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Abstract. Motion vectors (MVs) characterize the movement of pixel
blocks in video streams and are readily available. MVs not only allow us
to avoid expensive feature transform and correspondence computations
but also provide the motion information for both the environment and
moving obstacles. This enables us to develop a new framework that is ca-
pable of simultaneous localization, scene mapping, and moving obstacle
tracking. This method first extracts planes from MVs and their corre-
sponding pixel macro blocks (MBs) using properties of plane-induced
homographies. We then classify MBs as stationary or moving using geo-
metric constraints on MVs. Planes are labeled as part of the stationary
scene or moving obstacles using MB voting. Therefore, we can estab-
lish planes as observations for extended Kalman filters (EKFs) for both
the stationary scene and moving objects. We have implemented the pro-
posed method. The results show that the proposed method can establish
plane-based rectilinear scene structure and detect moving objects while
achieving similar localization accuracy of 1-Point EKF. More specifically,
the system detects moving obstacles at a true positive rate of 96.6% with
a relative absolution trajectory error of no more than 2.53%.

1 Introduction

For most mobile robots in GPS-challenged environments, simultaneous localiza-
tion and mapping (SLAM) and obstacle avoidance are two critical navigation
functionalities. They are often handled separately because SLAM usually views
moving obstacles as noises in the environment whereas obstacle avoidance only
concerns the relative motion between the robot and obstacles. This artificial sep-
aration was mostly due to the limitation of existing methods. Both SLAM results
and obstacle motion information should be considered together when planning
robot trajectories in real applications. In fact, the artificial separation can lead to
problems such as synchronization or redundant processing of information, which
are not desirable for time, power, and computation constrained mobile robots.
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Motion vectors (MVs) characterize the movement of pixel blocks in video
streams, which are readily available. With a monocular camera as the only sen-
sor, we have employed MVs from video streams to create a new featureless
SLAM method for visual navigation [15]. However, the method assumes a sta-
tionary environment despite that MVs encode motion information for both the
environment and moving objects.

Here we show that MVs allow us to develop a new algorithm that is capable
of performing the SLAM task and obstacle tracking in a single framework by
simultaneous localization, planar surface extraction, and tracking of moving ob-
jects. Assuming a quasi-rectilinear urban environment, this method first extracts
planes from MVs and their corresponding pixel macro blocks (MBs). We classify
MBs as stationary or moving. These steps are based on geometric constraints
and properties of plane-induced homographies under random sample consensus
(RANSAC) framework. Planes are labeled as part of the stationary scene or
moving obstacles using an MB voting process. This allows us to establish planes
as observations for extended Kalman filters (EKFs) for both the stationary scene
and moving objects. We have implemented the proposed method and compared
it with the state-of-the-art 1-Point EKF [4]. The results show that the proposed
method achieves similar localization accuracy. The relative absolute error is less
than 2.53%. At the same time, our method can directly provide plane-based
rectilinear scene structure, which is a higher level of scene understanding, and
is capable of detecting moving obstacles at a true positive rate of 96.6%.

2 Related Work

Our work relates to vision-based SLAM (vSLAM) with a monocular camera.
The general goal of vSLAM is to estimate the robot pose and reconstruct the
3D environment, while the robot travels in the environment. In a regular vS-
LAM approach, the environment is represented by a collection of landmarks,
and cameras are used as the only sensors to provide observations for landmarks.

Depending upon landmarks/features, existing works for monocular vSLAM
can be classified into different categories. Feature points have been well studied
and are the most commonly used landmarks. A comprehensive study of different
point detectors is provided in [11], where features like Harris corner, smallest
univalue segment assimilating nucleus (SUSAN), scale invariant feature trans-
form (SIFT), and speeded up robust features (SURF) are compared in aspects
of stability and discover rates. Low level features like edgelets [6] and lines [13]
are also studied, and combined for better performance. Recently, high-level fea-
tures like 3D lines and planes [9, 10, 14, 16, 17, 20, 25] are introduced to vSLAM
works to construct hierarchical environment representations, and semantic fea-
tures such as vertical and horizontal lines [8] also attract attentions. All of these
works require feature transform, which is often computationally expensive.

For many vSLAM works, a common assumption is that the environment is
stationary. This assumption becomes invalid when a robot navigates in an urban
environment with moving vehicles and pedestrians. In recent years, vSLAM in
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dynamic environments receives increasing research attention. In existing meth-
ods, this problem is separated as a vSLAM in a stationary environment and a
3D visual tracking problem for each moving object [22, 23]. Our work is similar
to these works in that we use multiple filters to track stationary and moving
objects separately. However, existing methods do not perform motion separa-
tion and only work when the stationary landmarks are fixed or the moving
objects’ templates are given. To integrate motion separation with vSLAM, Zhou
et al. [26] propose a multi-camera based approach using multiple views to trian-
gulate points and compare the reprojection error between frames to differentiate
stationary and moving points. For a monocular camera, the triangulation ap-
proach is not applicable within a single frame. Therefore, our work relies on an
MV-based motion segmentation method using adjacent frames.

The motion separation in our work relates to motion-based object detection
in monocular vision. Many existing MV-based object detection approaches re-
quire a stationary background [1,7,19,24]. Assuming that MBs on an object have
the same motion, different clustering methods, such as expectation-maximization
(EM) [1] and mean-shift [19], are used to classify foreground MVs into differ-
ent regions. With the given object regions, the tracking can be performed by
searching along all MVs in the object region [7]. However, these methods do not
apply to our problem because the background is not stationary in our videos,
and the object motion on images cannot be approximated by affine motion.
Similar to MVs, optical flows (OFs) enable many motion-based object-detection
work [3,5,18]. When a camera moves, OFs are used to detect a single dominant
plane with the homography constraint [18]. When the dominating plane is the
ground plane in [3], an OF model for the ground plane movement is estimated
according to the camera motion where all mis-matchings to the model are de-
tected as obstacles. Considering the low accuracy of MVs, we also use planes as
landmarks in our work. However, the camera motion is unknown in our model.

3 Problem Formulation

3.1 System Overview and Introduction to Motion Vectors

Fig. 1 shows that the proposed system consists of three parts: the plane extrac-
tion and camera motion estimation (top), the stationary scene filter (middle),
and the moving object filter (bottom). The plane extraction and camera motion
estimation takes MVs as input and outputs labeled stationary/moving planes
and the estimated camera motion between the adjacent frames. The extracted
stationary planes and camera motion information are fed into the stationary
scene filter to perform localization and mapping tasks. The extracted moving
planes are entered to the moving object filter for tracking. Since moving and
stationary planes are not permanent in applications (e.g. a moving car may
come to a stop), a plane management module is introduced to allow us to add,
remove, verify, and/or re-label them according to EKF outputs.

Filtered MVs are the input to the entire system. Let us briefly introduce
MVs here. Detailed description and the filtering process can be found in [15].
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Fig. 1. System diagram. The ∗ represents the output of plane labeling, which is also
the input to three sub-blocks below.

Moving Picture Experts Group (MPEG) stands for a class of video compression
algorithms that are the most popular in use today. To achieve compression,
each frame is partitioned into MBs in MPEG-1/2/4 standards (e.g. MPEG-2
codec uses 16× 16-pixel MB). During encoding, block matching is performed to
find similar MBs in reference frames. An MV is then established to represent
a 2D shift of an MB with respect to (w.r.t) the reference frame. Depending on
group of picture structure in different MPEG protocols, raw MVs may point to
multiple future or past reference frames. It is worth noting that MVs are often
noisy or missing due to the fact that MVs are computed purely based on the
similarity of MBs. The similarity could be corrupted by occlusion, lighting, and
large perspective changes or tricked by repetitive patterns.

Comparing to optical flows, MVs are readily available. However, MVs are
sparser in spatial resolution but denser in temporal dimension. In [15], we have
showed how to exploit this characteristic to reduce noise in MVs, which results
in the filtered MVs. Actually, filtered MVs represent the set of corresponding
MBs between key frames k and k − 1, and are denoted by

Ck→k−1 := {xk−1 ↔ xck}, (1)

where xck indicates the center of the MB in reference frame k and xk−1 shows
its corresponding position in reference frame k − 1.
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3.2 Problem Definition

To formulate the problem, we assume the urban scene can be approximated using
planes: stationary or moving. A set of stationary planes is a good representation
of quasi-rectilinear urban environments and always exists in sight. Moving planes
can approximate vehicle exteriors. We assume that there are more stationary
planes than moving objects. We also assume that moving planes follow pure
translation in the short duration of observation. The intrinsic camera matrix K
is constant and known through pre-calibration. All 3D coordinate systems are
right-handed coordinates, and common notations are defined as follows:

– Coordinate systems: {Φk} is a camera coordinate system (CCS) at frame k.
For each CCS, its origin locates at the camera optical center, z-axis coincides
with the optical axis and points to the forward direction of the camera, its
x-axis and y-axis are parallel to the horizontal and vertical directions of
the CCD sensor plane, respectively. The world coordinate system (WCS)
{W} coincides with {Φ0}. To differentiate variables in CCS and WCS, a
superscription k means the variable is in {Φk} or its corresponding image
coordinate system, while no superscription is default for {W}. In addition,
a superscription k → k − 1 means from {Φk} to {Φk−1}

– Image coordinate system: x ∈ P2 is the homogeneous representation of an
image coordinate where P2 is 2D projective space.

– 3D planes: π = [nT, d]T represents a 3D plane, where n ∈ R3 is the plane
normal vector and d is the plane depth. π̃ = n/d is the inhomogeneous form.

– Subscripts: k is the time/frame index. To distinguish stationary scene and
moving objects, a subscript s stands for stationary and d represents dynam-
ically moving. For example, πs,k is a stationary plane at frame k.

– εF (xk−1,xk, F ) denotes the Sampson’s error (p. 287 in [12]) for fundamental
matrix F , where xT

kFxk−1 = 0. εH(xk−1,xk, H) denotes the Sampson’s
error (p. 99 in [12]) for homography matrix H, where xk−1 = Hxk.

With the notations defined, we formulate the problem as below:

Problem 1 Given the set of MVs, Ck→k−1, up to time/frame k, estimate cam-
era rotation Rk from {W} to {Φk} and camera location tk in {W} for each
frame k, identify/label MBs for each plane, and reconstruct stationary and mov-
ing planes.

To solve this problem, we begin with planar surface extraction and camera mo-
tion estimation (top box in Fig. 1).

4 Planar Surface Extraction and Camera Motion
Estimation

Since MVs are often too noisy to be used directly, we exploit the coplanar prop-
erty of MBs in each adjacent key frame pair to filter MVs. We estimate camera
motion first and then use the motion information to label MBs by identifying
whether they belong to stationary scene or moving objects. This allows us to
establish planes as observations for the later EKF-based approach.
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4.1 Initial Estimation of Camera Motion

With the input MVs Ck→k−1 defined in (1), let us estimate camera motion
between two adjacent frames. The correct MV for the stationary scene across
adjacent frames should conform the relation

(xck)TF k→k−1xk−1 = 0, (2)

where F k→k−1 is the fundamental matrix between the two frames. We first
obtain an initial F k→k−1 using normalized 8-point algorithm under RANSAC
framework (p. 281 in [12]). This gives the inlier correspondence set for F k→k−1:

Ck→k−1F := {xk−1 ↔ xck : ‖(xck)TF k→k−1xk−1‖ < εf ,xk−1 ↔ xck ∈ Ck→k−1},
(3)

where εf is an error threshold and ‖ · ‖ represents the l2 norm. This verification
filters out many non-static MBs and noisy MVs that do not move along the
epipolar line, such as the black arrows in Fig. 2(a).

The fundamental matrix can be parameterized by camera rotation and trans-
lation as follows:

F k→k−1 = K−T[tk→k−1]×R
k→k−1K−1 (4)

where Rk→k−1 is the camera rotation matrix from {Φk} to {Φk−1}, tk→k−1 is
the camera translation from {Φk} to {Φk−1} measured in {Φk}, and [·]× stands
for the skew-symmetric matrix representation of the cross product.

Therefore, by minimizing Sampson’s error on set Ck→k−1F using Levenberg-
Marquardt algorithm:

min
Rk→k−1,tk→k−1

∑
xk−1↔xck∈C

k→k−1
F

εF (xk−1,x
c
k, F

k→k−1), (5)

we obtain an initial estimation of camera motion between adjacent frames.

4.2 MB Labeling for Stationary and Moving Objects

Before estimating planes, we need to properly classify MBs that belong to mov-
ing objects or the stationary scene. The simple verification in (3) cannot filter out
all MBs on moving objects from the stationary background. If a vehicle moves
along the epipolar line, then the corresponding MBs also satisfy (3). This hap-
pens frequently when a vehicle is in front of the camera and moves in the same
direction with the camera on a straight road. The green arrows on the vehicle
in Fig. 2(a) show a sample case. Since there are two cases: passing vehicles from
the same direction of camera motion and approaching vehicles in the opposite
direction, we verify the direction and magnitude of the MVs to identify them,
respectively.

MV direction constraint: For a passing vehicle on a straight road, the MVs
of the vehicle move along the epipolar line in an opposite direction with the
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Fig. 2. Illustration of the MB labeling process (best viewed in color). The white dot and
lines are the epipole and epipolar lines, respectively. Arrows indicate the movement of
MBs between two adjacent frames. (a) MV direction constraint illustration: The camera
motion is voted to be “forward”, and red MBs are labeled stationary MBs, green and
black MBs are moving MBs, and blue MBs are detected to be on the plane at infinity.
(b) MV magnitude constraint illustration. Red arrows are labeled stationary, and the
green arrows are moving. The red dashed line illustrates the fitted relationship between
‖x′k−1x

c
k‖ and ‖exc

k‖ along the white epipolar line.

background (e.g. the green arrows in Fig. 2(a)). If we know the camera moving
direction, these MVs can be detected by checking direction consistency. There-
fore, we start with detecting the camera moving direction. Since we know camera
rotation from (5) and are only interested in camera translation, we can remove
the effect of camera rotation first. This is done by projecting xk−1 to x′k−1

x′k−1 = sKRk→k−1K−1xk−1 (6)

where s is a scalar. After the projection, the displacement between x′k−1 and xck
is caused by pure camera translation for stationary MBs. According to epiploar
geometry (p. 247 in [12]), when the camera performs a pure translation, the
epipole e should be a fixed point, and all stationary MBs should appear to move
along lines radiating from the epipole (see Fig. 2(a)). The colored dots in the
figure are x′k−1 and the arrows point to xck, an illustration of MVs.

If the camera moves forward along its optical axis, vectors
−−−−→
ex′k−1 and

−−−−−→
x′k−1x

c
k

should be in the same direction, as the red arrows in the highlighted circle shown

in Fig. 2(a). If the camera moves backward,
−−−−→
ex′k−1 and

−−−−−→
x′k−1x

c
k should be in the

opposite direction. Denote the absolute angle between
−−−−→
ex′k−1 and

−−−−−→
x′k−1x

c
k as

α. Of course, the perfect collinear relationship may not hold due to noises in
the system. α is always somewhere between 0◦ and 180◦. We examine each MV
xk−1 ↔ xck ∈ C

k→k−1
F . If its α is less than 90◦, a vote of “forward” is assigned,

otherwise a “backward” vote is assigned. Then the camera moving direction
is obtained as the majority direction from all inlier correspondences. Fig. 2(a)
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shows the camera moving direction is voted as “forward” because most of the
MBs move away from the epipole. With the detected camera moving direction,
we can identify MBs belonging to passing vehicles easily. However, this would
not work for vehicles approaching the camera along the direction parallel to
camera motion vector. The MVs on the approaching vehicles also move along
the epipolar line and share the same direction as the background motion. For
such cases, we need to verify the magnitude of MVs.

MV magnitude constraint: The additional motion introduced by the object
results in sudden changes of MV magnitude along the epipolar line. To detect this
type of moving objects, we start with computing the magnitude of MVs after re-

moving camera rotation. Denote the MV magnitude of xk−1 ↔ xck as ‖
−−−−−→
x′k−1x

c
k‖,

and the Euclidean distance between the MB and the epipole as ‖−−→exck‖. From pro-
jective geometry we know that closer objects have larger displacements under

the same camera motion. Therefore, along one epipolar line, ‖
−−−−−→
x′k−1x

c
k‖ should

gradually increase as ‖−−→exck‖ increases. For each epipolar line, we approximate the

2D relationship between ‖
−−−−−→
x′k−1x

c
k‖ and ‖−−→exck‖ using RANSAC-based line fitting.

An example of the fitted relationship is shown by the dashed line at the bottom

of Fig. 2(b). Therefore, for a given ‖−−→exck‖ on the epipolar line, an predicted MV

magnitude ‖
−̃−−−−→
x′k−1x

c
k‖ can be obtained from the fitted relationship (dashed circles

in Fig. 2(b)). If the difference between ‖
−̃−−−−→
x′k−1x

c
k‖ and ‖

−−−−−→
x′k−1x

c
k‖ is greater than

a threshold εe, we consider the corresponding MB is potentially moving. In the
example shown in Fig. 2(b), the green MBs have magnitudes much greater than
the expected red dashed line, and thus labeled as moving MBs.

With the above constraints, we can label every MB and partition the set
Ck→k−1 into a stationary correspondence set Ck→k−1s and a moving correspon-
dence set Ck→k−1d , where Ck→k−1s

⋃
Ck→k−1d = Ck→k−1:

Definition 1 (MB Labeling) An MV xk−1 ↔ xck ∈ Ck→k−1 and its corre-
sponding MBs are labeled as stationary xk−1 ↔ xck ∈ Ck→k−1s , if the following
three conditions are all satisfied:

1) xk−1 ↔ xck ∈ C
k→k−1
F ,

2) α < 90◦ if camera moves forward or α ≥ 90◦ if camera moves backward,

3) |‖
−̃−−−−→
x′k−1x

c
k‖ − ‖

−−−−−→
x′k−1x

c
k‖| < εe.

Otherwise, the MB belongs to moving objects: xk−1 ↔ xck ∈ C
k→k−1
d .

In Fig. 2(a), the MBs on building facades are labeled as stationary with red
arrows whereas the MBs on the vehicle are labeled as moving.

4.3 Initial Plane Extraction and Labeling

With the labeled MB correspondences, we are able to extract planar regions.
Since MBs in the plane at infinity π∞ have very low signal-to-noise ratio for
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camera translation estimation, they should be removed before plane extraction
for better accuracy. Denote the set of correspondences in π∞ as C∞,

Ck→k−1∞ := {xk−1 ↔ xck : ‖x′k−1 − xck‖ < εm,xk−1 ↔ xck ∈ Ck→k−1s } (7)

where εm is the motion threshold. Fig. 2(a) shows the detected π∞ in blue arrows.
On the rest of correspondences Ck→k−1 \ Ck→k−1∞ , RANSAC is applied itera-

tively to extract all possible planes. To extract one plane, four correspondences
are sampled, and an homography H is obtained using normalized direct linear
transformation (p. 109 in [12]). Then, all correspondence resulting in an error
below a given threshold: ‖xk−1 − λHxck‖ < εh, is labeled as an inlier to the
plane. In each RANSAC iteration, one largest plane is extracted, and its inliers
are removed before next RANSAC iteration. This iterative RANSAC procedure
can be replaced by J-linkage [21] if needed.

Then a set of planes, Πk→k−1 = {π̃ki , i ∈ I} is initially constructed from
{Φk}. We use I to denote the index set for planes, and i ∈ I is the i-th plane.
For each extracted plane π̃ki , we denote its corresponding MV set as Ck→k−1π,i .

Thus,
⋃
i∈I
Ck→k−1π,i ⊆ Ck→k−1 \ Ck→k−1∞ . To perform tracking and improve plane

estimation, all planes need to be labeled as either stationary or moving. With
the MB labeling result Ck→k−1s and Ck→k−1d , the plane labeling is determined by
the result of a majority voting of labeled MBs:

Definition 2 (Plane Labeling) A plane π̃ki ∈ Πk→k−1 and its correspond-
ing MV set Ck→k−1π,i are labeled as stationary π̃ki,s and Ck→k−1π,i,s , respectively, if

|Ck→k−1π,i

⋂
Ck→k−1s | > |Ck→k−1π,i

⋂
Ck→k−1d |. Otherwise, they are labeled as moving

objects, π̃ki,d and Ck→k−1π,i,d , respectively.

After the labeling step, the set of all planes Πk→k−1 is partitioned into

Πk→k−1 = Πk→k−1
s

⋃
Πk→k−1
d , (8)

where Πk→k−1
s = {π̃ki,s} is the set of stationary planes and Πk→k−1

d = {π̃ki,d}
denotes the set of moving planes.

4.4 Plane Re-estimation and Observation Extraction

With the labeled planes, we can refine all estimations and prepare observations
for EKFs. We start with the stationary scene and the camera motion. For a
stationary plane π̃ki,s, the correspondences xk−1 ↔ xck ∈ C

k→k−1
π,i,s conform to

homography relation:

xk−1 = Hk→k−1
i xck = K(Rk→k−1)−1[I3×3 + tk→k−1(π̃ki,s)

T]K−1xck, (9)

where Hk→k−1
i is the homography matrix introduced by the plane, I3×3 is a

3-dimensional identity matrix. Therefore, for the stationary scene, the observa-
tions of relative camera motion and stationary plane equations can be estimated
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by minimizing the total errors of fundamental relationship in all stationary cor-
respondences and homography relationship in all planar correspondences:

min
Rk→k−1,tk→k−1,π̃ki,s∈Π

k→k−1
s

∑
xk−1↔xck∈C

k→k−1
s

εF (xk−1,x
c
k, F

k→k−1)

+
∑
i

∑
xk−1↔xck∈C

k→k−1
π,i,s

εH(xk−1,x
c
k, H

k→k−1
i ) (10)

where F k→k−1 and Hk→k−1
i are from (4) and (9), respectively. The resulting

optimal Rk→k−1, tk→k−1 and π̃ki,s’s are inputs to the stationary EKF in the
next section.

For a moving plane π̃ki,d, denote its translation as td. If we back shift the
plane by −td, then a homography relationship can be established for xk−1 ↔
xck ∈ C

k→k−1
π,i,d ,

Hk→k−1
i = K(Rk→k−1)−1[I3×3 + (tk→k−1 − tk→k−1i,d )(π̃ki,d)

T]K−1, (11)

Therefore, a moving plane is estimated by minimizing the following,

min
π̃ki,d,t

k→k−1
i,d

∑
xk−1↔xck∈C

k→k−1
π,i,d

εH(xk−1,x
c
k, H

k→k−1
i ) (12)

where Hk→k−1
i is from (11) with the estimated camera motion from (10). The

resulting optimal plane equations and translations are inputs to the individual
moving object filters later.

5 EKF-based Localization and Tracking

With the planes and camera motions extracted for adjacent key frame pairs,
we can feed them as observations to EKFs for global robot localization, sta-
tionary plane mapping, and moving object tracking. As Fig. 1 shows, the robot
localization and stationary plane mapping are handled by one single EKF below.

Camera Localization and Static Scene Mapping: Based on stationary
planes, this part is similar to the traditional visual SLAM problem. Following
an EKF framework, we define the state vector µk for the EKF filter as follows:

µs,k = [..., π̃T
i,s,k, ..., r

T
k , t

T
k , ṙ

T
k , ṫ

T
k ]T, (13)

which includes the plane equations in {W}, the y-x-z Euler angles rk for camera
rotation from {W} to {Φk}, the camera location tk in {W}, camera motion
velocity ṫk in {W}, and the angular velocity of the camera ṙk in {Φk}. Since
stationary planes are segmented as observations, the problem is reduced to the
same problem in [15]. We can employ the same EKF design in [15].

Moving Object Tracking: Similarly, this step is also handled using EKF
(the bottom part of Fig. 1). Moving objects are considered to move indepen-
dently w.r.t to the camera and each other. We employ one EKF to track each
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moving object individually. In each EKF, one global plane equation and one
velocity vector are tracked. Here, we assume the motion of moving plane follows
a constant linear velocity in {W} without rotation, which is usually true for
pedestrians or vehicles appearing in the camera view for a short period of time.
The state vector for a single moving plane filter becomes

µi,d,k = [π̃T
i,d,k,v

T
i,d,k]T, (14)

where vi,d,k is the velocity of the i-th object in {W}. The state transition for
the moving object i is straightforward:{

π̃i,d,k = π̃i,d,k−1/(1− π̃T
i,d,k−1vi,d,k−1τ)

vi,d,k = vi,d,k−1
, (15)

where τ is the time interval. The observations for the moving object filters are the
estimated plane equations in {Φk}, and the observation function is the transform
between coordinate systems given the camera rotation and translation:

zi,d,k = [(π̃ki,d)
T, (tk→k−1i,d )T]T =

[
R(rk)−1π̃i,d,k/(1 + π̃T

i,d,ktk)
−τR(rk)−1vi,d,k

]
. (16)

Plane Management: Apart from removal of planes that are no longer in
the sight from the corresponding EKFs, plane labels are not permanent as a
moving object may come to a stop or a parked vehicle may start moving. Since
each plane has a stationary/moving label, plane label exchange happens when
the label of an existing plane is not consistent with the outcome of the EKF. A
moving plane’s label will also be changed to stationary if its velocity is close to
zero. When a plane changes its label, the corresponding state variables are moved
from previous EKF filter to the EKF corresponding to the new label, with an
initialized velocity if necessary. For each newly discovered plane, its parameters
are added into the corresponding EKF according to its label.

6 Experiments

We have implemented the proposed system using C/C++ in Cygwin environ-
ment under Microsoft Windows 7. To test the performance of the method, eval-
uation is conducted in the following three aspects: the localization error, the
stationary plane estimation error, and the detection of moving planes.

6.1 Localization Evaluation

Dataset: We perform the evaluation using the Màlaga urban dataset [2]
which provides stereo videos from vehicle driving in a dense urban area. The
video frame rate is 20 fps. Images with a resolution of 1024 × 768 are rectified
and the intrinsic camera matrix after rectification is provided. Ground truth
data are collected using multiple sensors including GPS, IMU, and laser range
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finder. Since we assume the scene is quasi-rectilinear with many static planes,
two typical urban scenes from the data set are used in the experiment. Since
our method is monocular, we only use the images from the left camera in the
dataset. Sample thumbnails of frames in the experiment are shown in Fig. 3.
The lengths (i.e. travel distance) of the two sequences are provided in Tab. 1.
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Fig. 3. Trajectories and sample frame thumbnails. (a) and (c) are the camera trajecto-
ries in the two sequences, measured in meters. Black lines are the GPS ground truth,
red solid lines are the estimated trajectories using our method and the blue dashed
lines are trajectories estimated using [4]. (b) and (d) are the sample image frames in
the two sequences.

Metric: The localization result is compared with GPS data. The GPS data
is sampled once per second, and the image time stamps are aligned according
to the GPS clock. The errors are measured using the absolute trajectory error
(ATE) [4]. We define the GPS coordinate system by {G} and the camera position

in {G} as t̂
G

k . For the estimated camera position tk in {W}, a similarity transfor-
mation (rotation RW→G, translation tW→G and scale s) is applied to transform
the position to the GPS coordinate tGk = sRW→Gtk + tW→G. The rotation,
translation and scale are obtained via a non-linear optimization that minimizes

the total error between the GPS data t̂
G

k and the transformed estimation result

tGk . Therefore, the ATE for a frame k is defined as ek = ‖tGk − t̂
G

k ‖.
Comparison: We compare our result with the popular 1-Point EKF [4] since

both methods are EKF-based. The 1-point EKF [4] approach uses feature points
as landmarks. Their system is tested under long distance trajectories with robust
performance. The code for 1-Point EKF is acquired from the authors’ website
and is directly run in Matlab on our testing dataset. Tab. 1 shows the mean
and maximum ATE for each sequence for both methods. The results show that
the mean ATEs of our method are below 3.5 meters for both sequences and are
below 3% of the overall trajectory length, which is comparable to [4]. In the
first sequence, the vehicle travels on a mostly straight road, with occasional lane
changes. In this case, our method and [4] perform similar, with [4] slightly better.
In the second sequence, the vehicle starts from straight driving and experiences
curved road later. In this case, our method outperforms [4] over 5 meters in
average. This experiment confirms that MV-based featureless navigation method
is feasible.
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Table 1. Localization Results using the Màlaga Dataset

seq 1
length (m) #frames method mean ATE max ATE % over distance

201.08 497
Our method 2.87m 6.33m 1.43%
1-Point EKF 1.99m 3.67m 0.99%

seq 2
length (m) #frames method mean ATE max ATE % over distance

133.76 318
Our method 3.38m 4.99m 2.53%
1-Point EKF 9.08m 12.30m 6.80%

6.2 Stationary Plane Estimation

To evaluate plane mapping accuracy, we compare our method with our previous
work [15] which is referred as SLAPSE method since it only performs localiza-
tion and plane mapping without ability of tracking moving objects. We use the
dataset from [15] for comparison where ground truth is computed by points mea-
sured using a laser distance measurer with ±1 mm accuracy. The reason that we
do not use the Màlaga urban dataset here is because there is no ground truth
data for planes. Similar to [15], we only consider the planes that appear in more
than 3 continuous frames. The same error functions in [15] for plane depth and
angles are used:

εd =
1∑
iNi

∑
i

∑
k

|dki,k − d̂ki,k|, and εn =
1∑
iNi

∑
i

∑
k

| arccos((nki,k)T · n̂ki,k)|,

(17)
where Ni is the number of frames plane i appears, andˆstands for the ground
truth. The number of planes extracted in the site and the estimation errors
are shown in Tab. 2. The comparison results show our method improves the
estimation of scene planes in both depth and orientation accuracy.

Table 2. Static Plane Estimation Results

method # planes εd (m) εn (degs.)

Our method 5 0.55 6.80

SLAPSE 5 0.61 7.07

6.3 Moving Object Detection

To evaluate the performance of moving object detection, the test is focused on
the plane labeling algorithm as the EKF-based tracking performance is deter-
mined by the labeling correctness. A dataset of 64 video clips are manually
collected from the Internet, such as YouTube. All video clips are recorded by
cameras mounted on vehicles driving in urban environments. The frame rates
vary between 23 and 30 fps, and the image resolution is between 640× 360 and
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Fig. 4. Detected moving objects are highlighted with red rectangles.

1024×768. From all videos, there are a total of 88 moving vehicles that are man-
ually identified, and their bounding box in each frame in annotated as ground
truth. Note that the vehicles parking at red light or curbside are not labeled as
moving objects, and the vehicles that are very far are not labeled because they
are not objects of interest for collision avoidance.

Then the plane extraction and labeling method in Sec. 4 is applied to ex-
tract stationary and moving planes. Among 88 labeled moving objects, 85 are
detected and labeled as moving planes, and the detection rate is 96.6%. Among
the 3 failure cases, 2 cases are caused by lack of correct MVs on the vehicles.
This situation happens when the vehicle is too texture-less and has a color either
similar to the ground or with large saturation. Another 1 case happens because
the vehicle is relatively stationary to the camera, thus the MVs on it are not dis-
tinguishable from those on the infinite plane. The right most vehicle in Fig. 2(b)
shows an example of this situation. Actually, due to the zero relative speed, that
vehicle is not a concern for collision avoidance purpose.

Fig. 4 shows some examples of the detected moving planes in a bounding
box. The detection of moving object helps to separate outliers and wrong MVs
that influence the static localization and mapping results.

7 Conclusion and Future Work

We presented a new algorithm that is capable of performing SLAM task and ob-
stacle tracking using MVs as inputs. This algorithm simultaneously localizes the
robot, establishes scene understanding through planar surface extraction, and
tracks moving objects. To achieve this, we first extracted planes from MVs and
their corresponding pixel MBs. We labeled MBs as either stationary or moving
using geometric constraints and properties of plane-induced homographies. Simi-
larly, planes were also labeled as either stationary or moving using an MB voting
process. This allows us to establish planes as observations for extended Kalman
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filters (EKFs) for both stationary scene mapping and moving object tracking.
We implemented the proposed method and compared it with the state-of-the-
art 1-point EKF. The results showed that the proposed method achieved similar
localization accuracy. However, our method can directly provide plane-based rec-
tilinear scene structure, which is a higher level of scene understanding, and is
capable of detection moving obstacles at a true positive rate of 96.6%.

In the future, we plan to adopt a local bundle adjustment approach to further
improve localization accuracy. We will combine MVs with appearance data to
establish higher level scene mapping. Fusing with other sensors such as depth or
inertial sensors is also under consideration.
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