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Abstract— Near Real Time Satellite Imaging provides timely
images of the earth for weather prediction, disaster response,
search and rescue, surveillance, and defense applications. As the
satellite passes over the earth, camera imaging parameters are
changed during each time window based on demand for images,
specified as user requested zones in the reachable field of view
during that time window. The Satellite Frame Selection (SFS)
problem is to find the camera frame parameters that maximize
reward during each time window. To automate satellite man-
agement, we formalize the SFS problem based on a new reward
metric that incorporates both image resolution and coverage. For
a set ofn client requests we give a series of algorithms, the fastest
computes optimal results inO(n3) for satellites with continuously
variable resolution. We have implemented the algorithms and
compare computation speed for all algorithms.

I. I NTRODUCTION

The first commercially-available high-resolution optical
satellite, IKONOS, was launched in 1999 [6]. Since then,
satellite imaging has developed into a rapidly growing indus-
try. According to the data from the Imaging and Geospatial
Information Society [29], the market is $2.44 billion in 2001
and growing at a rate of fifteen percent annually. Clients
include weather prediction, search and rescue, disaster recov-
ery, journalism, and government. Commercial satellites are
equipped with sophisticated cameras, which allow them to take
high-resolution images as they fly over the Earth. Commercial
cameras offer pan, tilt, and zoom (image resolution) control.
Near Real Time (NRT) Imaging refers to freshly captured
images that are delivered as quickly as possible, depending
on the satellite’s trajectory: at any given time, the camera’s
field of view is restricted to a zone on the Earth’s surface.
During each time window, a number of client requests for
images are pending, and only one image can be captured. We
consider the problem of automatically selecting pan, tilt, and
zoom parameters to capture images that maximize reward.

The Satellite Frame Selection problem is illustrated in
Figure 1. We assume the satellite image frame is a rectangle
with a fixed aspect ratio. Input is the set ofn iso-oriented
rectangular regions from users. We propose a reward metric
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Fig. 1. The Satellite Frame Selection (SFS) problem: each time window
defines the camera’s possible field of view. Client requests for images are
shown as dashed rectangles. Given a set of requests, the objective is to
compute the satellite frame that optimizes the coverage-resolution metric. The
solution in this case is illustrated with a solid rectangle.

based on how closely a requested viewing zone compares with
a candidate satellite image frame. The metric is proportional
to the intersection of the candidate frame and the requested
viewing zone and to the ratio of the resolution of the candi-
date and the request. The latter discourages excessively large
frames with low resolution. Finding the frame that maximizes
total reward is a non-linear optimization problem. Letn be
the number of users. For a satellite with continuously variable
resolution, we give a series of algorithms, the fastest runs in
time O(n3).

II. RELATED WORK

Satellite Frame Selection is related to problems in job
scheduling, facility location, spatial databases, videoconfer-
encing and teleoperation.

The Satellite Space Mission problem (SM) [15] is to select
and schedule a set of jobs on a satellite. Each candidate job
has fixed duration, available time window, and weight. The
goal is to select a feasible sequence of that jobs maximizes
the sum of weights. This combinatorial optimization problem
is known to be NP-hard. Recent research [7], [9], [18], [27]
on the SM problem and its variations focuses on developing



exact and approximate methods using numerical methods such
as column generation, Tabu search, and genetic algorithms.

Lemaitre et al. [20] study a related problem for the Earth
Observing Satellite (EOS), which has a three-axis robotic cam-
era that can be steered during each time window. Given a set of
requested zones, they consider the problem of finding a trajec-
tory for the camera that will maximally cover the requested
zones (they do not consider variations in zoom/resolution).
Their coverage problem is analogous to planning optimal
routes for lawn mowers and vacuum cleaners [10]. Researchers
have proposed greedy algorithms, dynamic programming al-
gorithms, and methods based on constraint programming and
Local Search. In our model, the time window is shorter and
the objective is to servo the camera to a single optimal position
with optimal zoom/resolution setting.

The structure of the SFS problem is related to the planar
p−center problem, which Megiddo and Supowit [23] showed
to be NP-complete. Given a set of point demand centers on
the plane, the goal is to optimally locatep service centers
that will minimize the worst case travel distance between
client and server. Using a geometric approach, Eppstein [8]
found an algorithm for the the planar 2-Center problem in
O(n log2 n). Halperin et al. [16] gave an algorithm for the
2-center problem withm obstacles that runs in randomized
expected timeO(m log2(mn) + mn log2 n log(mn)).

The SFS problem is also related to “box aggregation” query-
ing in spatial database research [30]. The spatial objects could
be points, intervals, or rectangles. Aggregation over points is
a special case of the orthogonal range search queries from
computational geometry. Agarwal and Erickson [1] provide a
review of geometric range searching and related topics. Grossi
and Italiano [13], [14] proposed the cross-tree data structure,
a generalized version of a balanced tree, to speed up range
search queries in high-dimensional space. The continuity of the
solution space of our problem makes it impossible to simply
evaluate a fixed set of candidate frames through queries.

In the multimedia literature, Kimber and Liu et al. describe a
multi-user robot camera for videoconferencing [19], [21]. They
formulate frame selection for multiple simultaneous requests
as an optimization problem based on position and area of
overlap. To solve it, they propose an approximation based
on comparing the bounding box of all combinations of user
frames. The main concern of their algorithm is speed rather
than accuracy. Although they did not provide bounds on their
approximation, their approach is sufficient for videoconferenc-
ing applications.

Our lab at Berkeley is studying collaborative teleoperation
systems where many users share control of a single physical
resource. Inputs from each user must be combined to generate
a single control stream for the robot. In the taxonomy proposed
by Chong et al. [5], these are Multiple Operator Single
Robot (MOSR) systems. An Internet-based MOSR system is
described by McDonald, Cannon, and colleagues [4], [22]. In
their work, several users assist in waste cleanup using Point-
and-Direct (PAD) commands. Users point to cleanup locations
in a shared image and a robot excavates each location in turn.
More recent developments on MOSR systems can be found in
[11], [12].

Fig. 2. Satellite with accessible region, and frame definition.

The SFS problem is closely related to controlling a shared
robotic webcam. We introduced the frame selection problem
for robotic webcams in a series of conference papers: exact
solution with discrete zoom [26], approximation solution with
continuous zoom [24], [25], approximate solution with fixed
zoom [17]. This paper presents exact solution with continuous
zoom, which is also extending to image requests of any aspect
ratio and introducing new reward metric.

III. PROBLEM DEFINITION

In this section we formalize the Satellite Frame Selection
problem based on a new metric for reward.

A. Input and assumptions

The camera on a typical satellite orbits the Earth at a speed
of more than 7km per second. As illustrated in Figure 2, a
satellite with two axes allows its reflection mirrors to perform
pitch and roll motions, which allow the satellite to view a
rectangular region. By rolling and pitching, the satellite can
access a square region on the ground. As illustrated in the
figure, the imaging time for such satellite is discretized into
disjoint time slots. In each time slot, it outputs a rectangular
image, which we refer to as a frame. Since most satellites
cannot perform yaw rotation, the satellite frame has two of its
edges parallel to its orbit.

We assume that the frame is a rectangle with fixed aspect
ratio (4:3) and its width is proportional to the resolution. A
triple c = [x, y, z] describes such a rectangle:[x, y] ∈ Ra

specifies the center point of the frame with respect to a
accessible regionRa, and z specifies the resolution of the
frame. The pairx, y determines the pitch and roll angles of
the satellite. Az = 10 meter means a pixel in the image is
equivalent to area of10× 10 square meters. A higherz-value
means lower image resolution. The attainable resolution set
is Z, so z ∈ Z. For example, a frame has a width that is
1000 times the resolutionz and a length that is 1333 times
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the resolutionz, then the area of the frame is1000∗1333×z2.
The width and the length of the frame are linear functions of
the resolution, which are defined asw(z) andl(z) respectively.

For a given time slot, we receiven requested view zones
from clients. Theith request,0 ≤ i ≤ n, is a rectangle
ri = [xi, yi, wi, li, zi, ui], where[xi, yi] ∈ Ra specifies center
point with respect to the accessible region,wi, li are the width
and the length of the requested rectangle,zi is the desired
resolution, andui is the utility for the request, which describes
how much the client is willing to pay for the requested view
zone. This is also the maximum reward associated with this
request. We assume that all requested viewing zones are iso-
oriented rectangles with a pair of edges parallel to satellite
orbit.

Given a set ofn requested viewing zones, we must compute
a single framec∗ that will yield maximum total reward for the
company. The solution space is

Φ = Ra × Z = {[x, y, z]|[x, y] ∈ Ra, z ∈ Z}.
SetZ = [z, z̄] is a continuous set.

B. Reward Metric

Recall thatri is the ith requested viewing zone. Its corre-
sponding client has a utilityui for this region. Definesi as the
reward from theith request. Letc = [x, y, z] be a candidate
camera frame. If theri is fully covered byc, i.e., ri ⊆ c, and
the desired resolution is obtained, i.e.,zi ≥ z, thensi = ui.
If the resolution requirement is satisfied but the coverage is
partial, then the reward is discounted by a coverage ratio:
si = ui

Area(ri∩c)
Area(ri)

. If zi < z (the resolution requirement is not
satisfied) then the reward should be discounted by a resolution
discount factord(z, zi). Hence,si = ui

Area(ri∩c)
Area(ri)

d(z, zi).
As illustrated in Figure 3(a), the resolution discount function
d(z, zi) is a truncated function:0 ≤ d(z, zi) ≤ 1. It is an
increasing function ofzi/z because an image has more value
as resolution increases. The resolution discount function we
propose is

d(z, zi) = min{(zi/z)b, 1}.
Let Resolution(ri) = zi and Resolution(c) = z, then our
reward function is a Coverage-Resolution Ratio (CRR),

si(c) = ui
Area(ri ∩ c)

Area(ri)
min

((Resolution(ri)
Resolution(c)

)b
, 1

)
(1)

The exponential discount factorb determines how fast the
frame image devalues as its resolution decreases. Figure 3(b)
shows two cases:b = 1 and b = ∞. The case isb = ∞
corresponds to a scenario in which the user does not accept
any image with a resolution that is lower than requested. We
use the caseb = 1 as default setting for numerical examples
in the rest of the paper.

For n requests, the total reward is,

s(c) =
n∑

i=1

si(ri, c). (2)

We want to findc∗ = arg maxc s(c), the frame that maximizes
total reward. We will often writes(x, y, z) instead ofs(c) with
c = [x, y, z].

Fig. 3. Resolution discount function.

C. Comparison with similarity metrics.

In pattern recognition and computational geometry standard
similarity metrics are Symmetric Difference (SD) and Intersec-
tion Over Union (IOU) [3], [2], [28]. For a requested viewing
zoneri and a candidate framec, the SD metric is

SD =
Area(ri ∪ c)−Area(ri ∩ c)

Area(ri ∪ c)
.

The intersection-over-union metric is

IOU =
Area(ri ∩ c)
Area(ri ∪ c)

= 1− SD.

Compared with IOU, our Coverage-Resolution Ratio (CRR)
metric has similar properties:

• IOU and CRR attain their minimum value of 0 if and
only if c ∩ ri = ∅,

• both attain their maximum value if and only ifc = ri,
• both are proportional to the area ofc ∩ ri, and
• both depend—albeit differently—on the sizes ofc andri.

The differences between CRR and SD are that

• the SD metrics is not piecewise linear inx or y,
• it is hard to extend SD to arbitrarily-shaped requested

viewing zones because SD will become non-normalized
for such cases,

• the SD metric only capture geometric similarity and do
not take into account the resolution difference.

IV. A LGORITHMS

In [26], we defined the notion of “virtual corners”, which
are intersections between extended edges of two requests.
We have proved that an one of the corners of an optimal
frame must coincide with one of virtual corner. Although [26]
only addresses problems with fixed resolution, this result is
also true whenz is continuous. This virtual corner optimality
condition can reduce the 3D optimization problem toO(n2)
1D optimization problems with respect to variablez. We then
show that each 1D optimization problem can be dissected into
O(n) piecewise polynomial functions, each of which can be
solved inO(n). Using incremental computation and a diagonal
sweep, we show how to improve the running time toO(n3).

A. Basic Virtual Corner Algorithm (BVC)

For n requested viewing zones, there areO(n2) virtual cor-
ners. The virtual corner optimality condition allows us to find

3



Fig. 4. An example of the 1D optimization problem with respect toz. In
this example, we assumel(z) = 4z, w(z) = 3z, b = 1, and ui = 1 for
i = 1, ..., n.

the optimal frame by checking the candidate frames that have
one of their corners overlapped with one of the virtual corners.
This means that we can reduce the original 3D optimization
problem in Equation (2) toO(n2) 1D optimization problems.
Definepi(z) = Area(ri ∩ c), ai = Area(ri) = wili, the 1D
optimization problem is to find,

max
z

s(z) =
n∑

i=1

ui(pi(z)/ai)min((zi/z)b, 1) (3)

subject to the constraint that a corner of the candidate frame
c = [x, y, z] coincides with a virtual corner.

To study the 1D maximization problem in Equation (3),
consider a virtual corner. For simplicity, we assume that the
virtual corner is at the origin. Moreover, we assume that
the virtual corner coincides with the lower left corner of
the candidate frame. (The virtual corner in Figure 4 is the
intersection of the extensions of the left edge ofr2 and the
bottom edge ofr5.) Placements in which one of the other
three corners of the candidate frame coincides with the virtual
corner are handled in a similar fashion. We may be able to
eliminate some of the placements beforehand, but it reduces
the computation by only a constant factor. Now, we gradually
increasez and observe the value ofs(z): Figure 5 shows the
function for the example in Figure 4.

Fig. 5. Reward function for the example in figure 4 as a function of image
resolution .

a. Critical z Values and Intersection Topologies. The
function s(z) is a piecewise smooth function (see

Figure 5), so derivative-based approaches cannot be
used directly. We refer to a maximalz-interval on
which s(z) is smooth as a segment. We consider
four questions that form the basis for our algorithms.

1) Can we give a geometric characterization of the
endpoints of the segments?

2) How many segments are there?
3) What is the closed-form description ofs(z) within

a single segment, and how complex is the compu-
tation of the maximum ofs(z) on that segment?

4) How different are the closed-form descriptions of
s(z) on two adjacent segments?

The first three questions lead to anO(n4) algorithm; the
fourth question results in an improvement toO(n3 log n).

We start with question 1).
Definition 1: A criticalz value is thez value such thats(z)

changes its closed-form representation.
Let Zc(xv, yv) be the set of criticalz values for virtual corner
(xv, yv). From Equation (4), we see that the non-smoothness
comes from the non-smoothness of eithermin((zi/z)b, 1) or
pi(z). The critical z values that come from the former type
form a subsetZ ′c(xv, yv), those of the latter type a subset
Z ′′c (xv, yv). The former type is easy to deal with because
it occurs atz = zi, i = 1, ..., n. Therefore,Z ′c(xv, yv) =
{zi|i=1,...,n}, so |Z ′c(xv, yv)| = n. Note thatZ ′c(xv, yv) is the
same for all virtual corners(xv, yv), so Z ′c(xv, yv) = Z ′c.

Obtaining Z ′′c (xv, yv) is less straightforward. Depending
upon the intersection topology, the intersection areapi(z) of a
rectangleri with an expanding candidate framec is one of the
following 4 types: it is of type 0 ifpi(z) equals zero, of type
1 if pi(z) equals a positive constantqi0, of type 2 if pi(z)
is described by a first-degree polynomialqi1z + qi0, and of
type 3 if pi(z) is described by a second-degree polynomial
qi2z

2 + qi1z + qi0, whereqi0, qi1, andqi2 are coefficients. We
are interested in how the type changes asz gradually increases
from 0+ to +∞.

Fig. 6. Examples for “fundamental rectangles”. In this figure,r1 andr2 are
type (a) rectangles,r3 is a type (b) rectangle, andr4 is a type (o) rectangle.

To further simplify this problem, we consider “fundamental
rectangles” from three classes.
• Class (o): A rectangle that does not intersect Quadrant I,
• Class (a): A rectangle that is fully contained in Quadrant

I and does not intersect the extended diagonal of the
candidate frame.

• Class (b): A rectangle that is fully contained in the
Quadrant I and that has a diagonal that overlaps the
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extended diagonal of the candidate frame.

Figure 6 gives examples for these three classes of fundamental
rectangles.

Fig. 7. Change ofpi(z) for the three classes of requested viewing zones
whenz gradually increases from0+ to +∞.

As shown in Figure 7, asz increases,

• thepi(z) for a class (o) rectangle always remains type 0,
• the pi(z) for class (a) rectangle starts from type 0,

changes to type 2 when its intersection with the expand-
ing candidate frame begins, then changes to type 1 when
it becomes fully contained.

• the pi(z) for a class (b) rectangle can start either from
type 3 or type 0 depending on whether the bottom left
corner of the rectangle coincides with the origin or not. It
also changes to type 1 once it becomes fully contained.

The transitions correspond to criticalz values.
We can ignore class (o) fundamental rectangles because

they do not contribute to our objective function. A requested
viewing zone that is a fundamental rectangle from class (a)
or (b) generates at most two criticalz values. Many of
the requested viewing zones though will not be fundamental
rectangles. We resolve this by decomposing those requests.

b. Requested viewing zone decomposition.A requested
viewing zone that is not a fundamental rectangle intersects at
least one of following: the positivex-axis, the positivey-axis,
and the extended diagonal of the expanding candidate frame.
We treat the different intersection patterns and show that in
each case the requested viewing zone can be decomposed
into at most four fundamental rectangles (see also Figure 8).

• If the requested viewing zone intersects only the diagonal,
then it can be decomposed into two class (a) rectangles
and one class (b) rectangle.

• If the requested viewing zone intersects only one positive
coordinate axis, then it can be decomposed into a class
(a) rectangle and a class (o) rectangle.

• If the requested viewing zone intersects the diagonal
and exactly one positive coordinate axis, then it can be
decomposed into two class (a) rectangles, one class (b)
rectangle, and one class (o) rectangle.

• If the requested viewing zone intersects the diagonal and
both positive coordinate axes, then it can be decomposed
into one class (a) rectangle, one class (b) rectangle, and
two class (o) rectangles.

Fig. 8. Examples of four requested viewing zone decomposition cases.

As we can see from figure 8, a decomposed requested viewing
zone can yield at most three fundamental rectangles that are
either class (a) or class (b). Every fundamental rectangle
inherits thezi value of the original request.

In summary, we claim that then requested viewing zones
can be classified and/or decomposed intoO(n) fundamental
rectangles that are either class (a) or class (b). Since each
rectangle in class (a) or (b) generates (at most) two criticalz
values, we find that|Z ′′c (xv, yv)| = O(n). Combining this with
the bound on the size ofZ ′c(xv, yv) yields that|Zc(xv, yv)| =
O(n). Since the criticalz values partition thez axis intoO(n)
segments, on each of whichs(z) is a smooth function, the
following lemma is true.

Lemma 1: For each virtual corner, thez-axis can be par-
titioned intoO(n) segments, on whichs(z) is smooth.

Lemma 1 answers our question 2) from the previous section.
c. Optimization Problem on a Segment.With the knowl-

edge of question 1) and 2), we are ready to attack question
3): derive a closed-form representation ofs(z) on a segment
and solve the constrained optimization problem. We have
the following lemma. (The order of the resulting polynomial
depends on the resolution discount factorb),

Lemma 2: For each segment,s(z) is a polynomial function
with 6 coefficientsg0, g1, g2, g3, g4, and g5,

s(z) = g0z
−b + g1z

−b+1 + g2z
−b+2 + g3 + g4z + g5z

2. (4)
Proof: For a virtual corner(xv, yv), let us assume the

segment is defined by[z′, z′′), wherez′, z′′ ∈ Zc(xv, yv) are
two adjacent criticalz values. Then requested viewing zones
have been classified and decomposed intok = O(n) class (a)
or (b) rectangles. We denote those rectangles asr̃i, i = 1, ..., k.
Let us define setS′ = {i|zi ≤ z′} and setS′′ = {i|zi ≥
z′′}. From the definition of criticalz value, we know that
zi /∈ (z′, z′′) for i = 1, ...n so thatS′ ∪ S′′ = {1, ..., k} and
S′ ∩ S′′ = ∅. Therefore, Equation (3) becomes,

s(z) =
∑

i∈S′′
uipi(z)/ai +

∑

i∈S′
ui(pi(z)/ai)(zi/z)b (5)

We also defineSj be the set of rectangles with typej in-
tersection areas whenz ∈ [z′, z′′), for j = 1, 2, 3 respectively.
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Recall thatai = wili is a constant; we have

∑

i∈S′′
uipi(z)/ai =

∑

i∈S′′∩S1

uiqi0/ai

+
∑

i∈S′′∩S2

ui(qi1z + qi0)/ai

+
∑

i∈S′′∩S3

ui(qi2z
2 + qi1z + qi0)/ai

We can perform a similar transform for the second term of
Equation (5)

∑

i∈S′
(uipi(z)/ai)(zi/z)b

= z−b
∑

i∈S′∩S1

uiz
b
i qi0/ai

+ z−b
∑

i∈S′∩S2

uiz
b
i (qi1z + qi0)/ai

+ z−b
∑

i∈S′∩S3

uiz
b
i (qi2z

2 + qi1z + qi0)/ai.

Combining them, we get Equation (4).

The proof of Lemma 2 shows that Equation (3) can be
converted into Equation (4) inO(n) time. The maximum
of Equation (4) can be found in constant time. Combining
Lemma 1 and Lemma 2 yields the Basic Virtual Corner
Algorithm.

Basic Virtual Corner (BVC) Algorithm

For each virtual corner(xv, yv) O(n2)
Compute members ofZc(xv, yv) O(n)
For each segment O(n)

Compute polynomial coefficients O(n)
Find maximum for the polynomial O(1)

End For
End For
Report the maximums(c) and the correspondingc∗.

Theorem 1: The Basic Virtual Corner algorithm (BVC)
solves the problem inO(n4) time.

1) Virtual Corner with Incremental Computing (VC-IC):
The inner loop in the BVC algorithm takesO(n2), which is
the product of two factors:O(n) segments andO(n) time to
compute polynomial coefficients. One observation is that we
do not need to re-compute the coefficients entirely if we solve
the O(n) sub-problems in an ordered manner. Comparing the
polynomial coefficients of two adjacent segments, we find that
the difference is caused by the criticalz that separates the
two segments. The criticalz value belongs to some rectangle.
Therefore, we only need to do a coefficient update on one
polynomial to get another one. This update only takes constant
time. To exploit this coherence we must sort the elements of
Zc(xv, yv) in the inner loop to be able to consider the segments
in order; this takesO(n log n) time. We replace the inner loop
in BVC by the following subroutine.

Virtual Corner with Incremental Computing (VC-IC)

Sort members ofZc(xv, yv) O(n log n)
Compute first polynomial coefficients O(n)
For each subsequent segment O(n)

Update polynomial coefficients O(1)
Find maximum for the polynomial O(1)

End For

The VC-IC algorithm improves the running time:
Theorem 2: The Virtual Corner with Incremental Comput-

ing (VC-IC) algorithm solves the problem inO(n3 log n).
2) Virtual Corner with Incremental Computing and Diag-

onal Sweeping (VC-IC-DS):In the outer loop of the VC-
IC algorithm, sorting ofZc(xv, yv) for each virtual corner
is the dominating factor. The question is: is it necessary to
sort criticalz values repeatedly for each virtual corner? Recall
Zc(xv, yv) is the union of a setZ ′c and a setZ ′′c (xv, yv).

Each critical z value in Z ′′c (xv, yv) uniquely defines the
position of the upper right corner of the candidate frame on
its extended diagonal, which is called critical point in the
figure 9(a). Each critical point corresponds to the point that
the candidate frame start intersecting some requested viewing
zone or the point that the intersection between the candidate
frame and some requested viewing zone ends. This gives a
geometric interpretation for those criticalz values. Figure 9(a)
shows a case with two requested viewing zones and five critical
z values.

Let Z ′′e (xv, yv) be the set of the correspondingz values of
the intersections between the extended diagonal and the ex-
tended edges, which is illustrated in Figure 9(b).Ze

′′(xv, yv)
also depends on virtual corner(xv, yv). As shown in Figure
9(a) and Figure 9(b),

Zc
′′(xv, yv) ⊆ Ze

′′(xv, yv).

If we have a sorted sequenceZe
′′(xv, yv), we can get a

sorted sequenceZc
′′(xv, yv) by checking whether a point in

Ze
′′(xv, yv) belongs toZc

′′(xv, yv). This takesO(n) time
because there areO(n) points inZe

′′(xv, yv).
Figure 9(c) illustrates a nice property of the sorted sequence

of points in Ze
′′(xv, yv). In the figure, we have an ordered

sequence of intersected points at the extended diagonal that
starts from the originO. we number the point closest to the
origin as point 1 and the second closest as point 2. As we
gradually move the extended diagonal downward and observe
what happens to the sorted sequence, we find that the order of
the sorted sequence does not change until the diagonal line hits
an intersection between two extended edges, which is a virtual
corner by definition. Let us define this virtual corner be the
adjacent virtual corner to the virtual corner at the origin. Point
1 and point 2 switch their order at the adjacent virtual corner
(i.e. the gray rectangle in the figure 9(c)). This phenomenon
shows that if we have a sorted sequence of the intersection
points at a virtual corner, we can get the sorted sequence at
an “adjacent virtual corner” in constant time.

This result can reduce the sorting cost fromO(n log n) to
O(n) if we handle the virtual corners in a diagonal order:
imagine there is a sweep line that has same slope as the
extended diagonal and an intercept at+∞, we decrease the

6



Fig. 9. (a) Zc
′′(xv , yv) for a two requested viewing zone case, (b)

Ze
′′(xv, yv) are set of intersection points between the extended diagonal of

the candidate frame and the extended edges, (c) The two intersection points
switch order only at a virtual corner formulated by the intersection of the
two extended edges that generate the two intersection points, and (d) Sorting
virtual corners in this order can reduce the sorting cost in the algorithm.

intercept and stop at each virtual corner. As shown in figure
9(d), we solve the sub problem for the virtual corner when
the sweeping line stops. This yields the following VC-IC-DS
algorithm.

VC-IC with Diagonal Sweeping (VC-IC-DS) Algorithm

Sort Z ′c O(n log n)
Sort virtual corners in sweeping order O(n2 log n)
SortZ ′′e (xv, yv) for the first virtual cornerO(n log n)
For each virtual corner(xv, yv) O(n2)

Update ordered setZ ′′e (xv, yv) O(1)
Get members ofZ ′′c (xv, yv) O(n)
MergeZ ′c andZ ′′c (xv, yv) O(n)
Run the sub routine in section IV-A.1. O(n)

End For
Report the maximums(c) and the correspondingc∗.

Theorem 3: The Virtual Corner with Incremental Comput-
ing and Diagonal Sweeping (VC-IC-DS) approach solves the
problem inO(n3) time.

V. RESULTS

We have implemented the algorithms using Microsoft Visual
C++ on a PC laptop with 1.6Ghz Pentium-M and 512MB
RAM. Figure 10 illustrates an sample output with 14 requested
frames.

Random inputs are used to test speed of algorithms. The
random inputs are generated in two steps. First, we generate
four random points, which are uniformly distributed inRa.
The four points represent locations of interests, which are
referred as seeds. For each seed, we use a random number
to generate a radius of interest. Then we generate requested
viewing zones. To generate a requested viewing zone, we need
six random numbers. One of them is used to determine which

Fig. 10. An example of computed optimal frame. (shown in grey). We set
b = 1 and ui = 1 for all requests and use VC-IC-DS Algorithm.

seed the request will be associated with. Two of them will
be used to generate the location of the center point of the
request, which is located within the corresponding radius of
the associated seed. The remaining three random numbers are
used to generate width, length, and resolution for the request.

Figure 11 illustrates the speed difference between BVC,
VC-IC, and VC-IC-DS algorithms. Each data point in Figure
11 is an average of 5 trials with different random inputs, where
the same random inputs are used to test all three algorithms.
The timing results are consistent with the theoretical analysis.

Fig. 11. Computation speed comparison between three algorithms.

VI. CONCLUSIONS ANDFUTURE WORK

This paper introduces the Satellite Frame Selection problem:
automatically finding the optimal satellite frame for a group of
competing request regions to maximize reward. Each requested
viewing zone is an iso-oriented rectangle with a pair of edges
parallel to satellite orbit. The problem is to find a satellite
frame that maximizes the total reward. We define a new metric
for reward and provide a series of algorithms for solving the
nonlinear optimization problem.
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In future work, we will consider versions of the problem
where the satellite has a third axis to permit yaw motion.
In this case the optimal frame is not necessarily aligned
with the requested viewing zones. We are also interested in
more general cases where the requested viewing zones are
non-rectangulary, for example convex or concave polygons.
We will also consider extensions to cases where the solution
includes more than one frame: allowingp sequential views
produces a path planning problem, and allowingp different
cameras produces a variant of thep-center “facility location”
problem.
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