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Abstract— Unlike the traditional feature-based methods, we
propose using motion vectors (MVs) from video streams as
inputs for visual navigation. Although MVs are very noisy and
with low spatial resolution, MVs do possess high temporal reso-
lution which means it is possible to merge MVs from different
frames to improve signal quality. Homography filtering and
MV thresholding are proposed to further improve MV quality
so that we can establish plane observations from MVs. We
propose an extended Kalman filter (EKF) based approach to
simultaneously track robot motion and planes. We formally
model error propagation of MVs and derive variance of the
merged MVs. We have implemented the proposed method and
tested it in physical experiments. Results show that the system
is capable of performing robot localization and plane mapping
with a relative trajectory error of less than 5.1%.

I. INTRODUCTION

Many visual navigation approaches rely on correspon-
dence of features between individual images to establish
geometric understandings of image data. To do that, im-
age data are often first reduced to a feature set such as
points. Then extensive statistical approaches such as random
sample consensus (RANSAC) are employed to search for
feature matches that satisfy the expected geometry rela-
tionships. Such geometric relationships enable us to derive
robot/camera ego-motion estimation or scene understandings
in different applications such as visual odometry or simul-
taneous localization and mapping (SLAM) [1]. The inherent
drawback of these approaches is the expensive computation
load and robustness of feature extraction, which is often
hindered by varying lighting conditions and occlusions.

On the other hand, recent streaming videos are transmitted
after complex compression. These algorithms exploit sim-
ilarities between blocks of pixels in adjacent frame sets,
which are characterized as motion vectors (MVs), to reduce
bandwidth needs (Fig. 1(a)). Compared with optical flows,
MVs have lower spatial resolution (per block vs. per pixel)
but higher temporal resolution because MVs are extracted
from multiple frames instead of mere two adjacent frames.
MVs carry the correspondence information and are readily
available from the encoded video data.

Despite all the aforementioned advantages, MVs are not
easy to use because of their low spatial resolution and
relatively high noise. Here we explore how to use MVs
for simultaneous localization and planar surface extraction
(SLAPSE) for a mobile robot equipped with a single camera.
We establish the MV noise models to capture the observation
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Fig. 1. (a) Original MVs represented by red arrows. (b) Filtered MVs
represented by blue arrows. (c) Satellite image of an experiment site. Black
line is manually measured ground truth camera trajectory, red line is the
estimated trajectory. (d) Estimated plane positions and camera trajectory.

error. We formulate the SLAPSE problem and study how to
extract planes from MVs using planar homography filtering.
We then develop an extended Kalman filter (EKF) based
approach with planes and robot motion as state variables.
We have implemented our algorithm using C/C++ on a PC
platform and tested the algorithm in physical experiments.
The results show that the system is capable of performing
robot localization and plane mapping with a relative trajec-
tory error of less than 5.1%.

II. RELATED WORK

SLAPSE relates to visual navigation for mobile robots,
MPEG compression, and dense 3D reconstruction.

SLAPSE can be viewed as visual SLAM with special
observation inputs. In a regular SLAM framework, the
physical world is represented by a collection of landmarks
which are primarily features observed from images, such
as key points [2]–[5], line segments [6]–[11], curves [12],
and surfaces [13]. In these feature-based approaches, SLAM
performance is largely dependent of feature distributions and
correspondences. Building on these approaches, our SLAPSE
takes advantage of the fact that MVs encode correspondences
of segmented scene by overcoming the noise in the MV data.

Many efforts have been made to improve the accuracy and
speed of MV computation in MPEG encoding. However, few
studies have been conducted on utilizing MVs in complex
vision problems. The main reason is because MVs are very
noisy and have spatially low resolution. MVs have been



applied in fast image-based camera rotation estimation [14],
2D object tracking [15], and image stabilization [16]. All of
these approaches employ voting or averaging like strategies
with region-based smoothing to obtain either foreground or
background information separately. SLAPSE problems need
to recover both the scene structure and the robot motion
which require MVs with much less errors. We merge MVs
across multiple adjacent frames to improve the signal to noise
ratio, analyze errors on merged MVs, and utilize geometry
relationship for better noise filtering.

MVs directly provide correspondences between pixel
blocks. Once planes are identified through MVs, their corre-
sponding pixel blocks are subsequently reconstructed in 3D.
This is close to feature-based dense reconstruction, which
usually requires precise dense correspondence between im-
ages. Recent dense reconstruction approaches start with a
sparse set of salient points, and construct dense surfaces
using photoconsistency and geometrical constraints [17].
More relevant works [18] utilize variational optical flow [19]
to establish dense surface meshes from point clouds. These
works inspire us to use MVs in scene mapping.

Our group focuses on developing monocular visual nav-
igation techniques for energy and computation constrained
robots. Using a vector-field approach [20], we develop a
lightweight visual navigation algorithm for an autonomous
motorcycle. We also have attempted different features for
visual odometry such as vertical line segments [21] and
high level features [22], [23] to improve robustness. Through
the process, we have learned shortcomings of feature-based
approaches, which has motivated this work.

III. BACKGROUND AND PROBLEM DEFINITION

A. A Brief Introduction to Motion Vectors
Video encoders such as MPEG 1/2/4 often utilize block

motion compensation (BMC) to achieve better data com-
pression. BMC partitions each frame into small macroblocks
(MB) (e.g. each MB is 16× 16 pixels for MPEG 2). During
encoding, block matching is employed to search for similar
MBs in anchor frames. If a matching block is found, an MV
is established as a 2D shift in the image frame.
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Fig. 2. (a) GOP structure for an MPEG 2 video stream. Note that the arrows
on top of the frames refer to reference relationship in computing MVs. (b)
MVs between adjacent I and P frames can be obtained either directly (e.g.
red dotted lines) or indirectly through B frames (e.g. blue dashed lines). (c)
Sample MVs overlaid on top of their video frame.

We use MPEG 2 as an example, and our analysis can
be easily extended to other BMC-based encoding formats.

There are often three types of frames (or slices of a frame):
intra-coded, predictive-coded, and bidirectionally predictive-
coded, namely, I, P, and B frames, respectively. P and B
frames consist of MBs defined by MVs pointing to their
anchor frames. I and P frames are used as anchor frames
for block matching. As illustrated in Fig. 2(a), a P frame is
always predicted from the closest previous P or I frame and
each MB has only one MV referring to the past. To achieve
more compression, B frames utilize the closest P or I frames
from both the past and the future as anchor frames. Each MB
in B frame has up to two MVs point to both future and past
anchor frames. The frame sequencing structure is referred to
as group of pictures (GOP) in the MPEG protocols. In more
advanced video format (e.g. MPEG 4), an MB can have as
many as 16 MVs pointing to many reference frames.

B. Modeling Noise in Motion Vectors

If an MB centered at (ui, vi) in frame i finds the cor-
responding position (uj , vj) in the anchor frame j through
block matching algorithm (BMA), then the resulting l-th MV
can be defined as

mi→j
l (ui, vi) =

[
∆u

∆v

]
=

[
uj − ui
vj − vi

]
, (1)

where u and v are frame coordinates. For simplicity, we
sometimes use mi→j

l to represent an MV between the two
frames. An MB may contain many MVs. Some of them
originate from the center of the MB and others may not (e.g.
the reverse MV of mi→j

l (ui, vi) is not necessarily located at
the center of an MB in frame j).

Although containing image correspondence information,
MVs are difficult to use due to noise introduced by BMA,
which searches the most similar block in a given range.
When video frames contain repetitive patterns, false matches
can occur. This is not a problem for video compression but
presents a huge challenge to scene understandings. Some-
times, occlusions and scene changes may cause BMA to fail
to find a matching. Say that BMA finds the correct matching
with probability p, which is defined as event EM . It is worth
noting that p is also often affected by camera moving speed.
To avoid that, we can set frame rate proportional to the
moving speed to reduce the variation in p. As observed from
data, a regular street driving in urban area often has p > 0.6.

Even when a correct matching is found, BMA still has
limited accuracy. MPEG 2 and 4 warrant 0.5 and 0.25 pixel
accuracy, respectively. When the correct matching is found,
this error ei→jl = mi→j

l − m̄i→j
l can be modeled as a 2D

zero mean Gaussian

ei→jl |EM ∼ N(02×1,Σ), (2)

where term ·|EM indicates that this is a conditional distribu-
tion, m̄i→j

l is the true mean of the MV, and covariance matrix
Σ = diag{σ2, σ2} is a diagonal matrix. We set σ = 0.25
to conservatively capture the 0.5 pixel accuracy for MPEG
2. This accuracy level is sufficient for video presentation.
However, due to the small time difference in adjacent frames,
the motion parallax can be as small as 2-4 pixels, which leads



to large relative error. Compounded with false matches, MVs
are too noisy to be directly used for scene understanding.

C. Problem Formulation

To formulate SLAPSE problem, we assume that the in-
trinsic matrix of the camera is known as K through pre-
calibration and the scene is dominated by planes, such as
building facade and paved roads. Thus, the understanding of
scene structure relies on estimating 3D planes. Here all the
3D coordinate systems are right hand systems. Let us define

• {Ck} as the 3D camera coordinate system (CCS) in
frame k. For each CCS, its origin locates at the camera
optical center, z-axis coincides with the optical axis and
points to the forward direction of the camera, its x-axis
and y-axis are parallel to the horizontal and vertical
directions of the CCD sensor plane, respectively,

• Rk and tk as the rotation and translation of {Ck} w.r.t.
frame {Ck−1},

• πi,k = [nT
i,k, di,k]T is the i-th 3D plane in {Ck}, where

ni,k is the plane normal and di,k is the plane depth, and
• π̃i,k = ni,k/di,k as the inhomogeneous form of a plane.

Therefore, the problem is defined as below:
Definition 1: Given the set of MVs up to time/frame k,

{mi→j
l |i, j ≤ k}, extract planes, estimate plane equations

and camera pose Rk and tk in each frame.
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Fig. 3. System diagrams: (a) Overall SLAPSE diagram based on EKF. (b)
A blowup view of plane extraction.

The SLAPSE problem can be solved using an EKF-based
filtering approach as shown in Fig. 3(a). The system takes
MVs as the input, and tracks the 3D configuration of planes
and camera poses. A key issue of the procedure is how to
extract planes from MVs (see Fig. 3(b)). Let us start with
the planar surface extraction.

V. PLANAR SURFACE EXTRACTION

Planes are identified through MVs. Given that MVs may
have multiple reference frames, we need to merge them
to facilitate the plane extraction. Moreover, it is necessary
to understand how errors in MVs are accumulated and
propagated in the MV merging process.
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Fig. 4. MVs in B frames are merged into the nearest P and I frames.
Arrows indicate the MV referencing directions. (a) A sample GOP. (b) The
GOP can be decomposed into IP, PP and PI types.

A. Motion Vector Merging

According to the noise model in Section III-B, an MV
represents correct MB correspondence between the current
B or P frame and its reference frame with probability p.
We name MVs with correct correspondence as in-line MVs
(IMVs). From scene understanding point of view, IMVs have
limited spatial resolution and relatively high noise. However,
IMV set is actually temporally abundant. The adjacent frames
differ by 1/30 or 1/25 seconds. If done properly, we can
utilize IMV’s temporal abundance to further reduce noise
level. Since IMV accuracy determines the accuracy of scene
structure, it is important to monitor the IMV variance level.
Therefore, the subsequent questions are 1) what is the
probability that the IMVs exist across multiple frames and
2) how accurate are these IMVs.

We begin with question 1). For a sample GOP in Fig. 4(a),
we can draw the MV reference relationship in Fig. 4(b).
Interestingly, the continuous frame sequence can be broken
into segments with each segment beginning with an I/P frame
and ending with the nearest subsequent I/P frame. Segments
overlap by sharing common I or P frames. Let nB be the
number of B frames in each segment. nB = 3 in Fig. 4.
Utilizing these natural segments, we check IMV existence
every nB + 1 frames as defined by each segment. There are
three types of segments according to beginning/ending frame
types: IP, PP, and PI. IP and PP share a similar structure: a
direct reference between the two and nB indirect references
from B frames. PI pairs do not have the direct reference
because I frames are not constructed from MBs. Define
events EIP, EPP, and EPI for the existence of IMV for an
MB across the nearest IP, PP, and PI frames, respectively.
We have the following lemma.

Lemma 1: For an MB, the probability of existing at least
one IMV across the nearest I/P frame pair is,

P (EIP) = P (EPP) = 1− (1− p)(1− p2)nB , (3)

P (EPI) = 1− (1− p2)nB . (4)
The proof is elaborated in the online technical report [24].

Lemma 1 indicates that using B frames can increase the
probability of IMV existence. In fact, we often have more
than one IMV for each MB. Let us define frame index (also
used as time index) variable k and k+1 corresponding to an
adjacent P/I pair in a segment (see Fig. 4(b)). Define set LIMV

as the set of IMVs for the MB. We know that IMVs are from



two sources: the direct reference between I or P frames and
indirect references from B frames. The error in the former
follows N(02×1,Σ) in (2) whereas the error in the latter is
the summation of two independent 2D Gaussian in (2) and
hence follows N(02×1, 2Σ). We define event ED if there
exists a correct direct reference and d as the index for the
MV. For each MB, we aggregate MVs at I or P frames by
minimizing the Mahalanobis distance,

mk+1→k
l |ED =

√
2mk+1→k

d +
∑
η∈LIMV,η 6=dm

k+1→k
η√

2 + |LIMV| − 1
,

(5)

mk+1→k
l |ED =

1

|LIMV|
∑

η∈LIMV

mk+1→k
η . (6)

The aggregation results in the following error distribution:
Lemma 2: The error ek+1→k

l = mk+1→k
l − m̄k+1→k

l of
the resulting MV is distributed with zero mean:

ek+1→k
l |E∗ ∼ N(02×1,Σ∗|E∗), (7)

where condition ‘∗’ represents IP, PP, and PI pairs, and three
conditional covariance matrices are:

ΣPI|EPI =

[
nB∑
i=1

2

i

(
nB

i

)
p2i(1− p2)nB−i−1

1− (1− p2)nB

]
Σ, (8)

ΣIP|EIP = ΣPP|EPP = (1− p)ΣPI|EPI

+p

[
nB∑
i=0

2 + i

(i+
√
2)2

(
nB

i

)
p2i(1− p2)nB−i

]
Σ. (9)

The proof is elaborated in the online technical report [24].
Remark 1: Actually, both (8) and (9) are decreasing func-

tions of nB. This means that merging MVs from B frames
into the nearest I/P frames reduces error variance. This
process allows us to exchange the redundant temporary
resolution to better spatial resolution.

This allows us to obtain a set of merged MVs, denoted
as Mk+1→k = {mk+1→k}, for each adjacent frames k + 1
and k. Lemmas 1 and 2 ensure IMV existence and derive
the corresponding error. A merged MV mk+1→k provides a
correspondence relationship between an MB in k+ 1 and an
MB in k which leads to correspondence extraction step.

B. Correspondence Extraction and MV Thresholding

Define xk to be the homogeneous form of a point in image
k. We represent the motion correspondence by a point pair:

xk = xck+1 +

[
mk+1→k

0

]
, (10)

where xck+1 is the center of mk+1→k’s MB in k + 1, and
xk is its corresponding position in frame k. Therefore, a set
of correspondences between frame k and k + 1 is obtained:

Ck+1→k ={xk ↔ xck+1 : mk+1→k ∈Mk+1→k}. (11)

To reduce the influence of MV noise in plane estimation,
we only consider planes with sufficient motion parallax. This
is handled by eliminating MVs belonging to the plane at
infinity which is defined as π∞. According to [25], points

in π∞ remain still during camera translation, therefore, they
can be detected if the camera rotation is eliminated.

For a pair of adjacent frames k and k+1, their fundamen-
tal matrix is first estimated using correspondence Ck+1→k.
Camera rotation and translation are then decomposed using
[26]. We re-project all xk’s to frame k + 1 using only the
rotation matrix, which results in a set of points x′k+1.

x′k+1 = sK(kk+1R)−1K−1xk, (12)

where s is a scalar, and (kk+1R) is the matrix that rotates
{Ck} to {Ck+1} according to the convention used in [27].

The distance between x′k+1 and xck+1 is calculated, and
the MV is considered in π∞ if the distance is below a
threshold εm. Denote the correspondence set for π∞ as

Ck+1→k
∞ ={xk ↔ xck+1 : ‖x′k+1 − xck+1‖ < εm}, (13)

where subscript ∞ means it corresponds to the plane at
infinity and ‖ · ‖ represents the L2 norm. Hence the set of
correspondences is further reduced to Ck+1→k

m = Ck+1→k \
Ck+1→k
∞ , where subscript m means the thresholded corre-

spondence set with sufficient motion parallax.

C. Homography Fitting

With the correspondence set extracted, plane extraction
can be performed by verifying the homography relationship.
The extraction of planes also helps filter IMVs from the
correspondence set. Consider two adjacent frames (IP, PP
or PI) after MV merging and thresholding (Fig. 3(b)). We
have the correspondence set Ck+1→k

m . We apply RANSAC
framework to extract 2D planes and IMVs. RANSAC first
samples a minimum set of correspondences to obtain a
homography that represents the coplanar relationship

xk = λHxck+1, (14)

where H is a 3× 3 matrix and λ is a scalar.
Each correspondence provides two equations to (14). Since

a homography H has at most 8 degrees of freedom (DoFs),
only four correspondences are needed to determine a minimal
solution. A normalized direct linear transformation can be
applied to obtain an initial H (pg. 109 of [25]). Then, a
correspondence resulting in an error below a given threshold:

‖xk − λHxck+1‖ < εh, (15)

is labeled as an inlier to the plane.
To extract multiple planes, RANSAC is applied iteratively

until it reaches a given maximum iteration number or there
are not enough unlabeled correspondences to form a mini-
mum solution. Denote the correspondence set Ck+1→k

π,i for
plane πi (defined by homography Hi) as

Ck+1→k
π,i ={xk ↔ xck+1 : ‖xk − λHix

c
k+1‖ < εh}. (16)

Hence we obtain a set of Nk+1 planes with correspondences
{Ck+1→k
π,1 , ..., Ck+1→k

π,Nk+1
} from frame k and k + 1.

Note, if a set of planes with correspondences
{Ck→k−1
π,1 , ..., Ck→k−1

π,Nk
} have been extracted between

frames k − 1 and k, we first run RANSAC to sample the



minimum solutions only from MBs of existing planes.
Thus every existing plane πi has a chance to find its
corresponding plane correspondence set Ck+1→k

π,i in frame
k + 1. Then a regular RANSAC is applied to the remaining
correspondences to discover new planes.

VI. PLANE TRACKING WITH EKF

With planes extracted, we can feed them as observations to
an EKF framework to estimate the global plane equations and
camera poses. An EKF filtering approach usually consists of
prediction and update steps.

A. EKF Prediction

In the state space description, let state vector µk be
consisted of plane equations in inhomogeneous form, camera
rotation angles and angular velocity, and camera translation
and its velocity in frame k,

µk = [π̃T
1,k, ..., π̃

T
Nk,k

, rTk , t
T
k , ṙ

T
k , ṫ

T

k ]T, (17)

where r = [α, β, γ]T is the Euler rotation angles in X ′Y ′Z ′

order, t = [tx, ty, tz]
T is the camera translation w.r.t. pre-

vious frame, and ṫ is translation velocity in current frame.
Denote Euler rotation matrix R̄k = R(τ ṙk) in Y ′X ′Z ′ order.
The state transition of the ith plane equation is

π̃i,k+1 =
R̄T
k π̃i,k

τ ṫ
T

k R̄
T
k π̃i,k + 1

. (18)

We assume the camera follows constant angular velocity and
linear translation velocity. Hence the state transition is,{

rk+1 = τ ṙk, tk+1 = τ ṫk,
ṙk+1 = ṙk, ṫk+1 = R̄k ṫk.

B. EKF Update

To utilize rich information from MVs, we do not consider
simply making a direct observation of the plane equations.
Instead, we use the correspondence sets Ck→k−1

π,i ’s to update
the state vectors. For frame k, the observation of a plane
πi,k is a set of points {xk−1} from Ck→k−1

π,i . Define rotation
matrix Rk = R(rk) following the Y ′X ′Z ′ Euler form. The
observation model for plane πi,k takes the state vector µk
and an additional variable xck as input:

xk−1 = h(µk,x
c
k) = K[Rk − tkπ̃T

i,k]K−1xck, (19)

where K is the intrinsic matrix of the camera. The Jacobian
matrix is computed by taking partial derivatives on µk.

Lem. 2 in Sec. V-A provides the error model for the
merged MVs, and is applied in setting the noise covariance
for the EKF observation. Note that, since the camera rotation
and translation are involved in the observation model for each
plane, rk and tk are also updated with observations.

C. Deleting and Adding Planes

Similar to landmark management in SLAM, planes have
finite lifespan in the continuous video stream. We need
to handle the appearance and disappearance of planes (see
Fig. 3(a)). When transiting from frame k to k+1, if π̃i,k has

(a) εh = 1 (b) εh = 2 (c) εh = 2 (d) εh = 4

Fig. 5. Example of extracted planes. Dots with different colors indicate
different extracted planes. (a-b) show all planes extracted in the frame. (c-d)
show two incorrect extractions.

TABLE I
PLANE EXTRACT RESULTS W.R.T. εh

εh (pixel) 1 2 3 4
# extracted planes 101 183 174 215

TP rate (%) 91.09 83.61 73.56 72.09

TABLE II
SLAPSE RESULTS

Site D (m) εD(%) # planes εd (m) εn (degs.)
1 42.1 2.9 5 0.61 7.07
2 37.5 5.1 4 0.65 3.26

corresponding set Ck+1→k
π,i = ∅ in frame k + 1, then π̃i,k+1

in the state vector and its corresponding dimensions in the
state covariance matrix are deleted, before EKF update.

After EKF update in frame k, if a new plane is discov-
ered in frame k, its initialized plane equation and variance
are added to the state vector and state covariance matrix.
Moreover, since the filter formulation relies purely on planes
in EKF updating step, the update is skipped if there are no
planes in current state vector. This is not an issue as long as
building facades are in the field of view.

VII. EXPERIMENTS

The proposed method is implemented in C/C++ on a
desktop PC. Videos and images are acquired with Casio Ex-
ZR200 and Panasonic DMC-ZS3 cameras, with a resolution
of 640×480 pixel captured at 30 frames per second. Cameras
travel in an urban area at a speed between 25 and 50 kph.

A. Plane Extraction

To evaluate the performance of plane extraction, 7 videos
of different scenes in MPEG-2 format have been acquired.
We sample 50 pairs of adjacent frames from the videos, and
manually label planes in images as ground truth. As the error
threshold of RANSAC changes, the number of extracted
planes and the true positive (TP) rates vary. Tab. I shows
how the plane extraction result is influenced by εh. Note that
we restrict the minimum size of an extracted plane to be 20
MBs. Fig. 5 shows four example frames. Dots in the same
color indicate an extracted plane. It is clear that the algorithm
is able to extract primary planes. However, it may miss some
reflective glass/mirror surfaces, such as the leftmost wall in
Fig. 5(b), and texture-less surfaces such as the ground. Some
false extractions, such as Fig. 5(c), claim trees as a plane due
to far depth. In fact, Fig. 5(d) shows the necessity of MV
thresholding with π∞ (Sec. V-B), because far field objects
tend to mix together when εh is not tight enough.

B. SLAPSE Results

To evaluate overall system performance, we perform field
tests in two sites. Ground truth is manually acquired with



meters and Bosch ZLR225 laser distance measurer with an
accuracy of ±1.5 mm. The 3D estimation is up to scale
of the initial camera translation. Sample results from the
first site are shown in Fig. 1. It is clear that the system
is able to extract dominant planes in the scene. We project
the camera trajectories to {C0} and scale the results by
the camera translation in the first step. Comparison with
manually measured ground truth is showed in Tab. II. We
denote D as the total traveled distance in each site, and a ˆ
on a variable stands for the ground truth value. Denote t0→k

as the estimated camera translation from frame 0 to k. The
mean relative error of camera location is defined as: εD =
1
NΣk

‖t0→k−t̂0→k‖
‖t̂0→k‖

, where N is the total number of tracked
frames. We evaluate the estimated building facades and road
segments which appear in the camera scene for at least half
a second. The number of evaluated planes in each site are
shown in Tab. II. Define the mean absolute error of plane
depth εd and plane orientation εn as εd = 1

ΣiNi
ΣiΣk|di,k −

d̂i,k|, and εn = 1
ΣiNi

ΣiΣk| arccos(nT
i,k · n̂i,k)|, where Ni

is the number of frames plane i appears. Tab. II shows the
mean errors for each site, where the depth errors are less
than 0.65 meters and orientation errors are less than 7.07◦.

VIII. CONCLUSIONS AND FUTURE WORK

We explored how to use MVs from video streams for
SLAPSE for a mobile robot equipped with a single camera.
Using MVs in the MPEG-2 protocol as an example, we
established the MV noise models to capture the observation
error. We formulated the SLAPSE problem and studied
how to extract planes from MVs using planar homography
filtering. We then developed an extended Kalman filter (EKF)
based approach with planes and robot motion as state vari-
ables. We implemented our algorithm using C/C++ on a PC
platform, and tested the algorithm in physical experiments
in two sites. The results showed that the system is capable
of performing robot localization and plane mapping with a
relative trajectory error of less than 5.1%. In the future, we
plan to utilize the MVs in the plane at infinity for rotation
estimation. We can also detect moving obstacles by group
MVs with similar motion. Also, the MVs can be combined
with feature-based approaches and/or other sensors to form
hybrid methods.
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