair 3

Robot

Pair 4

Fig. 1. A sample information flow graph for four robot pairs. Gray
rectangles represent robot rendezvous events. Arc arrows in vertical direction
indicate information exchange between robots in communication range.
Black and white circles represent events for robots with and without
detection of active radio transmissions, respectively.

Fig. 1 shows an information flow graph to illustrate the

checkpoint concept and how information is passed around

the distributed robot pairs in D-SPOG. Note that robots have

been paired up in this graph because it takes two robots

to obtain a signal ratio for radio sources with unknown

and variable transmission powers. We ignore the intra-pair

communication because a pair can always talk to each other

according to planning. Following the arc arrows in vertical

directions, we can see that both Y (tj,k+1
κ , tj+2,k+3

κ ) and

Y (tj+1,k+2
κ , tj+3,k+4

κ ) are checkpoints.

To build a D-SPOG, the remaining question is how

each robot stores and exchanges information. Say that

Yl(t
k−1, tj−1) is the last checkpoint for robot l. After the

update at tj−1, D-SPOG for the robot l is synchronized

up to tk−1 with the fictitious centralized SPOG according

to the checkpoint property. Robot l only needs to store its

own locations and RSS readings after tk−1, which results in

significant saving in memory. Due to the fact that robots

without detection may not know the time of the radio

transmission, each robot has to keep track of its trajectory in

addition to RSS readings. Let Wk−1,t
l be the measurement

set internally generated by robot l between tk−1 and current

time t, t > tk−1:

Wk−1,t
l =

{

xl((t
k−1, t]), zl((t

k−1, t])
}

, (1)

where xl(·) is the robot trajectory and zl(·) is the RSS

reading set for the duration. Similarly, we define Wk−1,j
l

and Wk−1,k
l by replacing t with tj and tk, respectively.

Let us define the measurement set of robot l at rendezvous

time tj as Γk−1,j
l which contains information from both its

on-board sensors and other robots. To describe the moment

right before the robot l encounters another robot, we intro-

duce a (·)− notation. It is clear that Wk−1,j
l ⊆ (Γk−1,j

l )−.

At tj , robot l meets robot p, which has measurement set

(Γk′
−1,j

p )− prior to the information exchange where tk
′
−1 is

the detection event time of the last checkpoint that robot

p has. Note that tk
′
−1 and tk−1 are not necessarily the

same. The two robots first compare the two times because

a newer time means a more recent D-SPOG. The other

robot should synchronize its SPOG to the recent one. After

synchronizing their SPOGs, they need to synchronize the

measurement set. Note that we have (Γk−1,j
l )− for robot

l and (Γk′
−1,j

p )− for robot p before the synchronization.

Without loss of generality, we assume tk−1 ≥ tk
′
−1, the

synchronization process is,

Γk−1,j
l = Γk−1,j

p = (Γk−1,j
l )− ∪ (Γk−1,j

p )−, (2)

where (Γk−1,j
p )− = (Γk′

−1,j
p )− \ Γk′

−1,k−1
p is obtained

by discarding the measurement between tk
′
−1 and tk−1, a

reduction in memory usage.

After the rendezvous event, each robot needs to search

if a more recent checkpoint can be established. For robot

l, it checks Γk−1,j
l to see if the measurement set contains

information from all other robots for detection events hap-

pened after the k− 1-th detection event by searching for the

maximum δ, subject to δ ∈ Z ∩ [−1,∞) and tk+δ ≤ t,

δ = argmax δ

[

Πm
p=1(W

k−1,k+δ
l ⊂ Γk−1,j

l )

]

, (3)

where (Wk−1,k+δ
l ⊂ Γk−1,j

l ) is a logic operation which

returns 0 if the relationship is not satisfied and 1 otherwise.

Only the existence of nonnegative solution indicates a new

checkpoint Yl(t
k+δ, tj) can be established and hence the D-

SPOG can be updated. After the update, it is clear that D-

SPOG is equivalent to the centralized SPOG update with a

delay of t− tk+δ. We have the following lemma,

Lemma 1: To ensure proper update of D-SPOG at check-

points, both the amount of information that every robot stores

onboard and the amount of information exchange during the

rendezvous event between two robots are O(n+m(t−tk−1)),
where t is current time and tk−1 is the detection event time

of the latest checkpoint.

The proof is detailed in online supplemental material [20].

However, if just one robot is geographically isolated with

others which results in no communication to others, no

checkpoint can be established. t− tk−1 becomes unbounded

and the robot may quickly run out of memory which leads to

failure. To address this problem, we propose a decentralized

planning that guarantees periodic checkpoint existence.

V. DECENTRALIZED PLANNING

The decentralized planning strategy needs to take check-

point existence, communication range limit, synchronization,

and searching time into consideration. We build the new



planning strategy by decentralizing our existing ridge walk-

ing algorithm (RWA) in [17], [18].

A. A Brief Review of RWA and Pairwise RWA (PRWA)

In SPOG or D-SPOG, P (Ci|Z
1:k) is the conditional

probability that cell i contains a radio source. RWA plans a

path for a single robot by building on this spatial distribution

of radio sources. We generate a level set L(p), p ∈ (0, 1]
by using a plane parallel to the ground plane to intersect

the mountain-like distribution P (Ci|Z
1:k) at height p. The

intersection generates L(p) which contains all cells with

P (Ci|Z1:k) above the plane. L(p) usually consists of several

disconnected components. The irregular contours in Fig. 2(a)

is an example of L(0.1). For each component, we define

its ridge as the longest line segment along its dominating

direction [18]. We know each ridge has very high probability

of being close to a potential signal source. We generate a

Traveling Salesperson Problem (TSP) tour which contains all

ridges. For off-ridge segments, the robot moves at its fastest

speed. The solid red and dashed blue lines in Fig. 2(a) repre-

sent on-ridge and off-ridge movements, respectively. For on-

ridge segments, the robot spends the time proportional to the

summation of posterior conditional probability P (Ci|Z
1:k)

over the corresponding isolated level set on each ridge. This

allows the robot to spend most of its time on ridges, then

the intuition yields the ridge walking algorithm (RWA) in

[18]. RWA has shown superior convergence performance and

scalability in searching for multiple signal sources.

PRWA extends RWA to plan trajectories for a team

of robots to handle unknown and changing transmission

power in [19]. First, PRWA expands SPOG by developing

a pairwise sensing model based on RSS ratios from robot

pairs instead of assuming known absolute source transmis-

sion power. Second, PRWA coordinates robots in pairs by

minimizing information entropy so that a robot pair can be

viewed as a super-robot in planning. We will inherit the

pairwise sensing model and coordinate robots in pairs in this

decentralized version.

B. Decentralized PRWA (DPRWA)

Similar to RWA, DPRWA coordinate robot pairs to patrol

on TSP tours that link all ridges. We generate a TSP tour in

each planning period. In fact, each planning period is divided

into two parts: short inter-ring movements for transition

between TSP tours in adjacent planning periods followed

by long intra-ring movements for time allocated for robots

to patrol the TSP tour.

1) Inter-Ring and Intra-Ring Movements: Let us begin

with inter-ring movements. Before the planning period starts,

each robot pair computes the TSP tour. All robot pairs

actually share the same TSP tour from the synchronized

D-SPOG. Inter-ring movements allow robots to move from

current TSP tour to the next. Each robot has a pre-allocated

beginning position on the TSP tour (detailed later as initial

positions for intra-ring movements). Therefore, the amount

of travel time for inter-ring movement can be predicted as

soon as the TSP tour for the planning period is established.
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Fig. 2. Sample results for the decentralized planning using 4 robot pairs.
(a) Sample robot trajectories of DPRWA. The solid red and dashed blue
lines represent the on-ridge and off-ridge movements, respectively. (b) An
example of the intra-ring movements on the time ring. (c) Changes of robot
pair directions corresponding to the intra-ring movements. (d) Sample inter-
ring movements using time ring space instead of Euclidean space.

Define Du,κ as the inter-ring travel time of the u-th robot

pair. To synchronize the starting time of intra-ring move-

ments of all robot pairs, every robot pair waits until all other

robot pairs reach at their initial positions. Define Dmax
κ as the

maximum travel time: Dmax
κ = argmaxu Du,κ. For those

robots that arrive early due to short traveling distance, they

need to wait ωκ
u = Dmax

κ − Du,κ before the synchronized

intra-ring movements start. Synchronization will be detailed

later in Section V-B.3. To save time, robots moves at their

fastest speed to shorten inter-ring movement time.

Now let us introduce intra-ring movements. Since the TSP

tour is a continuous loop, it can be mapped to a circular

ring in time with its circumference being the time for a

single pair of robots to traverse the entire TSP tour, which

is defined as τ0. The mapping is one-to-one if we fix a point

correspondence in the mapping. For example, the leftmost

point (the smallest in lexicographic order) on the TSP tour

corresponds to the 9 clock position on the time ring as the

green stars shown in Figs. 2(a) and 2(b). All robots share

this mapping rule to synchronize their positions on the time

ring. The introduction of time ring can facilitate our planning.

Under the time ring, the inter-ring movements can also be

simplified as shown in Fig. 2(d).

As illustrated in Fig. 2(b), each pair of robots are evenly

distributed on the time ring. Define φu,κ and φ
′

u,κ as the

position and speed of the u-th robot pair on the time ring,

respectively. Robots’ speeds on the time ring are unitary

based on the definition of the time ring. Odd and even

pairs are initially assigned to move on the time ring coun-

terclockwise and clockwise, which are represented as 1 and

-1, respectively. Recall there are m robots and hence m/2



pairs. We have

φu,κ =
2τ0(u− 1)

m
, and φ

′

u,κ =

{

1 if u is odd,
−1 otherwise,

(4)

as the initial positions and speeds for robot pairs. Fig. 2(b)

illustrates initial positions and directions (represented by the

heading direction of each robot) of four robot pairs. When

two robot pairs rendezvous on the time ring, they exchange

information and then reverse their moving directions. There-

fore, each robot pair oscillates on the time ring centered at

its initial position as shown in Fig. 2(c).

Define T as the time of the intra-ring movements. The

robot pairs have to execute the intra-ring movements long

enough to ensure the existence of the checkpoint.

Lemma 2: Each robot pair has at least one checkpoint if

the intra-ring movement time T is

T =

{

τ0
2

if m
2

is even,
τ0
2
+ τ0

m
otherwise.

(5)

The proof is detailed in online supplemental material [20].

Fig. 1 illustrates the information flow and checkpoint existent

for the four robot pair case in Fig. 2(b) and Fig. 2(c) under

the oscillating intra-ring movements.

2) Memory Usage and Expected Searching Time:

DPRWA ensures periodical checkpoint existence which leads

to guaranteed performance. To measure the algorithm perfor-

mance, we employ two metrics: memory usage for each robot

and the expected searching time for each radio source.

For the memory usage, following Lemma 2, we have,

Theorem 1: DPRWA guarantees D-SPOG has a time de-

lay less than Dmax
κ + T if comparing the D-SPOG to

the centralized SPOG. To achieve that, each robot requires

O(n+m(Dmax
κ + T )) memory space.

The expected searching time for a radio source has to

depend on the source transmission rate. Assume a radio

source i transmits signals according to a Poisson process

with a rate of λi. In [16], we have introduced the expected

searching time (EST) for a single-robot-single-target case.

Let us extend this analysis to DPRWA. Denote Ts as the

searching time. Similar to the EST analysis of RWA in [18],

we tighten the convergence condition from the probability

threshold pt to the condition of signal saturation. Radio

source i is considered to be found if the robot pairs hear the

transmission within the distance of da of the radio source.

da is set to be small such that if the transmission is heard,

the probability threshold pt must be reached. This defines

a sensing circle with its center at the radio source i and a

radius of da. Define τIN and τOUT as portions of the time when

traveling within and outside distance of da of radio source

i, respectively. Hence Dmax
κ + T = τIN + τOUT. We have the

following theorem,

Theorem 2: The expected searching time E(Ts) of radio

source i has the following upper bound,

E(Ts) ≤ Dmax
κ +

τ0
m

+
1

λi

+ (Dmax
κ + T )E

( e−λiτIN

1− e−λiτIN

)

.

The proof is detailed in online supplemental material [20].

Remark 1: An important result given by Theorem 2 is

the fact that E(Ts) entries are not sensitive to the number

of radio sources which means excellent scalability.
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Fig. 3. Experiment results when comparing the DPRWA, the pairwise
random walk, and the pairwise fixed-route patrol: (a) The maximum memory
space usage using number of detection events stored on-board. (b) and (c)
Searching time comparison while changing number of robots (b) or number
of radio sources (c).

3) Algorithm: We summarize our DPRWA in Alg. 1. The

algorithm runs on each robot pair, which skips details of

intra-pair coordination.

Synchronization: The algorithm runs at tκ, the beginning

of planning period κ. The algorithm relies on the D-SPOG

at tκ−1, which is the synchronized belief function across

all robots. Therefore, all robots will have the same TSP tour,

which ensures their motions are synchronized given the same

plan, accurate clocks from GPS, and the same mapping rule

between the time ring and the Euclidean space.

Virtual ridges: One point that we have yet to explain is

the virtual ridge mentioned in line 2 of Alg. 1. Define smax

as the maximum number of ridges. If there are not enough

ridges generated from the D-SPOG, we employ virtual ridges

to ensure that there are smax ridges. Virtual ridges are

generated uniformly random in the searching region and

also refreshed at every planning period. The introduction of

virtual ridge can be simply viewed as a sampling approach

to cover regions with low probabilities. The virtual ridge sets

are synchronized in the same way that D-SPOG does.

Algorithm 1: DPRWA
input : D-SPOG at tκ−1

1 Apply the level set O(n)
2 Compute ridges and merge them with pre-generated virtual ridges O(smax)
3 Compute the TSP tour from the merged ridge set O((smax − 1)!)

// Inter Ring Movements

4 Compute Du,κ and Dmax
κ O(1)

5 Move to initial positions O(1)
6 Wait ωκ

u O(Dmax
κ )

// Intra Ring Movements

7 while t ≤ tκ + Dmax
κ + T do O(T )

8 Patrolling along the TSP tour O(1)

9 if φ
j,k
u,κ = φ

j,k
u−1,κ

or φ
j,k
u,κ = φ

j,k
u+1,κ

then

10 φ
′j,k
u,κ = −φ

′j,k
u,κ O(1)

11 Update Γ
j,k
u,κ O(1)

12 end

13 end

VI. EXPERIMENTS

To validate the algorithm, we have implemented the al-

gorithm and a simulation platform. The radio sources are

XBee Pro with ZigBeeT radio frequency modules produced

by Digi International Inc. We use the RSS readings from

XBee Pro to drive the simulation experiments. We simulate

iRobot Create in the process, which has a maximum speed

of 40 cm/s. The grid is a square with 50 × 50 cells. Each

grid cell has a size of 50.0 × 50.0 cm2. Each radio source



generates radio transmission signals according to an i.i.d.

Poisson process with a rate of λ = 0.05 packets per second.

The radio sources also dynamically vary their transmission

power using one of 5 power settings in XBee Pro, which

results in a varying sensing range from 1.67 to 3.45 meters.

We set τ0 = 500 seconds in the simulation. We choose the

probability convergence threshold as pt = 0.9. During each

trial, we randomly generate radio source locations in the grid.

We compare the DPRWA algorithm to two heuristics

including a pairwise random walk and a pairwise patrol.

In both heuristics, robots are paired just as DPRWA does.

In the former, each pair is treated as a super robot to

perform a random walk together. In the later, robot pairs

follow a linear formation with an equal inter-pair distance

to be the maximum communication distance. Since global

connectivity is maintained, it becomes centralized planning.

Fig. 3 illustrates the simulation results by using mem-

ory usage and searching time as metrics while changing

communication range, number of robots, and number of

radio sources. Each data point is an average of 20 inde-

pendent trials. There are six radio sources to be searched in

Figs. 3(a) and 3(b). In Figs. 3(a) and 3(c), eight robots are

employed. The communication range is set to be six meters

in Figs. 3(b) and 3(c). Since the pairwise patrol maintains

global connectivity, it requires the least amount memory for

synchronization purpose. The pairwise random walk is the

opposite because the time between checkpoints for robots

can be very long. Our DPWRA requires more memory

than that of the patrol but still much less than that of the

random walk (see Fig. 3(a)). When it comes to the searching

time, DPRWA is significantly faster than its counterparts

(see Figs. 3(b) and 3(c)). The advantage is even more

when number of robots are limited, which happens when the

search is constrained by resources. Fig. 3(b) also compares

DPRWA with the centralized PRWA (CPRWA) in [19]. It is

surprising that DPRWA EST is about the same as CPRWA

despite the advantage that CPRWA has in coordination and

synchronization. Fig. 3(c) further confirms Theorem 2 that

the EST of DPRWA is insensitive to number of radio sources.

VII. CONCLUSION

We developed a decentralized algorithm to coordinate a

group of mobile robots to search for unknown and transient

radio sources in an open field under mobility, communi-

cation range, and sensing constraints. We proposed a two-

step approach: first we decentralized belief functions that

robots use to track source locations using checkpoint-based

synchronization, and second we proposed a decentralized

planning strategy to coordinate robots to ensure the existence

of checkpoints and coordinated searching. We formally an-

alyzed memory usage, data amount in communication, and

searching time for the proposed algorithm. We implemented

the proposed algorithm and compared it with two heuristics

in simulation based on real sensory data.
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