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Abstract

We report a new filter for assisting the search for rare
bird species. Since a rare bird only appears in front of
the camera with very low occurrence (e.g. less than ten
times per year) for very short duration (e.g. less than a
fraction of a second), our algorithm must have very low
false negative rate. We verify the bird body axis infor-
mation with the known bird flying dynamics from the
short video segment. Since a regular extended Kalman
filter (EKF) cannot converge due to high measurement
error and limited data, we develop a novel Probable Ob-
servation Data Set (PODS)-based EKF method. The
new PODS-EKF searches the measurement error range
for all probable observation data that ensures the con-
vergence of the corresponding EKF in short time frame.
The algorithm has been extensively tested in experi-
ments. The results show that the algorithm achieves
95.0% area under ROC curve in physical experiment
with close to zero false negative rate.

Introduction
Our group focuses on developing autonomous observatories
to assist nature scientists to search rare birds. In our recent
project, a camera was installed in the middle of a forest in
Bayou DeView in eastern Arkansas, running 24 hours a day,
to assist the ornithologists to search for the thought-to-be-
extinct ivory-billed woodpecker (IBWO) (see Fig. 1).

Three critical conditions must be met for the searching
task. First, a rare bird only appears in front of the camera
with very low occurrence (e.g. less than ten times per year)
for very short duration (e.g. less than a fraction of a sec-
ond), our algorithm must have very low false negative rate.
Second, since the final verification has to be performed by
human experts, it is necessary to reduce the huge data vol-
ume to a manageable size, which also means that the filter
can tolerate a less ideal false positive rate. Third, the system
must be easy to setup in the forest. Due to power and com-
munication constraints, a single camera is preferred because
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Figure 1: An example of a short video sequence of a flying
bird that is captured in Bayou DeView in eastern Arkansas.
It superimposes the segmented bird images from consecutive
video frames on the top of the background frame.

it does not require the precise calibration and synchroniza-
tion as dislocated stereo rigs would for distant birds.

Fig. 1 shows the input of the problem is a short segmented
motion sequence of an object. The output of the problem is
to determine whether the motion sequence is caused by a
targeted bird species. We verify the bird body axis infor-
mation with the known bird flying dynamics. Since a reg-
ular extended Kalman filter (EKF) cannot converge due to
the high measurement error and the limited observation data
due to the high flying speed of the bird (e.g. the sample
bird sequence in Fig. 1 only contains seven data points), we
develop a probable observation data set (PODS)-based EKF
and an approximate computation scheme. The new PODS-
EKF searches the measurement error range for all probable
observation data that ensure the convergence of the corre-
sponding EKF. The filtering is based on whether the PODS
is non-empty and the corresponding velocity is within the
known bird flying velocity profile. We show that the PODS-
EKF theoretically ensures a zero false negative rate. We
have evaluated the filtering algorithm using both the sim-
ulated data and field test data.

Related Work
Animal detection and recognition using video images has
been a active research direction. Most of the existing ap-
proaches build appearance models of animals by silhou-
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Figure 2: An illustration of bird filtering. The motion se-
quence of the bird can be used to extract a set of moving
line segments that correspond to the body axis of the bird.
The segmentation error of the end of body axis is uniformed
distributed in theu-v image plane and can be represented as
an inverse pyramid when the error range is back-projected
from the camera center to the 3D space.

ette/contour (Sebastian, Klein, and Kimia 2004), 2D kine-
matic chains of rectangular segments (Ramanan, Forsyth,
and Barnard 2006) etc. A known set of animal images are
used to train and test the model using techniques such as
clustering (Ramanan, Forsyth, and Barnard 2006), template
matching (Sebastian, Klein, and Kimia 2004) etc. Different
from this class of techniques, a large learning set is unavail-
able for our applications such as detecting rare birds.

Periodic motion detection (Ran et al. 2007; Briassouli
and Ahuja 2007) assumes objects, such as animals, with pe-
riodic motion pattern and applies time-frequency analysis
(Briassouli and Ahuja 2007) or image sequence alignment
(Laptev et al. 2005) to capture the periodicity. Applications
of periodic motion detection have been found to vehicles,
humans, and even canines. However, recognizing birds is
different because a bird flying pattern combines both glid-
ing and wing-flapping and the periodic motion assumption
does not hold.

Recently, the 3D structure inference using monocular vi-
sion has drawn increasing research attention. Ribnick et al.
(Ribnick, Atev, and Papanikolopoulos 2009) propose an al-
gorithm for estimating the 3D parabolic trajectories of pro-
jectiles in monocular views. Saxena et al. (Saxena, Sun,
and Ng 2008) propose a learning algorithm that estimates
3D structures of a static scene based on a single still image.
The work models the scene with sets of planes using Markov
Random Field (MRF) and trains the model based on depth
cues such as texture variations & gradients, color, haze, and
defocus etc. Different from these works, our approach deals
with a highly dynamic object (i.e., the bird) and its trajectory
is not necessarily parabolic.

Visual tracking has been a active research area. Various
techniques have been proposed and a recent survey can be
found in (Yilmaz, Javed, and Shah 2006). The fundamen-
tal technique we used is the extended Kalman filer. (Ex-

tended) Kalman filter (Spinello, Triebel, and Siegwart 2008)
and their variations can be viewed as model-based filtering
methods that verify the prior known dynamic models of the
objects. It has seen a wide range of applications in object
tracking and recognition such as vehicles, pedestrians etc.
However, there is no existing work regarding how to detect
a flying bird. Most existing works assume rigid objects and
do not worry about the convergence of Kalman filter because
an ample amount of observation data is available. Unfor-
tunately, those conditions do not hold for the filtering of a
highly-dynamic and high-speed flying bird.

Our group has developed systems and algorithms (Song
2009; Song, van der Stappen, and Goldberg 2006; Song and
Goldberg 2007) for networked robotic cameras for a va-
riety of applications such as construction monitoring, dis-
tance learning, panorama construction, and nature observa-
tion. Our previous work (Song et al. 2008) details how to
build an autonomous nature observation system using mo-
tion detection. We learn that mere motion detection cannot
save the biologists from the herculean task of image sorting,
which inspires this work.

Problem Description
Our system is a monocular vision system with a narrow field
of view (FOV). The position of objects with respect to the
camera is based on a 3D Cartesian camera coordinate system
(CCS) with its origin at the camera center as shown in Fig. 2.
Thex-axis andy-axis of the CCS are parallel to theu-axis
and thev-axis of the image coordinate system, respectively.

From the knowledge provided by ornithologists, we know
that a flying bird is usually an adult bird. A bird does not
change its size once reaching its adulthood. Birds of the
same species share a similar size and flying speed range.
This biological information allows us to distinguish the tar-
geted species from other moving objects.

Assumptions
To establish the bird detection problem, we also have the
following assumptions,
• A fixed and pre-calibrated camera is used. With a cali-

brated camera and without loss of generality, we can al-
ways transform camera intrinsic parameter matrixKc to
diag(f, f, 1), wheref is the focal length of the camera in
units of pixel side length. ICS must have its origin located
on the principal axis (z axis) of CCS. Hence we have per-
spective project matrixPc = [Kc|03×1].

• There is only one bird in the image sequence. If there are
multiple birds in the scene, we assume each individual
bird sequence has been isolated out using multiple object
tracking techniques (Yilmaz, Javed, and Shah 2006).

• The bird is flying along a straight line with a constant
speed when captured by the camera. This assumption usu-
ally holds considering a fast flying bird can only stay in
the FOV for less than a second.

Inputs and Output
The input of the problem is a sequence ofn images which
contain a moving object of any type. Each frame is time-



stamped. Based on the information from ornithologists, we
know the body lengthlb and the flying speed rangeV =
[vmin, vmax] of the targeted bird species. The output is to
determine if the motion sequence is caused by the targeted
bird species or not.

Modeling a Flying Bird
To develop a bird filter, the key is to extract the bird fly-
ing dynamic information from the segmented bird motion
sequence and associate the information with the known fly-
ing models and the prior information regarding the targeted
species. As detailed in (Song et al. 2008), we segment the
moving object from its background and obtain a motion se-
quence. The most important bird flying information is the
body axis. Based on the information provided by ornithol-
ogists and our data, we know that a flying bird maintains
a fixed body length during flight and birds from the same
species share a similar size. Let us define the bird body line
segment in the image frame as

z = [uh, vh, ut, vt]T , (1)
where(uh, vh) is the head position and(ut, vt) is the tail
position. Fromz, we can compute the body axis orientation
θ = atan2(uh − ut, vh − vt), and the body axis lengthl =√
(uh − ut)2 + (vh − vt)2. Note thatl is different fromlb.

l is the projection oflb on the image plane and is in unit of
pixel. Since the bird body axis is almost parallel to the bird
flying trajectory as in Fig. 2, we can extract the bird body
axis using approaches such as Hough transform, detailed in
(Song et al. 2008).

To determine whether the motion information is caused
by the targeted species, we need to establish a bird flying
model in the image frame. Letp = [x, y, z]T denote the
head position of the bird body axis andv = [ẋ, ẏ, ż]T denote
its velocity in the CCS. Since the bird flies along a straight
line with a constant velocity, we have

ẋ = [ṗ, v̇]T = [ẋ, ẏ, ż, 0, 0, 0]T = [v,0]T , (2)
where the state variablex = [p,v]T ∈ R6 describes the
position and velocity of the bird head. Defineptail =
[xt, yt, zt]T as the position of the bird tail and we have
ptail = [x− ẋlb/‖v‖, y − ẏlb/‖v‖, z − żlb/‖v‖]

T
.

As illustrated in Fig. 2, the relationship between the mea-
surement dataz defined in (1) and the corresponding statex
can be described using the pin-hole camera model,

z =




fx/z
fy/z
fxt/zt

fyt/zt


 =




fx/z
fy/z

f x‖v‖−lbẋ

z‖v‖−lbż

f y‖v‖−lbẏ

z‖v‖−lbż


+w := h(x) +w,

(3)
whereh(·) is usually called measurement function andw
represents the measurement noise.

Probable Observation Data Set-based EKF
Extended Kalman Filter
The nonlinear dynamic system described by (3) captures the
prior known information regarding the targeted species. If

the motion is caused by the targeted species, then the bird
body axis information should follow the nonlinear dynamic
system described by (3), which can be validated using an
EKF to track the states of the moving object. Eqs. (2) and
(3) can be re-written in a discrete-time form,

x(k + 1) = A(k + 1)x(k) + q(k), (4a)

z(k) = h(x(k)) +w(k), (4b)

whereq(k) ∈ R6 andw(k) ∈ R4 represent the white Gaus-
sian transition and measurement noises at timek with co-
variance matrixQ(k) ∈ R6×6 andW (k) ∈ R4×4, respec-
tively, q(k) ∼ N (0, Q(k)), w(k) ∼ N (0,W (k)), and
A(k + 1) is the state transition matrix at timek + 1,

A(k + 1) =

[
I3×3 ∆T (k + 1|k)I3×3

03×3 I3×3

]
,

where∆T (k + 1|k) is the time interval between timek
and timek + 1. We defineP ∈ R6×6 as the covari-
ance matrix for the state variablex. The EKF for the sys-
tem in (4) can be implemented as a state prediction step
x̂(k|k − 1), P̂ (k|k − 1) and a measurement correction step
x̂(k|k), P̂ (k|k) recursively as follows,
x̂(k|k − 1) = A(k)x̂(k − 1|k − 1), (5a)

P̂ (k|k − 1) = A(k)P̂ (k − 1|k − 1)AT (k) +Q(k), (5b)

K(k) =
P̂ (k|k − 1)HT (k)

H(k)P̂ (k|k − 1)HT (k) +W (k)
, (5c)

x̂(k|k) = x̂(k|k − 1) +K(k)(z(k)− h(x̂(k|k − 1))),
(5d)

P̂ (k|k) = (I6×6 −K(k)H(k))P̂ (k|k − 1), (5e)

whereK(k) ∈ R6×4 is the “Kalman gain” andH(k) ∈
R4×6 is the Jacobian matrix ofh(·) in (3) with respect tox.

Recall that̂x(k|k) = [p̂(k|k), v̂(k|k)]T . For then-image
motion sequence, the predictedx̂(n|n) contains the bird ve-
locity v̂(n|n). The decision of accepting (indicated as “1”)
or rejecting (indicated as “0”) the moving object as a mem-
ber of the targeted species is defined as the following indi-
cator function,

I(Z1:n) =

{
1 if ‖v̂(n|n)‖ ∈ V and EKF converges,

0 otherwise,
(6)

whereZ1:n = {z(1), z(2), ..., z(n)} is the set of body axes
acrossn frames.Z1:n is also referred to as the observed data.
Eq. (6) basically states that the moving object is a member
of the targeted species if the EKF converges to the desired
absolute velocity rangeV .

EKF Convergence
As indicated in (6), automatically determining whether the
EKF converges or not is necessary. Define the estimated
state set asX1:n = {x̂(1|1), x̂(2|2), ..., x̂(n|n)}. Since ve-
locity convergence implies position convergence andv̂(k|k)
converges means‖v̂(k|k) − v̂(k − 1|k − 1)‖ → 0, we de-
termine the convergence of the EKF by inspecting

ε(X1:n) =
n∑

k=2

ω(k)‖v̂(k|k)− v̂(k − 1|k − 1)‖,



whereω(k) > 0 is the weighting factor at timek. ω(k) is
a monotonically-increasing function ofk, which gives more
weight to later states.ω(k) is usually pre-generated using
simulated random inputs across the entire possible parame-
ter range without measurement error (i.e.W (k) = 04×4).
SettingW (k) = 04×4 is to ensure EKF convergency, which
will be explained later in the paper. Denote‖v̂‖ as the speed
of the bird known in each trial of simulation. We repeat
the EKF with randomized inputs for over106 times to ob-
serve the quantity of ‖v̂‖

‖v̂(k|k)−v̂(k−1|k−1)‖ , which is the in-
verse of the relative speed change at timek. We choose

the weighting factor asω(k) = E
(

‖v̂‖
‖v̂(k|k)−v̂(k−1|k−1)‖

)
,

where functionE(·) computes the expected value over all
simulation trials for the targeted species. When the EKF
converges,‖v̂(k|k)− v̂(k− 1|k− 1)‖ appears as a decreas-
ing function ofk after a few initial steps. Correspondingly,
ω(k) is an increasing function ofk. If ‖v̂(k|k) − v̂(k −
1|k− 1)‖ → 0, thenε(X1:n) is smaller than that of the case
‖v̂(k|k) − v̂(k − 1|k − 1)‖ 9 0. Therefore, to determine
the EKF convergence, we employ a thresholdδ on ε(X1:n)
and introduce a new indicator variable,

IEKF(X
1:n) =

{
1 (converge) if ε(X1:n) < δ,

0 otherwise.
(7)

Then the decision-making in (6) is re-written as,

I(Z1:n) =

{
1 if ‖v̂(n|n)‖ ∈ V andIEKF(X

1:n) = 1,

0 otherwise.
(8)

The underlying condition for (8) to be an effective bird fil-
tering mechanism is that if observationZ1:n is caused by the
targeted bird species then the convergence of the EKF has
to be guaranteed. Unfortunately, the condition usually does
not hold due to two reasons:n is small and the measurement
noisew(k) is too big. Due to the fact that the bird flies very
fast, the bird usually stays in the camera FOV for less than 1
second and thusn < 11 for most cases in our experiments.
The measurement noise covariance matrixW (k) is directly
determined by the image segmentation error. Even at 1 pixel
level, its relative range is4% for a bird body length of 25
pixels. For the nonlinear deterministic discrete time system
in (4), the largeW (k) means the EKF either fails to con-
verge or converges very slowly according to (Boutayeb, Ra-
faralahy, and Darouach 1997). The performance of the bird
filter would be close to that of a random guess if the simple
EKF implementation is used, which makes it useless.

Probable Observation Data Set-based EKF Method
Since simply applying EKF cannot address the bird filtering
problem, a new approach is required. Let us first assume
there is no measurement noise (i.e.W (k) = 04×4) and no
state transition noiseQ(k) = 06×6. At each timek, the EKF
in (5) is a system of equations with four inputs, which is the
dimensionality ofz, and six outputs, which is the dimension-
ality of x. We also know that matrixA introduces two con-
straints: the constant speed and the linear trajectory. There-
fore, the equation system can be solved within one step. The
convergence of the EKF is not a problem when there is no
noise and the bird does not fly in a degenerated trajectory

(i.e. flying along the camera optical axis). Although usually
Q(k) 6= 06×6, the state transition noiseq(k) is often very
small, which leads to the following lemma,

Lemma 1. The EKF described in (5) converges when
W (k) = 04×4.

Proof. We skip the proof because our system in (4) is a lin-
ear time-invariant discrete time system with a nonlinear ob-
server. The convergence of its EKF can be proved by the
results in (Boutayeb, Rafaralahy, and Darouach 1997).

At first glance, this result is useless because we cannot get
rid of the measurement noise. However, this result opens the
door to a new approach. Define the observation data without
measurement error asZ1:n∗ = [z∗(1), z∗(2), ..., z∗(n)]T .
Although we do not haveZ1:n∗, we know it is within the
segmentation error range ofZ1:n. For thek-th image, the
measurement data isz(k) = [uh(k), vh(k), ut(k), vt(k)]T .
Define the error-free measurement data at timek asz∗(k) =
[uh∗(k), vh∗(k), ut∗(k), vt∗(k)]T . Let us define the segmen-
tation error is withinτ pixels. The value ofτ is usu-
ally small since the camera is set with short shuttle time
and small iris. DefineS1(k) = [uh(k) ± τ ], S2(k) =
[vh(k) ± τ ], S3(k) = [ut(k) ± τ ], S4(k) = [vt(k) ± τ ],
and the segmentation error range at timek asS(k). Hence,
z∗(k) ∈ S1(k)× S2(k)× S3(k)× S4(k) = S(k).

Definition 1. Define the probable observation data set
(PODS)Z1:n as the set of observation dataZ1:n that satis-
fies the condition for the EKF convergence as in (7),Z1:n =
{Z1:n|z(k) ∈ S(k), k = 1, ..., n, andε(X1:n) < δ}.

ObviouslyZ1:n∗ ∈ Z1:n. EachZ1:n ∈ Z1:n is likely
to beZ1:n∗ and hence it is named as the probable observa-
tion data. For a given PODSZ1:n, there is a correspond-
ing estimated state setX1:n, which contains a set of all
possible estimated velocities at timen, which is defined as
V = {‖v̂(n|n)‖ such thatX1:n ∈ X1:n}. Then the decision
making in (8) can be written as,

I(Z1:n) =

{
1 if V ∩ V 6= ∅ andZ1:n 6= ∅,

0 otherwise.

Hence we have the following lemma,

Lemma 2. If the non-degenerated observation dataZ1:n is
triggered by a bird of the targeted species, thenI(Z1:n) = 1.

Proof. SinceZ1:n is triggered by the targeted species, its
correspondingZ1:n∗ ensures the convergence of the EKF
according to Lemma 1. DefineX1:n∗ as the corresponding
estimated states forZ1:n∗. Henceε(X1:n∗) < δ → Z1:n 6=
∅, becauseZ1:n∗ ∈ Z1:n. Following our naming convention,
v̂∗(n|n) is the velocity component ofX∗(n|n) ∈ X1:n∗.
Since the observation data is not degenerated,‖v̂∗(n|n)‖ ∈
V . We also know‖v̂∗(n|n)‖ ∈ V by definition,V ∩ V 6= ∅
holds. Since both conditions are satisfied,I(Z1:n) = 1.

Lemma 2 ensures that the PODS-EKF method theoreti-
cally has a zero false negative rate, which is a very desirable
property for the purpose of searching for rare bird species.



Approximate Computation for PODS-EKF
Computing the PODSZ1:n is nontrivial. Note that we actu-
ally do not needZ1:n because all we need to know is whether
the conditionsV ∩ V 6= ∅ andZ1:n 6= ∅ hold or not. This
allows an approximation method. For a given observation
Z1:n, we define the following optimization problem,

Z̃1:n = arg min
z(k)∈S(k);k=1,...,n

ε(X1:n), (9)

where Z̃1:n is the optimal solution to the minimization
problem above. Actually, (9) is a typical nonlinear opti-
mization problem with the error rangez(k) ∈ S(k); k =

1, ..., n and the EKF in (5) as constraints. DefinẽX1:n =
{x̃(1|1), x̃(2|2), ..., x̃(n|n)} as the estimated states corre-
sponding tõZ1:n. We have the following lemma,

Lemma 3. ε(X̃1:n) > δ ⇐⇒ Z1:n = ∅.

Proof. Since (9) is a minimization problem,̃X1:n yields the
minimal ε(X1:n), namely,ε(X̃1:n) > δ ⇐⇒ ε(X1:n) >
δ, ∀X1:n ∈ X1:n ⇐⇒ Z1:n = ∅.

It is worth mentioning that this method is an approxi-
mation in computation because the nonlinear programming
solver often falls in a local minimum. Now we want to de-
termine whetherV ∩ V 6= ∅. If we view the EKF output
v̂(n|n) as a function ofZ1:n, it is continuous and differen-
tiable with respect to each entry inZ1:n. SinceZ1:n is actu-
ally very small, the variance of the speed in the setV is very
small. Instead of comparingV to V , we select a value inV
to check if it is inV . Defineṽ(n|n) as the velocity compo-
nent ofx̃(n|n) ∈ X̃1:n. The chosen value is the‖ṽ(n|n)‖
because it is readily available. Therefore, the approximation
is ‖ṽ(n|n)‖ ∈ V ⇐⇒ V ∩ V 6= ∅. Due to the approx-
imation, the zero false negative rate cannot be guaranteed.
However, the false negative rate is still very low under the
approximation as shown in the experiments.

Experiments
We have implemented the PODS-EKF algorithm and tested
the algorithm on both the simulated data and the real data
from field experiments. The computer used in the test is a
desktop PC with a Pentium(R) D 3.20GHz CPU and 2GB
RAM. The PC runs Windows XP. The PODS-EKF has been
implemented using Matlab 7. We choose Arecont Vision
3100 high resolution networked video cameras as the imag-
ing devices. The camera runs at 11 fps with a resolution of 3
Mega-pixel per frame. The lens for the camera is a Tamron
auto iris vari-focus lens with a focal length range of 10-40
mm. We adjust the lens to ensure a 20◦ horizontal FOV.

Simulation
We first test our PODS-EKF using the simulated inputs.
An intermediate step is to analyze the convergence of the
EKF. We generate106 random 3D bird trajectories with con-
stant velocity, which intersect with the conic camera FOV.
The trajectory segment intersecting with the camera FOV
projects back to the image plane as the visual measurements.

Table 1: Species used in the experiments
Species lb (cm) V (km/h)
House Sparrow 15 1 [29, 40] 2

Rock pigeon 33 3 [24, 56] 4

Ivory-billed woodpecker 48 5 [32, 64] 6

We simulate three types of birds: house sparrows, rock pi-
geons, and IBWOs (Table 1). The three species are small,
medium, and large in size, respectively. Their speeds range
from 24 to 64 km/h and cover the range of the most of
existing bird species. The initial statêx(0|0) is estimated
by solving the linear equation system in (3) with the first
at least 3 observations and an additional constraint/guess
‖v̂(0|0)‖ = E(V). Details are omitted for space constraint.

Fig. 3(a) shows the EKF convergence for rock pigeon in
different configurations by tracking the signal‖v̂(k|k)−v̂‖,
wherev̂ is the true bird velocity known in simulation. It is
shown that without image noise, the EKF nicely converges
as Lemma 1 points out. With the image noise (τ = 1 pixel),
the EKF diverges with both increasing signal mean and vari-
ance. The PODS-EKF on the other hand, ensures the EKF
to converge very close to the noise-free case. This validates
the foundation of our PODS-EKF method.
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Figure 3: (a) Convergence for different EKF configurations
based on simulated rock pigeon data. (b) False positive (FP)
and false negative (FN) rates with differentδ in simulation.

Now we are ready to analyze the performance of PODS-
EKF. We generate a set of random inputs to mimic three
birds as in Table 1. We set a speed range from 15 to 85 km/h
with an incremental step of 5 km/h and a bird size range
from 10 to 60 cm with an incremental step of 2 cm. We set
the segmentation error rangeτ = 1 pixel. For each setting
of the input data, 20 trials are carried out. The average com-
putation time for each trial is 5.6 seconds. Fig. 3(b) demon-
strates how the rates of false positive (FP) and false negative
(FN) change according toδ. After δ > 1.0 × 106, the FN
rates can be reasonably controlled to be less than 10%, 4%
and 1%, for house sparrow, rock pigeon and IBWO, respec-
tively. This confirms that the approximation computation is
reasonable. The reason PODS-EKF works worst for house

1http://en.wikipedia.org/wiki/HouseSparrow.
2http://www.garden-birds.co.uk/information/flight.htm
3http://www.allaboutbirds.org/guide/RockPigeon/lifehistory
4http://www.ct.gov/DEP/cwp/view.asp?A=2723&Q=326076
5http://animals.nationalgeographic.com/animals/birds/ivory-

billed-woodpecker.html
6http://news.mongabay.com/2007/0217-ibw.html



sparrow is that with the same FOV in the simulation, the
smallest house sparrow leads to the highest noise-signal ra-
tio, indicated asE(τ/l) in Fig. 3(b). Our PODS-EKF is
not biased for particular bird. To cope with small birds, we
can increase the focal length to reduceE(τ/l). The FP rates
of the PODS-EKF converge to 23%, 45% and 38%, respec-
tively, which are a little high. However, considering that we
are comparing the targeted bird with birds similar in size
and speed, this result is not surprising. In fact, the algo-
rithm should behave better in real tests where the noise from
the moving objects has much larger range in both size and
speed. Furthermore, the monocular system has its problem
in detecting objects with their trajectories close to the cam-
era optical axis, which also contributes to the high FP rate.

Physical Experiments
We have conducted a field experiment of detecting flying
rock pigeons. With a camera setup in the forest in Bayou
DeView in eastern Arkansas, we have captured 119 events
with n ≥ 8 for each motion sequence. 29 of the sequences
are rock pigeons while the other 90 are not pigeons, which
are image sequences of typical environment noises such as
falling leaves, flying insects, and other bird species. Fig.4(a)
shows how the FN and FP rates change according to differ-
enceδ. The convergence threshold is set asδ = 1.35× 106.
It is shown that our algorithm can achieve extremely low FN
rate (0/29 = 0%). This is very important for the purpose of
finding rare bird species. The FP rate is9/90 = 10%, which
is better than that of the simulation results. This is due to
the fact that it is much easier for the algorithm to distin-
guish the targeted species from noises such as flying insects
and falling leaves in real experiment rather than from similar
birds as in simulation above.

Fig. 4(b) illustrates the ROC curves from both the sim-
ulation and physical experiment for the rock pigeon. The
convergence threshold range is[4.6×103, 1.5×106] for sim-
ulation and[1.8× 104, 3.3× 106] for experiment. The areas
under the ROC curve are 91.5% and 95.0% for simulation
and physical experiment, respectively, which again shows
the algorithm performs better in physical experiments.

We apply the algorithm to our IBWO search field data
(Oct. 2006 - Oct. 2007). After initial motion detection fil-
tering as in (Song et al. 2008), we reduce the total video
data of 29.41 TB to 27.42 GB, which is still prohibitively
huge for human experts. After applying the PODS-EKF, we
eventually reduce the data volume to 146.7 MB (about 960
images) with close to zero false negative. The overall reduc-
tion rate is 99.9995%.

Conclusion
We reported our development of a bird filtering algo-
rithm. We developed a novel Probable Observation Data
Set (PODS)-based EKF method to ensure the convergence
of the EKF under insufficient and noisy measurement data.
The algorithm has been extensively tested using both simu-
lated inputs and physical experiments. The results showed
that the PODS-EKF bird filter has reduced the video data by
99.9995% with close to zero false negative and95.0% area
under the ROC curve in physical experiments.
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Figure 4: (a) Physical experiment for rock pigeons. (b) The
ROC curves for both the simulation and the physical exper-
iment. The corresponding areas under the ROC curves are
91.5% and 95.0%, respectively.
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