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Abstract— A new generation of inexpensive robotic pan-tilt
cameras can maintain high-resolution panoramic displays of
natural environments. However, the pan-tilt mechanisms are
imprecise: small errors can produce large errors in the panoramic
display. It is thus important to accurately estimate pan-tilt values.
We present a new calibration algorithm that does not rely on
calibration markers or fixed orthogonal edges which are rarely
available in natural scenes. Our calibration algorithm uses image
variance density to optimally estimate camera pan and tilt values
by incrementally refining image registration using overlapping
images from prior frames. Experiments suggest that the new
calibration algorithm can reduce calibration error by 81%. In
a companion paper [19], we present a new image registration
algorithm based on spherical projection that optimally aligns
the resulting frames.

I. INTRODUCTION

Scientific study of wild animals requires continuous ob-
servation over a distance. Recent developments in wireless
telecommunications facilitate low-bandwidth connectivity to
remote sites. A new class of low-cost tele-operated pan-tilt-
zoom robotic video cameras allows fast deployment of systems
that can provide high-resolution images from a wide field of
view in a remote environment. One example is the Panasonic
HCM 280 camera with built-in streaming server, 22x zoom
motorized optical lens, 350◦ pan range, and 90◦ tilt range.
However, minor errors in the camera pan and tilt mechanism
can produce large errors between nominal camera coverage
and actual coverage as illustrated in Figure 1. For example,
an error of 0.5◦ in camera tilt position can cause a 41.67%
error in coverage when a Panasonic HCM 280 camera operates
at its highest zoom.

Recent progress in camera calibration provides the capa-
bility to calibrate an outdoor camera under natural lighting
without using predefined calibration objects [7]. Those meth-
ods utilize linear edges in a rigid scene such as contours of
buildings as a calibration reference. Unfortunately, it cannot
be directly applied to online calibration problems in a natural
environment where linear edges are often not available.

We notice that intrinsic camera parameters such as CCD
sensor size, focus length, and skew factor do not change over
time. Hence, we assume these parameters are known and focus
on calibrating the pan and tilt mechanism. We assume that
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Fig. 1. Operators’ desired camera coverage and the actual camera coverage
cannot perfectly match with each other when there is a calibration error. The
calibration error causes difficulties when the tele-operated pan-tilt robotic
camera is used to track moving animals over a distance.

pan and tilt potentiometer readings are approximate or have
a limited accuracy. We propose a new calibration algorithm
that optimally estimates the pan and tilt positions for a new
camera frame by incrementally refining the image registration
solution for prior overlapping frames in increasing order of
location variance density. For k images, our algorithm runs
in time O(k log k). Experiments show that our algorithm can
reduce calibration error by 81% if compare with a method that
simply selects frames with large overlapping regions.

II. RELATED WORK

Camera calibration is used to determine accurate intrinsic
parameters (CCD sensor size, skew factor, focus length, and
lens distortion) and/or extrinsic parameters (position and ori-
entation of a camera). Our calibration problem focuses on the
camera pan and tilt mechanism, which is part of a camera’s
extrinsic parameters.

The fundamental work on camera calibration is to calibrate a
still camera using still calibration objects, which is credited as
photogrammetric calibration. This is based on a parameterized
camera imaging model such as the pinhole perspective pro-
jection model [26]. The unique characteristics of the imaging
model distinguish camera calibration from robot calibration.
Imprecision in camera parameters causes discrepancy between
image coordinate systems and the world coordinate system.
Sometimes, the discrepancy is caused by the fact that the
pinhole model, which is an approximate model itself, cannot



accurately model the imaging process [11]. The calibration
process can be viewed as model-fitting or parameter identifi-
cation. Photogrammetric calibration observes a 3D calibration
object with a known geometry, usually consisting of several
mutually orthogonal planes [3], [8], [9], [15]. This approach
is very efficient, but requires carefully designed calibration
objects located at 2 or 3 orthogonal planes [26].

Since it is not convenient to accurately set up calibration
objects involving 2 or 3 orthogonal planes, a different ap-
proach, known as self-calibration, does not use any calibration
object, but relies on the rigidity of a scene to calibrate calibrate
intrinsic camera parameters. It takes a series of images while
moving a camera in a static scene. The assumed rigidity of
a scene is used to compute camera parameters [5], [6], [13],
[14], [16]–[18], [21], [23], [24]. Self-calibration reduces the
complexity of setting up the calibration process by assuming
the perfect motion accuracy, which can be viewed as the
inverse of the problem that we are facing. Because we assume
known intrinsic parameters, only a camera’s pan and tilt
mechanism needs to be calibrated.

Realizing that it is not convenient to use a predefined
calibration pattern to calibrate an outdoor camera, Basu and
Ravi [2] propose the notion of active calibration, which
calibrates the image center and focus of a camera using a set of
linear edges in a scene. Collins and Tsin [7] further developed
this idea, which can estimate both intrinsic and extrinsic
camera parameters for pan-tilt-zoom cameras based on how
the linear edges change while rotation and zoom operations
are performed. Since linear edges are difficult to find in a
natural environment, we expand the approach by using the
offset generated by imaging alignment techniques to replace
linear edges. We address the error propagation problems in
multiple imaging alignments by choosing an optimal set of
images to calibrate the pan and tilt positions for a newly-
captured image.

Sinha and Pollefeys [20] develop automatic calibration al-
gorithms for a pan-tilt-zoom camera with a focus on automatic
zoom calibration. Similar to our approach, their method does
not require a structured scene or calibration object. They first
determine intrinsic camera parameters at the lowest zoom and
then increase camera zoom settings to obtain radial distortion
parameters. During the calibration, they focus on intrinsic
parameter calibration and assume camera pan-tilt is accurate
and repeatable. They obtain extrinsic parameters by matching
images captured to a pre-constructed panorama. The accuracy
of extrinsic parameters depends on the panorama quality,
which is sensitive to the number of frames and lighting
variations across frames. This paper complements their work
by concentrating on extrinsic parameter calibration without
assuming an existing panorama.

III. PROBLEM DESCRIPTION

Below, we briefly review our previous work on extrinsic
camera calibration algorithms based on image features identi-
fied by remote human operators. To eliminate humans in the
calibration procedure, we propose to use image alignment to
eliminate manual identification of feature points and formulate

an online pan-tilt calibration problem. We begin with assump-
tions.

A. Assumptions

We assume that all images are taken from a fixed camera,
which only performs pan and tilt movements. Due to cost and
space limitations, the camera’s angular potentiometer usually
has limited accuracy and may deteriorate over time. Hence
these extrinsic parameter readings are inherently approximate
and need to be calibrated. We assume that the rate of the error
change is slow and hence periodic calibration can compensate
for it. We assume that the intrinsic parameters including image
resolution, camera focus length, and CCD sensor size are pre-
calibrated and known.

B. Nomenclature and Feature-based Calibration

Salient and fixed points in the environment are identified
as calibration feature points. Figure 2 shows some sample
feature points including the center of a clock, a corner of the
bookshelf, a power outlet on the wall, and a nail in the wall.
For the jth feature point, we can pan and tilt the camera to
center a frame j on it. Hence, we also reference it as the jth
frame.

Let us define the following variables,

• X∗
j = (p∗j , t

∗
j ): true camera position of the jth frame. It

remains unknown during the entire calibration process.
Sometimes, it is also referred to as an optimal camera
position because the calibration problem is an error-
minimization problem and the true camera position is the
optimal position.

• X̂j = (p̂j , t̂j): the nominal camera position of the jth
frame. It is the reading from the camera potentiometer. It
is referred to as the nominal camera position because of
the errors in the camera potentiometer.

• Xj = (pj , tj): the measured camera position of the jth
frame. It is the corresponding measured value of the true
camera position. The measurement process can be done
using pre-defined calibration objects. In our paper, we use
image alignment.

• ej = Xj − X∗
j : the measurement error of the jth

frame. We assume that the measurement is non-biased,
mean(ej) = 0. Therefore, mean(Xj) = X∗

j and

V ar(ej) = V ar(Xj) =

(
σ2(pj) 0

0 σ2(tj)

)
because

pan and tilt are independent variables.
• σ2

j = max{σ2(pj), σ2(tj)}, the maximum variance of
Xj and ej . The variance metric is used as the perfor-
mance metric in the rest of the paper.

A pan-tilt calibration is a two-step operation. Firstly, we
need to identify calibration feature points and collect their
readings (Xj , X̂j). Secondly, a calibration model is selected
before its parameters are estimated using the collected feature
points (Xj , X̂j). Since the second step has been addressed in
photogrammetric calibration literature, we concentrate on the
first step.

2



 
 

1 

2 

3

4 

5 

6 

7 

8 

9 

10

 
 
 
 Fig. 2. Feature point-based pan-tilt-zoom calibration for a robotic camera

where features are identified by remote human operators. The measured
positions of the frame center are marked as “+”, with their nominal positions
centered at “◦”. The arrows indicate error vectors.

C. Pan-Tilt Calibration Problem Definition

The first step is very difficult to automate in a natural
environment because linear edges are rarely available. The
measured positions Xj usually need human intervention to be
obtained. This is slow and often introduces errors. The results
of our previously published work prove that the accuracy
of calibration is a linear increasing function of σ2

j if the
calibration model is a linear model. Hence, the calibration
problem becomes how to automatically obtain Xj = (pj , tj)T

and also minimize σ2
j .

Definition 1: Given {X̂j , j = 1, ..., n}, find the correspond-
ing {Xj , j = 1, ..., n} with the minimum measurement error
variance, where n is the total number of feature points.

Since it is an online system, it is desirable to embed the
calibration process as a background task. Therefore, the incre-
mental version of the calibration problem is more interesting.

Definition 2: Given {X̂j ,Xj , σ
2
j , j = 1, ..., n}, find the

corresponding Xn+1 with the minimum measurement error
variance σ2

n+1 for the newly-captured camera frame n + 1,

min
Xn+1

σ2
n+1({X̂j ,Xj , σ

2
j , j = 1, ..., n}). (1)

This problem definition actually includes two sub problems: 1)
how to obtain Xn+1 without using manually-selected calibra-
tion feature points and 2) how to obtain Xn+1 with a minimum
σ2

n+1.
To get rid of the explicit requirement for calibration feature

points, we use image alignment to obtain Xn+1. An image
alignment problem is a special image registration problem in
which all frames share the same optical center and intrinsic
camera parameters. A pair-wise image alignment between the
newly captured frame n + 1 and an old frame l, l < n + 1,
outputs the relative offset, Xl,n+1, between the pan and tilt
positions of the two frames. Now the n feature points become
pan and tilt positions of the n captured frames. Using Xl,n+1

and the known pan and tilt position Xl, we can obtain Xn+1.
However, we have n existing frames. Each frame has its

pan and tilt position Xl and its variance σ2
l , l = 1, ..., n. The

relative offset Xl,n+1 also introduces new variance σ2
l,n+1. Our

problem becomes to which subset of existing frames should
frame n + 1 be aligned in order to minimize σ2

n+1. Before
we address this problem, let us study how variance has been
generated in the image alignment process.

D. Pair-wise Image Alignment

During image alignment, we adopt feature point-based
image alignment. Note that the feature points used in image

alignment are different from the calibration feature points. The
feature points in the image alignment are a noisy set of points
detected by a corner detector [12], [28] or a Scale Invariant
Feature Transform (SIFT) [4]. Those feature points are de-
tected solely based on pixel values and are not necessarily
stable objects in the scene. Therefore, they cannot be directly
used for the purpose of calibration. We use feature pixels or
pixels to refer to feature points for image alignment in the rest
of the paper to avoid confusion.

When aligning a pair of images taken from different pan-
tilt settings, perspective projection is required before image
matching computations. Details of perspective projection are
beyond the scope of this paper and can be found in [27]. After
the perspective projection, we adopt the popular Quadratic
Chamfer Distance (QCD) [1], [10], [22] to match two images.
The QCD measures dissimilarity between two individual fea-
ture pixels based on the quadratic distance between the two.
Therefore, the Average Matching Error (AME) A of each pixel
is a quadratic function in the vicinity of its optimal matching
location. The ith pixel in a new frame with its location Xi is
described by,

A(Xi) = a‖Xi − X∗
i ‖2

2 + b, (2)

where X∗
i is the optimal alignment location, and constants a

and b are the parameters from the QCD settings. They are
the same across all frames. Note that we use the squared
Euclidean distance in Equation 2 because of the alignment
method adopted. Readers can easily change it to a different
distance metric and develop similar algorithms following our
techniques.

Define O as the set of overlapping pixels between a pair
of intersecting frames. According to Equation 2, the Total
Matching Error (TME) T over O becomes,

T =
∑
i∈O

(a‖Xi − X∗
i ‖2

2 + b) (3)

= |O|a‖Xi − X∗
i ‖2

2 + |O|b. (4)

The image alignment is an optimization problem,

arg min
{Xi,i∈O}

T,

subject to the image integrity constraint, which actually re-
duces the unknown set {Xi, i ∈ O} to the single vector X ,
which is the relative offset between the pan and tilt positions
of the two images. We must find X ,

T (X) ≤ |O|b + ε,

where ε is the truncation error of the minimization problem.
Inserting it into Equation 3, all possible solutions must be
inside the ball,

‖X − X∗‖2 ≤
√

ε

|O|a, (5)

where X∗ is the optimal solution. Due to the noisy feature
pixel set, the AME function is unknown during the problem
solving process. Therefore, we cannot directly use X∗ de-
ducted from AME as the solution. Any point in the ball with
radius r =

√
ε

|O|a is a possible solution.
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How to find a point in the ball depends on the numerical
methods adopted. In popular numerical methods for nonlinear
optimization like the Gaussian-Newton method, simulated
annealing, genetic algorithms, or Random Sample Consensus
(RANSAC) [25], the error between the true optimal and the
measured solutions, which is the output of the numerical
methods, depends on the initial point and truncation error ε.
A good algorithm chooses its initial point randomly, which
defines the alignment error to be a random vector X = X∗+e,
where e is the alignment error vector. We assume that e has
zero mean and variance υ, which means, mean(X) = X∗,
and σ2(X) = σ2(e) = υ.

IV. ALGORITHMS

We use relative offset computed from image alignment to
estimate the measured camera position X . Since we have
assumed that the error of pair-wise alignment is a random
vector with zero mean, the magnitude of the error variance
determines the quality of X . We study how error variance gets
accumulated and propagated in the alignment process using
a simple 1-dimensional example. Based on the analysis, we
propose a minimum variance approach to select an optimal
set of existing frames to estimate the measured camera pan
and tilt position of a newly-captured frame. We begin with the
analysis of error variance in the simplest pair-wise alignment
operation.

A. Analyzing Error Variance in Pair-wise Alignment

Frame 2 

12
p

pan 

tilt 

 

 

 

 

 

 

 

Frame 1 

Fig. 3. An illustration of pair-wise alignment of two equally sized frames
with an equal number of pixels.

Figure 3 illustrates a 1D case where the two frames only
have pan displacement. Frame 1 is the reference image in
the alignment. Frame 2 is the frame with unknown camera
position p12. The pair-wise alignment will determine p12 and
its variance. Since this is a simple 1-dimensional case, the ball
in Equation 5 degrades to a line segment. If we assume the
solution p12 is uniformly distributed, then its variance υ is

υ =
(2r)2

12
=

r2

3
=

ε

3|O|a . (6)

Equation 6 is built on two assumptions: 1-dimensional
alignment and uniformness in error distribution. A general
image alignment case usually involves more than one di-
mension because images may have both translational and
orientational displacements even under our assumptions that
intrinsic camera parameters are known. Furthermore, errors
are not necessarily uniformly distributed, either.

For a general d−dimensional case X = (x1, x2, ..., xd)T

and its alignment error vector e = (e1, e2, ..., ed)T = X−X∗,

we have variances of the marginal error distributions along
each dimension, {υe1 , υe2 , ..., υed

}. We define

υ = max{υe1 , υe2 , ..., υed
} = max{υx1 , υx2 , ..., υxd

},
because vej

= vxj
, 1 ≤ j ≤ d.

Interestingly, though the distribution of the solution point
in the ball is unknown, the d−dimensional case has a similar
format with the 1-dimensional case in Equation 6 with a
different constant factor kd, as summarized in the following
theorem.

Theorem 1: Using the AME approximation of image match-
ing function in the vicinity of the optimal solution, the variance
of the alignment displacement error is

υ =
r2

kd
=

ε

kd|O|a, (7)

where kd ≥ 1 and d is the problem dimensionality. The exact
value of kd depends on d and the joint probability distribution
function of the solution distribution over the ball defined by
Equation 5.

Proof: Define the joint probability density function as
f(e1, e2, ..., ed), we have∫ r

−r

...

∫ r

−r︸ ︷︷ ︸
d

f(e1, e2, ..., ed)de1de2...ded = 1. (8)

Without loss of generality, we assume υe1 = υ. We compute
υe1 in the rest of the proof. Because e1 has zero mean, we
know

υe1 = E(e2
1) − E2(e1) = E(e2

1).

We define,

f1(e1) =
∫ r

−r

...

∫ r

−r︸ ︷︷ ︸
d−1

f(e1, e2, ..., ed)de2...ded, (9)

and

F1(y) =
∫ y

−r

f1(e1)de1, (10)

as the marginal probability density function and the cumulative
probability function for e1, respectively. Now we are ready to
compute υ,

υ =
∫ r

−r

e2
1f1(e1)de1

=
∫ r

−r

e2
1dF1(e1)

= e2
1F1(e1)|r−r −

∫ r

−r

2e1F1(e1)de1

= r2 −
∫ r

−r

2e1F1(e1)de1

= r2 −
∫ 0

−r

2e1F1(e1)de1 −
∫ r

0

2e1F1(e1)de1

= r2 +
∫ 0

−r

(−2e1)F1(e1)de1 −
∫ r

0

2e1F1(e1)de1.
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Applying the Second Mean Value Theorem for Integrals, we
know ∃ξ ∈ [−r, 0] and ∃ζ ∈ [0, r] such that,∫ 0

−r

(−2e1)F1(e1)de1 = F1(ξ)
∫ 0

−r

(−2e1)de1 = F1(ξ)r2,

and ∫ r

0

(2e1)F1(e1)de1 = F1(ζ)
∫ r

0

(2e1)de1 = F1(ζ)r2.

Therefore,
υ = (1 + F1(ξ) − F1(ζ))r2,

and
kd = 1/(1 + F1(ξ) − F1(ζ)),

is the constant.
As summarized in Theorem 1, the quality of the solution is

determined by how many pixels are involved in the matching,
|O|, and the image characteristics, a.

B. Analyzing Error Variance in Multi-frame Alignment

Since overall coverage of a pan-tilt-zoom camera is far
larger than the coverage of any single camera frame, we
have to cascade image alignments to obtain measured camera
positions for frames that are relatively far from reference
frames. However, such a cascading operation can cause an
excessive increase in error variance. We analyze this problem
by adding a third frame to the simple 1D case defined in Figure
3.

Frame 3 
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Fig. 4. Computation of the measured position of a new frame in addition to
frame 1 and frame 2 in Figure 3.

Define m12, 0 ≤ m12 ≤ m, as the number of overlapping
pixels between frame 1 and frame 2. Actually, m12 = |O|
in Equation 6. Similarly, we have m13 and m23 introduced
by frame 3. As illustrated in Figure 4, define p13 and p23 as
the offset of frame 3 with respect to frame 1 and frame 2,
respectively. Recall that p12 is the offset of frame 2. Define
p∗12, p∗13, and p∗23 as the corresponding optimal offsets of p12,
p13, and p23, respectively.

Since frame 1 is the reference frame, p13 represents the
measured camera position of frame 3. We have three different
ways to obtain p13:

1) directly compute p13 using image alignment since
m13 > 0,

2) compute p23 using image alignment, then p13 = p12 +
p23, and

3) simultaneously compute both p13 and p23 using the
image alignment with respect to both frame 1 and frame
2.

We are interested in the choice that can minimize the error
variance. Below, we analyze the error variance for each of the
approaches.

1) Directly compute p13: We can directly apply the result
from Equation 6,

V ar(p13) =
ε

3m13a
. (11)

2) Compute p23 first: Similar to Equation 11, we know,
V ar(p23) = ε

3m23a . Since p13 = p12 + p23 and p12 and p23

are independent random variables, we have,

V ar(p13) = V ar(p12)+V ar(p23) =
ε

3a
(

1
m12

+
1

m23
). (12)

3) Simultaneously compute: We can align frame 3 with
respect to frame 1 and 2 simultaneously. In this case, the TME
in Equation 3 becomes,

T = m13

(
a(p13 − p∗13)

2 + b)
)

+ m23

(
a(p23 − p∗23)

2 + b)
)
.

Since p23 = p13 − p12 and p∗12 = p∗13 − p∗23,

T = (m13 + m23)
(
a(p13 − m13p

∗
13 + m23(p12 + p∗23)

m13 + m23
)2

)
+

m13m23

m13 + m23
a(p12 − p∗12)

2 + (m13 + m23)b. (13)

Using the result from Equation 5, the radius of the ball that
covers all possible solutions is

√
ε

(m13+m23)a
. The variance of

the solution for a given p12 is,

V ar(p13|p12) =
ε

3(m13 + m23)a
.

Equation 13 also tells us the expected solution for a given p12

is,

E(p13|p12) =
m13p

∗
13 + m23(p12 + p∗23)

m13 + m23
.

From knowledge of conditional variance, we know that

V ar(p13) = E(V ar(p13|p12)) + V ar(E(p13|p12)).

Therefore, we can get the variance of the the measured position
of frame 3,

V ar(p13) =
ε

3(m13 + m23)a
+

m2
23

(m13 + m23)2
V ar(p12)

=
ε

3(m13 + m23)a
(1 +

m2
23

m12(m13 + m23)
).

(14)

It is desirable to choose p12 with the minimum variance.
However, depending on the values of m12, m13, and m23,
error variances in Equations 11, 12, and 14 do not have a
fixed order. Since ε

3a is the common term for all three variance
candidates, to find the minimum we must solve the following
problem,

min{ 1
m13

,
1

m12
+

1
m23

,
1

m13 + m23
+

m2
23

m12(m13 + m23)2
}.

(15)
Computing the variance for each individual case may be
feasible for the simple 1-dimensional case with the small
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number of frames above. However, we need a more efficient
method to find the minimum variance of the measured camera
position for a newly-captured frame in a general case, which
yields a Minimum Variance Extrinsic Calibration (MVEC)
below.

C. Minimum Variance Extrinsic Calibration

Let us consider a general case. Assume that the jth frame
enters the system and intersects with a set of existing frames
Mj . For the lth frame in Mj , we also know that the number
of pixels in frame j intersecting with frame l is mjl. Define
Xj and Xl as the vectors that describe the location of image j
and image l with respect to the reference image, respectively.

Define Xjl and X∗
jl as the relative offset and the optimal

relative offset between frame j and frame l. Then, the TME
formulation of the matching between frame j and all images
in set Mj is,

T =
∑

l∈Mj

(
amjl‖Xjl − X∗

jl‖2
2 + bmjl

)
.

Since we are looking for the absolute location Xj = Xl+Xjl,
we change the equation above to,

T =
∑

l∈Mj

(
amjl‖Xj − Xl − X∗

jl‖2
2 + bmjl

)
.

Applying the same approach we did for Equation 13, we get

E(Xj |{Xl, l ∈ Mj}) =

∑
l∈Mj

(
mjl(Xl + X∗

jl)
)

∑
l∈Mj

mjl
, (16)

and
V ar(Xj |{Xl, l ∈ Mj}) =

ε

kda
∑

l∈Mj
mjl

.

Therefore,

V ar(Xj) = V ar(E(Xj |{Xl, l ∈ Mj}))
+ E(V ar(Xj |{Xl, l ∈ Mj}))

=

∑
l∈Mj

m2
jlV ar(Xl)

(
∑

l∈Mj
mjl)2

+
ε

kda
∑

l∈Mj
mjl

.

From Theorem 1, we know that V ar(Xl) = ε
kdawl, where wl

was computed when the lth image entered the system. Inserting
them into V ar(Xj), we get

V ar(Xj) =
ε

kda

( 1∑
l∈Mj

mjl
+

∑
l∈Mj

m2
jlwl

(
∑

l∈Mj
mjl)2

)
. (17)

Matching over all overlapping frames may not provide us
with the smallest variance. What we want is an optimal set
of overlapping frames. If the lth image is not used in the
matching, we can simply set mjl = 0 in Equation 17 to get the
new variance. This defines a minimization problem. Defining
Il, l ∈ Mj as the image choice variable, we get the following
optimization problem,

min F ({Il, l ∈ Mj}) =
1∑

l∈Mj
Il

+

∑
l∈Mj

I2
l wl

(
∑

l∈Mj
Il)2

, (18)

subject to ∑
l∈Mj

Il ≤ m̄j , (19)

Il = {0,mjl},∀l ∈ Mj , (20)

where m̄j is the maximum limit of the number of pixels
involved in the matching problem. The constraint in Equation
19 controls the size of the subsequent matching problem to
limit computation time. We solve this optimization problem
to derive the optimal set of matching images.

D. Minimum Variance Extrinsic Calibration Algorithm

The optimal solution of Equation 18 yields the minimum
variance. However, this is a nonlinear combinatorial problem,
which could be very computationally expensive. Though the
number of overlapping images k = |Mj | is usually a small
number, solving it exhaustively requires time exponential in
k.

Looking closer, we observe that when the constraint in
Equation 19 is binding, ∑

l∈Mj

Il = m̄j ,

the objective function in Equation 18 becomes

F ({Il, l ∈ Mj}) =
1

m̄j
+

∑
l∈Mj

I2
l wl

(m̄j)2
.

Then, the minimization problem is simplified as,

F ′ = min
{Il,l∈Mj}

∑
l∈Mj

I2
l wl, (21)

subject to the constraint in Equation 20. The lth candidate-
matching image takes mjl-pixel space in total, m̄j pixels, and
contributes m2

jlwl to variance if it is selected. The variance
per pixel is m2

jlwl/mjl = mjlwl. Let us define the candidate
solution set as M̂j ⊆ Mj , the sum of the pixels in M̂j as
s1 =

∑
l∈M̂j

mjl, and the partial variance sum as s2 =∑
l∈M̂j

I2
l wl. We propose an approach that is based on the

order of the variance density and solves the problem for
the case that the constraint in Equation 19 is binding. This
algorithm takes the images that contribute less variance first
and gradually expands the set until it reaches the constraint.

MVEC Algorithm

M̂j = ∅, s1 = 0, s2 = 0 O(1)
Compute mjlwl, l ∈ Mj , O(k)
Sort {mjlwl, l ∈ Mj} in ascending order, O(k log k)
For each l in the ascending sequence of mjlwl, O(k)

If s1 + mjl ≤ m̄j ,
s1 = s1 + mjl, s2 = s2 + m2

jlwl, M̂j = M̂j ∪ {l}
Else

Break for loop
End if

End for
F (M̂j) = 1

s1
+ s2

s2
1

O(1)

Output M̂j and F (M̂j) O(1)
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The algorithm above does not directly offer a solution when∑
l∈Mj

mjl < m̄j . This is not a problem, because we can
treat m̄j as a variable to perform a search over it. Recalling
F ′ defined in Equation 21, this new optimization problem is,

min
m̄j

1
m̄j

+
F ′

m̄2
j

, (22)

which can be solved straightforwardly by keeping track of
the F value in the for loop of the MVEC algorithm. Instead
of using the final F (M̂j), we output the smallest F and its
corresponding set of frames. With this modification, we have:

Theorem 2: The MVEC algorithm finds the optimal set of
overlapping frames to minimize the variance of the measured
pan and tilt location of a newly-captured frame in O(k log k)
time for the frame with k overlapping frames.

V. EXPERIMENTS AND RESULTS

We have installed a Canon VCC3 pan-tilt-zoom camera on
the UC Berkeley campus. The camera has a pan range of 180◦

and a tilt range of 55◦. It features an 1/4-inch CCD sensor with
a maximum resolution of 768×576. Its horizontal field of view
ranges from 4◦ to 46◦. Our PC has a 2.53Ghz Intel Pentium
4 processor with 1GB RAM and an 80GB hard drive.

During the calibration, we direct the camera to visit a set
of predefined coordinates. We take 21 320×240-pixel frames.
We combine our MVEC algorithm with breadth-first search
(BFS) to cover the camera’s reachable field of view. The
BFS starts with the camera’s home position frame, which is
also our reference frame. It is node 0 in Figure 5. The BFS
incrementally covers all 21 points represented by the 21 nodes
in the graph illustrated in Figure 5. The 21 nodes in Figure
5 are numbered according to the order of arrival. Note that
nodes 5, 10, 11, 13, 16, and 18 only align with a subset of
their neighbors, which confirms our analysis that to align with
as many frames as possible does not necessarily minimize the
variance.

0 1 4 9 14 8 3 

2 5 10 15 17 12 6 

7 11 16 19 20 18 13 

Reference node  

 normal nodes Matching edge Edge that is not  

used for matching 

Fig. 5. Resulting matching sequence from MVEC using 21 frames. Each
node represents a frame, and the node numbers correspond to BFS frame
capturing order. The distribution of matching edges is determined by image
alignment mechanisms. The alignment edges are directional: node a → node
b means frame a is captured later and uses the existing frame b for alignment.

In a second experiment, we compare the calibration accu-
racy of our MVEC algorithm with that of two other options.
The first option is to simply align a newly-captured frame
with its recent neighbors, which is called Time-Based Extrinsic
Calibration (TBEC). The rationale behind it is that recent
neighbors are less vulnerable to the change of environment.

The second option is to align the newly-captured frame with
the frames with large overlapping regions, which is called
Location-Based Extrinsic Calibration (LBEC). The rationale
behind it is that large overlaps tend to produce less variance.
To ensure a fair comparison, we set the same constraint in
Equation 19 across all three options. We select the total
number of feature pixels involved as m̄j = 5000. For the
TBEC, we rank neighbors according to their arrival time.
We add the most recent images to the alignment set until
the constraint in Equation 19 is binding. For the LBEC, the
only difference is that we rank all neighbors of the new
frame according to the size of the overlapping area. For each
calibration method, we insert 500 frames into the system as a
trial. We repeat each trial 50 times. The data shown in Figure
6 is an average of 50 trials.

0
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TBEC 

MVEC  

frames 
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LBEC 

Fig. 6. A comparison of calibration results using the MVEC algorithm,
Location-Based Extrinsic Calibration (LBEC), and Time-Based Extrinsic
Calibration (TBEC). The variance unit is ε

kda
× 10−3.

Recall that our algorithm selects a subset of frames to align
a new frame to minimize the variance of the measured pan
and tilt position of the new frame. Therefore, the calibration
accuracy is measured using the average variance of the pan
and tilt positions of the last 20 frames after the new frame
is inserted. Because the variance of a single frame heavily
depends on its distance to the reference frame, we use the
average of 20 to smooth the location variation in comparison.
Since each frame is uniformly, independently, and identically
distributed in the camera pan and tilt space, the mean location
of the 20 frames is about the same according to the Strong Law
of Large Numbers. Although variance usually does not have
a unit, Equation 17 suggests that the variance in our system
can be measured by constant ε

kda .
Figure 6 illustrates some interesting results. Both the TBEC

algorithm and our MVEC algorithm show a trend of con-
vergence. This is due to the fact that there are not enough
pixels to bind the constraint in Equation 19 at the beginning.
As more and more frames enter the system, the constraint
binds and the average variance converges to a fixed value. It
is clear that the MVEC algorithm is more effective in variance
reduction. Our data shows that it reduces the variance by 65%
on average if compared with TBEC. What surprises us is that
the LBEC is actually the worst among the three methods. One
big problem is that variance does not converge for the 500
frames inserted. This is because the selection of candidate
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frames is solely based on the size of the overlapping area,
which does not consider the variance of the selected frame.
Even after the constraint is binding, a single frame with very
large variance can dominate the solution. We know that the
variances of initial frames are large. A good method should
avoid those frames whenever possible. The TBEC can avoid
them over time, but the LBEC fails and hence cannot converge.
Our MVEC algorithm reduces variance by 81% on average in
comparison to LBEC.

VI. CONCLUSIONS AND FUTURE WORK

We present an algorithm for online extrinsic calibration of
a high-resolution robotic camera for remote natural environ-
ment observation. Our automatic calibration algorithm utilizes
image alignment to obtain the measured camera positions. To
control the error introduced by the image matching process, we
analyze how errors get accumulated. We then propose a min-
imum variance extrinsic calibration algorithm. Our algorithm
can compute the measured camera position with the minimum
error variance in O(k log k) time for a newly captured frame
with k overlapping frames. In the future, we will expand
calibration methods to both intrinsic and extrinsic calibration.
We will also explore mutual calibration methods for a multiple
camera system under a similar variance reduction framework.
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