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Abstract— We propose a novel subsurface pipeline mapping
method by fusing Ground Penetrating Radar (GPR) scans
and camera images. To facilitate the simultaneous detection
of multiple pipelines, we model the GPR sensing process
and prove hyperbola response for general scanning with non-
perpendicular angles. Furthermore, we fuse visual simultaneous
localization and mapping outputs, encoder readings with GPR
scans to classify hyperbolas into different pipeline groups.
We extensively apply the J-Linkage method and maximum
likelihood estimation to improve algorithm robustness and
accuracy. As the result, we optimally estimate the radii and
locations of all pipelines. We have implemented our method and
tested it in physical experiments with representative pipeline
configurations. The results show that our method successfully
reconstructs all subsurface pipes. Moreover, the average estima-
tion errors for two orientation angles of pipelines are 0.81◦ and
0.72◦, respectively. The average localization error is 4.69cm.

I. INTRODUCTION

Precise 3D maps for underground pipelines, such as gas,
water, and sewage pipes, are important for local govern-
ments, utility companies, and civil engineers. However, un-
derground pipeline locations in old urban areas are usually
unknown. Even in new urban areas, there are no 3D maps but
a rough 2D layout information [1] for subsurface pipelines.
As a result, civil construction projects can easily damage
underground pipes and cause significant loss. A Ground
penetrating radar (GPR) is an important tool for the detection
and localization of underground objects. However, a GPR
does not directly provide a 3D position but convoluted and
noisy radar reflection images which require trained eyes to
manually recognize objects of interest. For pipeline mapping,
the traditional GPR methods have too many limitations
and constraints: only allow one pipeline in survey area,
require prior knowledge of pipe diameter or orientation, and
perpendicular scanning with respect to the pipe. Therefore,
the whole process is labor intensive and costly.
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Fig. 1. An illustration of our subsurface pipeline mapping problem. Given
a set of GPR scans and camera images, our algorithm outputs a set of
collinear center axis points and radii of all buried pipelines.

To automate the pipeline mapping problem, we propose
a new method to simultaneously map multiple subsurface
pipelines using a GPR and a camera (see Fig. 1). We model
the GPR sensing process and prove/derive hyperbola respon-
ses for general scanning with non-perpendicular angles. This
allows us to develop a new hyperbola detection algorithm for
multiple pipeline detection. Next we fuse visual simultaneous
localization and mapping (vSLAM) outputs and encoder
readings with GPR scans to classify hyperbolas into groups
belonged to different pipelines. We extensively apply the
J-Linkage method and the maximum likelihood estimation
(MLE) to improve algorithm robustness and accuracy. As
the result, we optimally estimate the radii and locations
of all pipelines. We have implemented our method and
tested it in physical experiments. The results show that
our method successfully reconstructs all subsurface pipes.
Moreover, the average estimation errors for two orientation
angles of pipelines are 0.81◦ and 0.72◦, respectively. The
average localization error is 4.69cm.

II. RELATED WORK

Pipeline mapping is a critical step for assessing the
condition of the buried utility pipelines. There are many
existing efforts focusing on condition assessment [2] in ge-
neral. Popular approaches include electromagnetic, acoustic,
and seismic methods. An UK project named Mapping the
Underworld (MTU) [3] focuses on locating, mapping, and
recording buried utility assets by fusing multiple sensors.

Among different sensor modalities, GPRs have been wi-
dely used in subsurface target detection [4], [5]. Howe-
ver, mapping the underground targets from GPR signals is
nontrivial, because a GPR does not provide 3D positions



but a reflection image with high degrees of freedom (DoFs)
for interpretation. Windsor et al. [6] estimate subsurface
pipe diameters with a given radio propagation velocity. Al-
Nuaimy et al. [7] estimate pipeline depth by assuming zero
pipeline radius and a perpendicular scanning trajectory. The
assumptions limit their methods to cases when the pipeline
is buried very deep and with small radius. To deal with this
limitation, many methods [8], [9] simultaneously estimate
the wave velocity and pipe radii. However, the perpendicular
scanning constraint remains which is difficult to be satisfied
in real world applications. Recently, Li et al. [10] propose an
approach to estimate features of the buried pipelines without
the requirement of perpendicular scanning. However, only
an approximate model is proposed and the approach has not
considered multiple pipeline case.

A GPR generates hyperbola response when perpendicu-
larly scanning over a cylindrical object. Pipeline mapping
is actually the detection and analysis of hyperbolas. The
commonly used hyperbola detection methods include conic
fitting method [11], machine learning-based method [12],
[13], and Hough transform-based method [14]. Most conic
fitting methods can only identify one conic in each image
and are often sensitive to outliers. Although the probabilistic
hyperbola mixture model [15] is proposed to deal with these
problems, the data partition in noisy GPR images before
hyperbola fitting is still problematic. Results from machine
learning methods depend on the quality of manually-labeled
training sets for different settings which are difficult to obtain
in applications. Hough transform-based methods need to
repeat with different parameter combinations to search the
best hyperbola, and are quite time-consuming. Furthermore,
it is difficult to specify a suitable threshold for the number of
votes to determine the number of hyperbolas in the process.
To deal with these problems, our method builds on a new
GPR sensing model, the fusion of vSLAM, encoder, and
GPR, and integration of J-Linkage and MLE. The approach
does not require prior knowledge about the total number of
hyperbolas or pipelines.
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Fig. 2. (a) Our sensing suite on a tricycle, (b) experiment setup, and (c) grid
based scanning pattern contains two parallel groups that are perpendicular
to each other.

To map multiple pipelines, the 3D location of the detected
pipelines need to be geo-registered to a spatial referencing
system for further filtering. Combining GPR and GPS is
posed in recent work [10]. However, GPS signals are of-
ten challenged in urban environments. Chen and G. Cohn
[16] propose a pipeline mapping approach by fusing GPR
detection results with existing utility records. However, the
method inherently depends on both the quality and the

availability of utility records. Our method employs a fixed
on-board camera to localize itself and the GPR based on
vSLAM technique [17], which requires minimal to zero prior
knowledge and is less restricted by environments.

Our group has worked on both surface and subsurface
infrastructure inspection using a robotic sensing suite for
several years [18]. The sensing suite contains a camera and
a GPR. We have calibrated the extrinsic parameters between
the GPR and the camera using a mirror-assisted method [19].
Furthermore, we have employed the customized artificial
landmarks and pose graph optimization method to fulfill the
synchronization task [20], which lays a foundation for this
work.

III. PROBLEM FORMULATION

Fig. 2(a) illustrates our sensing suite design which mounts
a GPR and a camera on a tricycle. To focus on the horizontal
pipeline mapping, we have the following assumptions.

a.1 All pipelines can be approximated as piecewise con-
nected cylinders whose centerlines intersect the hori-
zontal plane with an angle less than 45 degrees, since a
GPR cannot distinguish pipes that are close-to-vertical
and most pipeline segments are horizontal anyway.

a.2 The sensing suite moves on a flat ground plane, and
a.3 Pipelines are buried in a homogeneous medium, and

the radio wave propagation velocity is priorly known
from calibration.

During scanning, the GPR transmitting antenna sends
polarized high-frequency radio waves into soil (see Fig. 3(a)).
When reaching a target with different electromagnetic pro-
perties than its surrounding medium, the wave is reflected
back and then the microwave traveling time from GPR
transmitter to object to receiver is recorded which forms an
A-scan (Fig. 3(b)). Based on assumption a.3, the traveling
time can be converted into the traveling distance. While the
GPR moves on the ground to perform scanning, it produces a
series of A-scans at different positions. This ensemble of A-
scans forms a B-scan [21] (Fig. 3(c)). A collection of B-scans
combining with images captured by the camera at different
scanning positions serve as inputs. To describe them, we
define the following notations,
• {W}, the 3D world coordinate system with X-Y plane

representing the horizontal ground plane, and Z-axis
pointing to the upward direction (see Fig. 3(d)). A 3D
point in {W} is denoted as XW ∈ R3.

• Akq = {as|s = 1, . . . , nq}, the j-th A-scan belonging
to the k-th B-scan, with as > 0 denoting the reflection
amplitude of the s-th sample point.

• Bk = {Akq |q = 1, . . . , nk}, the k-th B-scan consisting
of nk A-scans. Each B-scan can be viewed as a 2D
image, where each Akq ∈ Bk is a column of pixels. Note
that this 2D GPR image is in an Euclidean coordinate
because each pixel position x = [xk, dk]T ∈ R2 is
in physical units of meters with xk-axis parallel to
the GPR moving direction, representing the distance
traveled, and dk-axis indicating the distance from GPR
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Fig. 3. An illustration of GPR working principle and coordinate system. (a-c) a ball shaped object registers itself as a hyperbola in B-scan. (d) coordinate
systems and important notations. (e) A typical B-scan 2D view. (f) Sample B-scans 3D view with peaks marked by combining parallel scanning results.
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Fig. 4. System diagram. Each box index letter corresponds to the subsection
number in Section IV.

to object. Its origin is at the position of the first A-scan
in Bk (see Fig. 3(d)).

• Hk = {Hj |j = 1, . . . , nh}, the set of hyperbolas
extracted from Bk, with each Hj , 1 ≤ j ≤ nh being
the parameter vector of a hyperbola.

• Lp = [rp, (X
W
p,1)T, . . . , (XW

p,np
)T]T, the p-th pipeline

segment with its radius equal to rp, XW
p,j , j = 1, . . . , np

representing the j-th reconstructed point in {W}.
• Ω = ∪{Lp}, the detected pipeline set.

Our pipeline mapping problem is defined as follows,
Definition 1: Given synchronized camera images and

GPR B-scans, extract hyperbola set Hk from each Bk, obtain
Ω.

IV. ALGORITHM

Our system diagram is shown in Fig. 4. The system inputs
are the synchronized GPR scans and camera images. We
derive a sensing model which establishes hyperbola-shaped
radar signals when the GPR scans a straight pipeline along a
linear trajectory. The model allows us to extract hyperbolas
from each Bk. Fused with vSLAM and encoder readings, the
detected hyperbola vertexes in all Bk’s are transformed into
{W}. Then our algorithm classifies hyperbolas into different
groups according to their residing pipelines. Finally, for each
pipeline group, we estimate pipe radius and locations. We
begin with the data collection step.

A. Data Collection on Grid

Both the GPR and the camera are fixed on a sensing suite
(see Fig. 2(c)) which moves along a straight line to collect
data. To guarantee the reconstruction accuracy, it is necessary
to ensure that the intersection angle between the scanning
trajectory and pipeline center lines projected to the horizontal
plane is between 45◦ and 90◦. Therefore, we scans using
a grid pattern consisting of evenly spaced survey lines in
two parallel groups with perpendicular directions for pipeline
mapping (see Fig. 2(c)). It is obvious that we must have one
group with the intersection angle is no less than 45◦ even

we do not know actual pipe orientation. This group can be
easily identified in GPR readings. Hence, we assume all data
are from this group in the rest of the paper, which means all
Bk’s are taken from parallel scans. Next let us model the
GPR sensing process in a single scan.

B. GPR Sensing Modeling

According to [8], horizontal cylindrical pipelines are re-
cognized as hyperbolas in GPR scans. We explain it using a
simple case when the GPR scans a pipeline perpendicularly
before extending it to general cases with unknown orientati-
ons.

1) Perpendicular Scanning: Fig. 5(a) illustrates this ideal
case. Let di be the distance measurement by the GPR at
point xi in Bk, xv denote the closest point to the pipeline
on the scanning trajectory along xk-axis, and dv denote the
measured distance from xv to the pipeline. The geometric
relationship between the extracted hyperbola in Bk and the
pipeline radius r is governed by the red right triangle formed
at location xv according to [22],

(di + r)2 = (xi − xv)2 + (dv + r)2. (1)

We can rewrite (1) as the canonical hyperbola formulation,

(di + r)2

(dv + r)2
− (xi − xv)2

(dv + r)2
= 1. (2)

In fact, the point [xv, dv]
T is the hyperbola vertex. Ho-

wever, in practice, the accurate orientation of pipelines is
unknown. The probability of having a perpendicular scanning
is negligible. A generic linear trajectory (GLT) usually does
not have a known approaching angle to the pipeline center-
line. We need a sensing model for a GLT. More importantly,
we need to know if the signal shape in the B-scan is still a
hyperbola.

2) GLT Sensing Model: Fig. 5(b) illustrates that a GPR
scans a pipeline along a GLT. Two angles, α and θ, are
employed to describe the orientation of a straight pipeline
segment where α is the angle between the projection of the
pipeline centerline on the X-Y plane of {W} (i.e. ground
plane) and the GLT, and θ is the angle between the pipeline
and the GLT. Denote Xi and Xv as two 3D points on GLT
in {W} and Xv is the closest point to the pipeline. The
measured distances from Xi and Xv by the GPR are di
and dv , respectively. The following lemma presents the GPR
sensing model when crossing the pipeline with a GLT.
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Fig. 5. Understanding GPR sensing model: (a) perpendicular scanning, (b) a GLT scanning, (c) virtual pipeline, and (d) 2D projection of (c).

Lemma 1: When the GPR scans the subsurface pipeline
along a GLT, the resulting signal in B-scan is the following
hyperbola,

(di + r)2

(dv + r)2
− (xi − xv)2(sin θ)2

(dv + r)2
= 1, (3)

where xi and xv denote the x-coordinate values in Bk when
the GPR is located at Xi and Xv , respectively.

Proof: Fig. 5(b-d) illustrates the GLT scanning case.
Denote XY as the line segment connecting 3D points X
and Y. We select two 3D points Yv and Yi lying on the
centerline of the pipeline, such that XvYv ⊥ YvYi and
XiYi ⊥ YvYi. Thus,

‖XvYv‖ = dv + r

‖XiYi‖ = di + r.

We introduce a virtual pipeline XvYj which is parallel to
YvYi (see Fig. 5(c)). Then, the angle between XvXi and
XvYj is θ, thus ‖XiYj‖ = ‖XvXi‖ sin θ.

Since XvYv ⊥ YvYi and YvYi ‖ XvYj , thus XvYv ⊥
XvYj . Additionally, XvYv ⊥ XvXi, thus XvYv is per-
pendicular to the plane where Xv , Xi and Yj are lying on.
Therefore, XvYv ⊥ XiYj . Since XvYv ‖ YiYj , we can
obtain 4XiYiYj is a right triangle. Projecting the scanning
scenario into 2D view (see Fig. 5(d)), we have

(di + r)2 =
(
‖Xi −Xv‖ sin θ

)2
+ (dv + r)2. (4)

Since both |xi − xv| and ‖Xi −Xv‖ represent the same
GPR traveling distance, we have |xi − xv| = ‖Xi − Xv‖.
Rewriting (4) in canonical hyperbola format, Lem. 1 is
proved.

Lem. 1 shows that the resulting B-scan signals from scan-
ning a pipeline along a GLT is still a hyperbola. Therefore,
we can utilize this knowledge to extract them from noisy
B-scans.

C. Hyperbola Extraction

The raw GPR data must be preprocessed before ex-
tracting hyperbolas. The pre-processing involves time-zero
correction, average background subtraction, and low pass
filtering. In Bk, the intensity of each pixel x = [xk, dk]T re-
presents the sum of the radar reflections from all underground
objects whose distances to xk are equal to dk. For each A-
scan in Bk, we extract all peak points with local highest
intensities, since only peak points are potential hyperbola

points. Define xi be the i-th peak point in Bk. Denote
Mk = {xi|i = 1, . . . , nm} as the set of extracted peak
points. Thus, our hyperbola detection problem is, given Mk,
to detect multiple hyperbolas. Extracting hyperbolas from
a GPR B-scan is non-trivial due to multiple solutions and
significant noises as shown in Figs. 3(e) and 3(f).

To find all hyperbolas, we apply the J-linkage [23] frame-
work to detect them from each GPR B-scan. The J-linkage
approach can simultaneously fit multiple models to data
corrupted by noise and outliers without specifying model
number. Let us define xj,i = [xj,i, dj,i]

T be the i-th point
lying on the j-th hyperbola in Bk. Specially, we denote
[xj,v, dj,v]

T as the vertex of the hyperbola Hj . We can
represent the hyperbola form in Lem. 1 as,

x̃T
j,iQjx̃j,i = 0, (5)

where x̃j,i = [xj,i, dj,i, 1]T is the homogeneous coordinate
of xj,i, and

Qj =

 (sin θ)2 0 −xj,v(sin θ)2
0 −1 −r

−xj,v(sin θ)2 −r (sin θ)2x2j,v + d2j,v + 2dj,vr


A generic conic, ax2 + bxy + cy2 + dx + ey + f = 0,

has 5 DoFs. However, there are only 4 DoFs in our conic
in (5) since the major axis of each hyperbola in B-scan is
vertical which means b = 0. Thus, we can parameterize each
hyperbola as Hj = [xj,v, dj,v, sin θ, r]

T. Four points lying on
the hyperbola are sufficient to compute a minimal solution
of this hyperbola by solving (5).

In the J-linkage process, we first randomly choose M
minimal sample set of 4 peak points to estimate the initial
hyperbola by solving (5). For each initial hyperbola, if it
satisfies xj,v > 0 and dj,v > 0, which indicates the vertex of
the hyperbola lying in the first quadrant of Bk, we consider
it as a model hypothesis. Otherwise, we discard it.

For the rest, we follow the standard J-linkage steps which
generate multiple clusters. For each clusterMj , if its size is
greater than a threshold Nh, we accept this model hypothesis
and further refine it from all peak points in Mj . We model
xj,i’s measurement error as a zero mean Gaussian with
covariance matrix σ2

j,iI2, where I2 is a 2×2 identity matrix.
Stacking all points in Mj together, we obtain the following



overall measurement error function,

Ch(Hj) =

 x̃T
j,1Qjx̃j,1

...
x̃T
j,mj

Qjx̃j,mj

 , (6)

where mj = |Mj | denotes the total point number in Mj .
The MLE of Hj can be obtained by minimizing the

Mahalanobis distance,

H∗j = arg min
Hj

Ch(Hj)
T∑−1

H,jCh(Hj), (7)

where
∑
H,j = diag(σ2

j,1, . . . , σ
2
j,mj

) is a diagonal matrix.
This nonlinear optimization problem can be solved using
Levenberg-Marquardt(LM) algorithm. Also, it is not difficult
to obtain the covariance matrix of the estimated H∗j using
error propagation methods in Chapter 5 of [24].

From H∗j , we can obtain the hyperbola vertex. Let us
define vIp,j = [xj,v, dj,v]

T to be the vertex of the j-th
hyperbola generated from the p-th pipeline in the image
coordinate system of Bk. Next we need to classify and group
the extracted hyperbolas in {W} according to its pipe. This
requires fusing with vSLAM and encoder readings.

D. Sensor Fusion for Coordinate Transformation

We project all hyperbola vertexes onto the X-Y plane of
{W}. Define xvp,j = [xvp,j , y

v
p,j ]

T to be the corresponding
position on X-Y plane in {W} where the GPR receives
vIp,j . Here, we use the superscript v to indicate the vertex.
We know vIp,j in Bk but finding xvp,j requires combining
vSLAM outputs and wheel encoder data.

We denote the starting and ending points of the scanning
line as xs,k = [xs,k, ys,k]T and xe,k = [xe,k, ye,k]T, respecti-
vely, which are measured by vSLAM algorithm. Note that
they are 2D because all points are in X-Y plane with z = 0.
We do not directly use xs,k and xe,k to localize xvp,j due
to the vSLAM measurement errors. Since the GPR moves
along a group of parallel GLTs according to Section IV-A,
we adopt the parallelism constraint to refine xs,k and xe,k.
Denote x̂s,k and x̂e,k as the estimations of xs,k and xe,k,
respectively. Let us define pv = [(x̂s,1)T, . . . , (x̂s,n)T,v]T

to be the parameter vector, where v is 2×1 directional vector
with ‖v‖ = 1, denoting the moving direction of all parallel
trajectories, and n is total number of the parallel trajectories.
Define lk to be the length of the k-th linear trajectory, which
is obtained from wheel encoder readings. Thus,

x̂e,k = x̂s,k + lkv. (8)

We model both the covariance matrices of xs,k and xe,k
as a zero mean Gaussian with covariance matrix σ2

vI2, where
I2 is a 2× 2 identity matrix. We estimate x̂s,k, k = 1, . . . , n
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and v by minimizing the following cost function

Cv(pv) =



x̂s,1 − xs,1
...

x̂s,n − xs,n
x̂s,1 + l1v − xe,1

...
x̂s,n + lnv − xe,n


. (9)

We obtain the MLE of pv by solving the following
optimization problem,

p∗v = arg min
pv

Cv(pv)
T∑−1

v Cv(pv), (10)

where
∑
v = diag(

∑
s,1, . . . ,

∑
s,n,

∑
e,1, . . . ,

∑
e,n) is a

block-wise diagonal matrix,
∑
s,k and

∑
e,k denote the

covariance matrices of xs,k and xe,k, respectively. Here
we ignore the measurement errors from the wheel encoder
because the wheel encoder is very accurate when the sensing
suite moves on flat ground.

With x̂s,k and x̂e,k obtained, we can obtain each hyperbola
vertex position xvp,j in {W} using the wheel encoder. We
already know the wheel encoder increments between xvp,j
and x̂s,k to be xj,v . We also know the wheel encoder
increments between x̂s,k and x̂e,k as ‖x̂e,k − x̂s,k‖. Thus,
the position of xvp,j is determined as,

xvp,j =
(

1− xj,v
‖x̂e,k − x̂s,k‖

)
x̂s,k+

xj,v
‖x̂e,k − x̂s,k‖

x̂e,k. (11)

Again, the covariance matrix of the estimated xvp,j can
be obtained using error propagation methods in Chapter 5
of [24].

E. Hyperbola Grouping

Knowing hyperbola vertexes in {W} allows us to clas-
sify hyperbolas from multiple Bk’s into different groups
according to their residing pipelines. This allows us to
simultaneously detect multiple pipelines. Recall that we
perform scanning by following parallel GLTs (see Fig. 6).
Let sj , j = 1, . . . , np represent the parallel GLTs crossing
the p-th pipeline, thus we have s1 ‖ s2 ‖ . . . ‖ snp

. Recall
that xvp,j = [xvp,j , y

v
p,j ]

T is 2D point on X-Y plane of {W}
when the GPR receives the j-th hyperbola vertex [xj,v, dj,v]

T

from the p-th pipeline, and XW
p,j is the j-th center axis point

on the p-th pipeline, which is the closest axis point to sj . The
following lemma presents the geometric model for center
axis point reconstruction.



Lemma 2: If the GPR scans the p-th pipeline along a
set of parallel GLTs, sj , j = 1, . . . , np, and produces the
sequence of xvp,j , j = 1, . . . , np where the hyperbola vertexes
are perceived, as illustrated in Fig. 6, then all xvp,j , j =
1, . . . , np are collinear to line lp, and the corresponding
closest 3D center pipe axis points to each scanning GLT
sj can be computed as follows,

XW
p,j =

[
(1− λp,j)xvp,j + λp,jx

v
p,j−1

−(dj,v + rp) cosβp

]
, (12)

where rp denotes the radius of the p-th pipeline, βp is the
angle between lp and the pipeline centerline, and λp,j =
(dj,v+rp) sin βp

‖xv
p,j−xv

p,j−1‖
.

Proof: According to the working principle of GPR, for
each sj , the hyperbola vertex is generated by the reflection of
the pipeline surface point which is closest to sj . Thus, with
dj,v known in each sj , all possible reflection points of the
pipeline constitutes a hemisphere centered at xvp,j with radius
equal to dj,v , as shown in Fig. 6. The pipeline is tangential
with all hemispheres.

Denote Xv
p,j = [(xvp,j)

T, 0]T as the 3D coordinate of xvp,j ,
and XY as the line segment connecting 3D points X and
Y. For each sj , we have

Xv
p,jX

W
p,j ⊥ sj and Xv

p,jX
W
p,j ⊥ XW

p,1X
W
p,np

.

s1 ‖ s2 ‖ . . . ‖ snp

∴ Xv
p,1X

W
p,1 ‖ . . . ‖ Xv

p,np
XW
p,np

.

∴ all Xv
p,jX

W
p,j , j = 1, . . . , np are coplanar.

∴ all xvp,j , j = 1, . . . , np are collinear.
With the line denoted as lp, it is clear that lp and

XW
p,1X

W
p,np

are coplanar and intersect to each other. Further-
more, due to all sj , j = 1, . . . , np are on the horizontal plane,
the plane determined by XW

p,1, XW
p,j and Xv

p,j is a vertical
plane. Inside this vertical plane, there exists a vertical line
passing XW

p,j and intersecting lp at point X⊥p,j (see Fig. 6).
Connecting line segment XW

p,jX
⊥
p,j , we have

XW
p,jX

⊥
p,j ⊥ Xv

p,jX
v
p,j−1.

Using trigonometry, we have

‖Xv
p,j −X⊥p,j‖ = (dj,v + rp) sinβp,

X⊥p,j = (1− (dj,v + rp) sinβp
‖xvp,j − xvp,j−1‖

)Xv
p,j+

(dj,v + rp) sinβp
‖xvp,j − xvp,j−1‖

Xv
p,j−1.

Since X⊥p,j and XW
p,j have the same X and Y coordinates,

replacing the third element of X⊥p,j with −(dj,v+rp) cosβp,
Lem. 2 is proved.

Lem. 2 implies that we can simultaneously detect mul-
tiple pipes by grouping the hyperbolas. It can be done by
fitting multiple lines from the hyperbola vertex projection
points. Again, J-linkage framework is applied. Define x̃vp,j =
[xvp,j , y

v
p,j , 1]T to be the homogeneous form of xvp,j . We

denote lp as the 2D line projected from the p-th pipeline on

X-Y plane of {W}. Any x̃vp,j generated from p-th pipeline
satisfies the following equation,

(x̃vp,j)
Tlp = 0. (13)

A minimal solution requires two points. The rest follows the
standard J-Linkage approach. After classifying the hyperbo-
las into different groups where all hyperbolas in the same
group are generated from the same pipeline, we are ready to
reconstruct pipelines with the grouped hyperbolas.

F. Pipeline Radius Refinement

Hyperbolas in the same group belong to the same pipeline
and share the same radius. We can use this to refine the
estimation of radius. Denote rp,j , j = 1, . . . , np as the
estimated radius of the p-th pipeline using the j-th hyperbola
by (7), with estimation variance σ2

j . Define rp to be the radius
of the p-th pipeline. To estimate rp optimally by combining
all rp,j’s, We define the following error function,

Cr(rp) =

 rp − rp,1...
rp − rp,np

 . (14)

The MLE of rp can be obtained by solving the following
optimization problem,

r∗p = arg min
rp

Cr(rp)
T∑−1

r,pCr(rp), (15)

where
∑
r,p = diag(σ2

1 , . . . , σ
2
np

) is a diagonal matrix.

G. Pipeline Center Axis Point Reconstruction

The final step is to estimate points XW
p,j on the pipe

center axis. Lem. 2 shows that we can obtain them from
Xv
p,j , lp and βp. We use the geometric relationship to obtain

them. Let us define the parameter vector to be estimated as
p = [(X̂v

p,1)T, . . . , (X̂v
p,np

)T, (lp)
T, βp]

T, where X̂v
p,j , j =

1, . . . , np denotes the estimation of Xv
p,j . Recall that Xv

p,j =
[(xvp,j)

T, 0]T. Then, we estimate p by minimizing the follo-
wing cost function,

Cp(p) =



X̂v
p,1 −Xv

p,1
...

X̂v
p,np
−Xv

p,np

(x̃vp,1)Tlp
...

(x̃vp,np
)Tlp

‖X̂v
p,2 − X̂v

p,1‖ sinβp − (d2,v − d1,v)
...

‖X̂v
p,np
− X̂v

p,1‖ sinβp − (dnp,v − d1,v)


(16)

The MLE of p can be obtained by solving the following
problem,

p∗ = arg min
p

Cp(p)T
∑−1
p Cp(p), (17)

where
∑
p = diag(

∑
Xv

p,1
, . . . ,

∑
Xv

p,np
,
∑
x̃v
p,1
, . . . ,

∑
x̃v
p,np

,

σ2
d,1, . . . , σ

2
d,np

) is a block-wise diagonal matrix.
∑
Xv

p,j



and
∑
x̃v
p,j

are the covariance matrices of Xv
p,j and x̃vp,j ,

respectively. σ2
d,j is the estimation variance of (dj,v − d1,v).

With X̂v
p,j , lp and βp obtained, we can compute XW

p,j

based on Lem. 2.

V. EXPERIMENTS

We have implemented our algorithm using MATLAB
under a PC. We use GSSI SIR-3000 GPR with 1.6 GHz an-
tennas and the parameters are given as follows: the horizontal
sample rate for the wheel encoder is 390 pulses per meter,
the two-way travel time of the radar signal is 8 ns, the sample
rate for the GPR is 1024 sample/scan. Each B-scan consists
of 1643 A-scans on average. The camera used in the system
is a 10 mega-pixel industry camera with model number DS-
CFMT1000-H. The sensing suite shown in Fig. 2(a).

Since it is difficult to obtain the ground truth of the
locations and sizes of the buried pipelines, we build a testbed
platform so that we can place PVC pipes underneath. The
platform is a raised square artificial floor with a side length
of 5.5m and a height of 0.9m using wooden boards (see
Fig. 2(b))). To emulate the reflection signals from metal
pipes, we wrap each PVC pipe with aluminum foil. Before
GPR scanning, we first create a global map using ORB-
SLAM [17] that covers the entire field shown in Fig. 2(c).
The ground truth is manually measured using a tape measure
with 1.59mm accuracy.

In each setup, we change PVC pipe number and configura-
tions. We have finished 5 sets of different pipe configurations.
The pipe configurations and the corresponding pictures are
shown in Fig. 7. Two types of pipes are used in our experi-
ments, with radii being 4.62cm and 3.02cm, respectively. In
each setup, we move the sensing suite along parallel GLTs
in the grid to collect the camera and GPR data following
the synchronization method in [20]. Each GLT generates a
B-scan and 98 camera images on average. In each setup, we
have at least 9 B-scans/GLTs.

(e)(d)(c)(b)(a)

Fig. 7. 5 representative pipe configurations in experiments.

In our experiments, all pipelines are successfully detected.
As for mapping quality, we first examine the orientation of
the detected pipelines. As shown in Fig. 6, we adopt two
angles αp and βp to describe pipe orientations where αp is
the angle between lp and the X-axis of {W}. We define eα
and eβ to be the estimation errors of αp and βp, respectively.
The values of eα and eβ for each pipe are presented in
Tab. I. The average values of eα and eβ are 0.81◦ and 0.72◦,
respectively. The maximum value of these two angle errors
are 1.71◦ and 2.69◦, respectively. These small errors mean
that the pipeline orientation estimation accuracy is satisfying.

TABLE I
ALL PIPELINE ORIENTATION ESTIMATION ERRORS (◦).

No. pipe 1 pipe 2 pipe 3 pipe 4
eα eβ eα eβ eα eβ eα eβ

1 0.54 0.48 — — — — — —
2 0.46 2.69 — — — — — —
3 1.34 0.19 0.01 0.44 — — — —
4 1.71 0.64 0.40 0.51 0.27 1.37 — —
5 1.16 0.47 1.62 0.47 0.74 0.19 0.61 0.48
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Fig. 8. Pipeline reconstruction results: (a) ex statistics, and (b) Radius
estimation relative error.

Next we examine the quality of the reconstructed center
axis point XW

p,j where we compute the Euclidean distance
from XW

p,j to the ground truth value of pipeline’s centerline,
denoted as error ex. There are totally 11 pipes in our 5 expe-
riment setups. We number them from 1 to 11 following the
order of experiments. Fig. 8(a) presents the statistical results
of ex for each pipe, where the marker position is the average
value and the vertical bars correspond to [−σ, σ] with σ as
the standard deviation. The overall average localization error
is 4.69cm. Our pipeline localization algorithm is successful.

We define the metric er = |r̂−r|
r to evaluate the pipeline

radius estimation results, where r̂ and r are the radius
estimation result and the corresponding ground truth value,
respectively, and | · | denotes the absolute value operator.
Fig. 8(b) presents the values of er for the 11 pipelines. The
average value of er is 33.9%. The estimation errors are due
to many factors, such as GPR accuracy limitation, hyperbola
detection errors, the calibration error of GPR wave velocity,
and the GPR scan localization errors. However, in most
practical applications, the radii of pipelines are either prior
known or conformal to typical standard sizes. As long as the
result can assist finding the standard size, it is sufficiently
accurate and acceptable.

VI. CONCLUSION AND FUTURE WORK

We reported a novel subsurface pipeline mapping method
by fusing GPR scans and camera images. The camera
images and encoder readings were used to provide the
global position for each GPR scan so that our algorithm
can simultaneously map multiple lines without assuming
perpendicular scanning. We derived a GPR sensing model
that proves hyperbola formulation under GLTs. Then, we
developed a multiple hyperbola extraction algorithm under
the J-linkage framework to detect and classify the hyperbolas
generated from multiple pipelines. Finally, we optimally
estimated the orientations, radii and locations of all pipelines



by analyzing the extracted hyperbolas. We tested our method
in 5 groups of physical experiments with representative
pipeline configurations. The results showed that our method
successfully reconstructed all subsurface pipes.

In the future, we will conduct more physical experiments
and derive error analysis results. We also plan to further relax
the constraint that requires the GPR to move linearly on flat
ground by developing in-depth sensor fusion and GPR signal
processing methods.
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