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Stochastic Modeling of the Expected Time to Search for an
Intermittent Signal Source Under a Limited Sensing Range

Dezhen Song, Chang-Young Kim, and Jingang Yi

Abstract—A mobile robot is deployed to search for a stationary
target that intermittently emits short duration signals. The
searching mission is accomplished as soon as the robot receives
a signal from the target. However, the robot cannot perceive
the signal unless the target is within its limited sensing range.
Therefore, the time to search the target is inherently random
and hence unknown despite its importance in many searching
and rescue applications. Here we propose the expected searching
time (EST) as a metric to evaluate different robot motion plans
under different robot configurations. We derive a closed form
solution for computing the EST. To illustrate the EST model,
we present two case studies. In the first case, we analyze two
common motion plans: a slap method and a random walk. The
EST analysis shows that the slap method is asymptotically faster
than the random walk when the searching space size increases.
In the second case, we compare a team of n low-cost equally-
configured robots with a super robot that has the sensing range
equal to that of the summation of the n robots. The EST analysis
shows that the low-cost robot team takes Θ(1/n) time and the
super robot takes Θ(1/

√
n) time as n → ∞. In both cases, our

EST model successfully demonstrates its ability in assessing the
searching performance. The analytical results are also confirmed
in simulation.

I. INTRODUCTION

Mobile robots are often employed to perform searching
tasks such as finding a black box in a remote area after an
airplane crash, searching victims after an earthquake or a mine
collapse disaster, or locating artifacts on the ocean floor. In
many cases, the target can intermittently emit short duration
signals to assist searching. For example, an airplane black
box transmits radio signals periodically. An earthquake victim
may knock the rubble from time to time. The searching task
is accomplished once the robot detects the signal emitted by
the target. However, the robot usually has a limited sensing
range and cannot detect the target that is out of the range. It
seems straightforward that we can use the traditional coverage-
based motion plans to guide the robot to cyclically scan the
searching space to locate the target. However, the time to
search the target is inherently random and hence remains
unknown despite its importance in many searching and rescue
applications.

To address this new problem, we propose the expected
searching time (EST) as a metric for the searching ability.
We model the searching process as a delayed alternating
renewal process and derive the EST as a function of the
searching space size, the signal transmission rate, and the
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Fig. 1. A robot attemps to search for a target (the red dot) that intermittently
emits short duration signals in a square. The gray circle is the region that the
robot can sense the signal from the target. The dashed line is a robot trajectory.

robot sensing range. The resulting closed-form solution of
the EST can be used to analyze the searching efficiency for
different robot configurations and searching plans. Since the
model components can be obtained from online measurements
and known robot parameters, a great benefit of the resulting
model is that it is capable of predicting the EST for an ongoing
searching process. This characteristic is important for time-
critical searching and rescue applications.

The contributions of the paper are trying to bring analytical
results to interpret well-known searching strategies. The EST
analysis not only can reveal our common believes about exist-
ing searching methods but also predict how the effectiveness of
those methods changes as trajectory selection, sensing range,
searching space size, and robot distribution change. Building
on the latest development in random walk in constrained space
from stochastic modeling community, our analysis for the first
time show that traditional slap method (Θ(a2)) actually is
asymptotically faster than the random walk (O(a2 log a)) for
a squared searching space of the size length a, which is never
known before. In the second case, we compare a team of n
identically-configured low-cost robots with a super robot that
has the sensing coverage equal to the summation of the n low-
cost robots. The EST analysis shows that the low-cost robot
team outperforms the super robot because its EST is Θ(1/n)
while the EST for the super robot is Θ(1/

√
n) as n → ∞.

Again, this new analytical result has not been seen before and
is important for developing new search strategies.

The analytical results are confirmed in simulation for both
cases. The EST model successfully demonstrates its ability
in assessing the searching performance under different robot
configurations and motion plans.

The rest of the paper is organized as follows. We begin
with the related work in Section II. We define the problem in
Section III. We derive the EST in a closed form in Section IV.



The two case studies are presented in Section V. The analytical
results are validated in simulation in Section VI before we
conclude the paper.

II. RELATED WORK

Searching an object in physical space is one of the most
important tasks for robots or humans. When prior information
such as the spatial distribution of the target is known, this is
comparable to the foraging behavior of animal [1]. However
prior target information is often not available. If the target is
continuously emitting signals, just simply scanning the entire
searching space once enables the robot to find the target. Since
the worst case for the searching time is the time to cover
the entire searching space, the searching problem becomes
a coverage problem [2]–[4]. For a known environment, a
coverage problem for a single robot often employs different
approaches to decompose the searching space and output a
continuous path that allows the robot to cover the entire
searching space. If the searching space can be modeled as
a set of w-disjoint discrete choices, searching a target with
a limited sensing range and w-choice is known as a w-lane
Cow-Path problem [5].

While the running time is well understood for the coverage
problems [6], [7], this is not the case when the searching
process depends on the signal emitted by the target because
the collocation of the robot and the target does not necessarily
mean that the target is found. When the target is not emitting
a signal, the robot cannot find the target. The robot has to
keep scanning the searching space. The deterministic coverage
algorithm becomes a Las Vegas algorithm [8] where the target
will eventually be found but the searching time is random.
However, the searching time can be crucial for many searching
tasks. For example, victims of an earthquake often have limited
survival time. Although searching itself is a very old problem,
few models exist for analyzing the effectiveness of a searching
strategy when the source is intermittently emitting signals.

Another set of related work is robot exploration and map-
ping problems where the environment is not previously known
[9]. The task is not only to cover the entire space but also
to output the true representations of the environment. Recent
advances in using a multi-robot team to perform exploration
and mapping tasks mainly focuses on the coordination of the
robot/sensor team [10]–[15] under various dynamics, commu-
nication, sensing, and energy constraints. Although not directly
applicable to our problem, researchers have accumulated in-
teresting empirical results that are using a team of low-cost
robots usually performs faster and more fault-tolerant [14]
than a single expensive robot. This really inspires our problem
because we want to see if our analytical model can show
similar results under similar constraints/conditions.

Our group has built experience in searching for targets that
intermittently transmit signals by developing algorithms and
systems to detect an unknown wireless sensor network [16]–
[18]. In these problems, the robot can accumulate the infor-
mation about the target location over time through the signal
strength readings and antenna models. The searching problem
is less difficult because the robot can utilize the information

in the planning process. However, such information is often
not available in many searching tasks, which is the focus of
this paper.

III. PROBLEM DEFINITION

As illustrated in Fig. 1, a single robot searches for a single
target in a squared 2D Euclidean space with a side length of
a. Define ds as the maximum sensing distance of the sensor
on the robot. The robot travels at the constant speed of v. To
formulate the problem and focus on the most relevant issues,
we make the following assumptions,

1) There is no prior information about possible locations
of the target. Therefore, the target is assumed to be
uniformly distributed in the searching space. This is
actually the most difficult searching case.

2) The target transmits short duration signals periodically
according to a Poisson process with a known rate λ.
The signal duration is short due to energy concerns. A
Poisson process is a good approximation to a general
random arrival process in stochastic modeling [19]. In
some cases, the target may be a continuous beacon; but
it is very difficult to be detected due to environment
conditions or unreliable sensing, which can also be
modeled as a target with intermittent signals.

3) During the searching process, either the target is static or
its movements are negligible in comparison to ds. The
searching space is much larger than the sensing distance:
a À ds.

Condition 1 (Sensing Condition): The robot cannot sense
the signal unless an actively-transmitting target is within
distance ds due to the sensing range limit.

As illustrated in Fig. 1, this defines a circle centered at the
target with the radius of ds, which is the region that robot has
a chance to sense the target. We refer to the region as “the
circle” in the rest of the paper. Due to the fact that the robot
does not know the location of the target, the actual position
of the circle in the searching space is also unknown.

Condition 2 (Termination Condition): The searching task
is accomplished as soon as the robot senses a signal.
Condition 2 implies that the robot cannot find an inactive target
even it is collocated with the target. For example, an airplane
is not be able to notice the survivor on an island if the person
does not send a signal (e.g. fire or smoke). On the other hand,
only one signal reception is needed in the searching process.
Conditions 1 and 2 establish a new type of searching problem
as oppose to a regular coverage problem. Let us define Ts as
the searching time for the robot to find the target. Therefore,
our problem is defined as follows,

Problem 1 (The EST Computation): Given λ, ds, and a,
calculate the EST E(Ts), where E(·) denotes the expected
value function.

IV. MODELING

One immediate question about Problem 1 is whether we
can obtain the EST without referring to or being limited to a
particular motion plan. To address this dependency, we first
characterize the motion plans based on their outcomes before
modeling the EST.
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A. Characterizing Planners

Periodically, the robot planner outputs a motion plan and the
system is naturally a repetitive scanning process. We name its
trajectory in each period as a tour. The dashed line in Fig. 1
illustrates a tour.

Definition 1: A tour starts at the moment when the robot
enters the target circle and ends at next moment when the
robot enters the circle again.
Tours may be quite different based on the planner. For exam-
ple, tour length varies each time if the robot follows a random
walk. As another example, a deterministic planner usually has
a fixed tour trajectory.

Based on Condition 2, we know that the robot does not
accumulate the knowledge regarding the target location from
tours to tours because no signal has been perceived before
the moment the searching mission is accomplished. Hence we
can treat each tour as independently and identically distributed
(i.i.d.). This allows us to model the searching process as a
renewal process.

When a tour begins, the robot first spends some time inside
the circle, which is defined as τIN. After that, the robot leaves
the circle and spends some time before entering the circle
again, where the next tour starts. This yields an alternating
renewal process. The duration outside the circle is defined as
τOUT. Hence τIN + τOUT is the overall duration for the tour.

B. Modeling the EST

Without loss of generality, we assume the robot starts the
searching process from the origin which is on the boundaries
of the searching space. It takes some time to reach the circle
where the first tour starts. Define the time as delay D. From
Conditions 1 and 2, we know that the robot cannot find the
target in D. The searching process is a delayed alternating
renewal process. Define T c

s as the time to find the target after
the robot enters the repetitive tours. Hence, the EST is

E(Ts) = E(D) + E(T c
s ). (1)

Define N as the number of signal transmissions during τIN

in a tour. Since the arrival process of the signal transmission
is Poisson, N conforms to a Poisson distribution,

P (N = k) =
e−λτIN(λτIN)

k

k!
, k = 0, 1, 2, ...,∞. (2)

We know that event N > 0 means that at least one signal
transmission happens during τIN. This means the target is
found. Therefore, we can compute E(T c

s ) by conditioning on
N ,

E(T c
s ) = E(T c

s |N > 0)P (N > 0)+E(T c
s |N = 0)P (N = 0),

(3)
where P (N > 0) = 1 − e−λτIN and P (N = 0) = e−λτIN

according to (2).
Now let us compute E(T c

s |N > 0). Since event N > 0 is
equivalent to event T c

s ≤ τIN, we have

E(T c
s |N > 0) = E(T c

s |T c
s ≤ τIN)

=
1

λ
− τINe

−λτIN

1− e−λτIN
(4)

because the conditional distribution T c
s |T c

s ≤ τIN is a truncated
exponential distribution. It is worth noting that (4) is valid only
if τIN > 0. This is guaranteed according to Definition 1. On
the other hand, we know

E(T c
s |N = 0) = τIN + τOUT + E(T c

s ) (5)

because the robot cannot find the inactive target in the current
tour and has to start all over again in next tour.

Plugging (4) and (5) into (3) and (1), we have the following
Theorem.

Theorem 1: Given the expected time E(D) for the robot
to reach the circle, the Poisson arrival rate of signal λ of the
target, the traveling time τIN inside the circle, and the traveling
time τOUT outside the circle, the EST of the target is

E(Ts) = E(D) +
1

λ
+ τOUT

e−λτIN

1− e−λτIN
. (6)

Theorem 1 has a surprisingly succinct format revealing the
relationship between the EST and the corresponding variables.
To further explain (6), let us consider the following extreme
cases:

Case 1: When λ → ∞, it means that the target continuously
transmits signals. An example is that a lost hiker keeps fire
burning. Hence the light and the smoke of the fire become
the continuous signal. Now the searching time becomes the
time that it takes for the robot to enter the circle. The
problem degenerates to the traditional coverage problem where
E(Ts) = E(D).

Case 2: When τOUT = 0, it means that the signal emitted by
the target is so powerful that the circle defined by ds can cover
the entire searching space. In this case, E(D) = 0. Hence
E(Ts) = 1/λ. This is sensible because the result means the
robot can find the target as soon as it emits a signal.

Case 3: When τIN → 0, which happens when ds is infinites-
imally small, we have E(Ts) → ∞. This result conforms to
our expectation.

Remark 1: It is worth noting that (6) does not depend on a
particular motion plan or the shape/dimension of the searching
space, which makes it widely applicable in practice. Actually,
the EST can be also applied to analyze searching tasks carried
by humans. In many cases, the signal transmission rate λ is
known; E(D) can be estimated based on observations; τIN can
be estimated based on ds and v; and τOUT can be measured
based on observations that how often a robot would revisit a
region with the same size of the circle. Based on the known
information and online measurements, we can even predict the
EST for an ongoing searching process regardless its motion
plan, which is of great importance in applications where the
searching time literally means life or death.

V. ANALYSIS OF COMMON SEARCHING STRATEGIES

Theorem 1 can be used to analyze the searching perfor-
mance under different robot motion plans and configurations.
We begin with demonstrating how Theorem 1 can reveal the
difference between two motion plans from common coverage
methods, namely, the slap method and the random walk.
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Fig. 2. (a) A sample motion plan for the slap method. (b) An illustration of
how a tour (line l) intersects the circle of the target.

A. The Slap Method

The slap method [20], also known as the trapezoidal de-
composition [21] in robotics, sequentially scans the entire
searching space back and forth. Fig. 2(a) gives the robot
motion plan for the square case. The plan is a set of y-
axis parallel lines (appears to be vertical lines in Fig. 2(a))
that cover the entire searching space. The vertical lines are
inter-connected using the boundaries of the searching space
to formulate a complete tour. To guarantee an intersection
between the circle and the tour, the distance between adjacent
vertical lines is set to be 2ds.

The red “?” in Fig. 2(a) is the starting point of the tour.
Since tours are exactly the same in the slap method, the
subsequent tours start exactly at the same location. The overall
tour length is approximately a2/(2ds). Given the robot speed
v, we know it takes

τIN + τOUT ≈ a2

2vds
(7)

time for the robot to finish the tour. Since the target could be
anywhere in the searching space with equal probabilities, we
know that

E(D) ≈ (τIN + τOUT)/2 =
a2

4vds
. (8)

The remaining undetermined variable is τIN. Let us define
DIN as the distance traveled inside the circle. DIN is the length
of intersection when the line intersects the circle as illustrated
in Fig. 2(b). Here we ignore the boundary effect where the
circle is not a full circle because a À ds. Line l in Fig. 2(b)
is a part of the tour. When l intersects the circle, we define
Dl as the distance between the center of the circle and the
line. Since the target is uniformly distributed in the 2D space,
Dl ∼ U(0, ds) is uniformly distributed. From Fig. 2(b), we
know

τIN =
DIN

v
=

2
√
d2s −D2

l

v
. (9)

Plugging (7), (8) and (9) into (6) and conditioning on Dl,
we have,

E(Ts|Dl) ≈ a2

4vds
+

1

λ
+ (

a2

2vds
− 2

√
d2s −D2

l

v
)φ(λ,Dl),

(10)

where
φ(λ,Dl) =

1

e
2λ
√

d2s−D2
l

v − 1

. (11)

Since a À ds, τOUT À τIN, and
2
√

d2
s−D2

l

v is negligible if
compared with a2

2vds
, we have,

E(Ts|Dl) ≈ a2

4vds
+

1

λ
+

a2

2vds
φ(λ,Dl). (12)

Hence we have the EST for the slap method,

E(Ts) =

∫ ds

δ=0

E(Ts|Dl = δ)
1

ds
dδ

≈ a2

4vds
+

1

λ
+

a2

2vds
g(ds, λ) (13)

where

g(ds, λ) = E(φ(λ,Dl)) =

∫ ds

δ=0

1

ds
φ(λ,Dl)dδ. (14)

Let δ = ds cos θ, we can transform (14) into

g(ds, λ) =

∫ π/2

θ=0

1

e
2λds sin θ

v − 1
sin θdθ. (15)

When λ and ds/v are very small, (14) can be further
simplified,

g(ds, λ) ≈ πv

4λds
− 1. (16)

Remark 2: Eq. (13) also suggests that a fast robot (large
v) with great sensing distance ds reduces the EST. This
conclusion agrees with our intuition that mobility and sensing
are the key elements in searching. However, it also takes a
target’s cooperation to further reduce the EST. When the robot
reaches its speed and sensing limit, the only way to reduce
EST is to increase λ. Of course, the target usually has energy
constraints and cannot arbitrarily increase λ.

The analysis assumes the distance between vertical lines is
2ds, which ensures there is only one intersection between the
circle and the tour. When a smaller spacing is used, the overall
tour length increases and so does τIN. The analysis is slightly
more complicated because it needs to be conditioned on the
number of intersections between the tour and the circle. The
results actually share a similar format with (15) and the same
asymptotical properties with respect to a, v, and λ. Since our
focus is to compare the asymptotic behavior of the slap method
with that of the random walk, we omit the analysis here.

Another reasonable concern is that whether ignoring the
boundary effect impacts the final result. When the circle is
located at the boundary of the square, distance DIN cannot be
computed using (9). Since the target has to be located within
ds distance of the boundary to create the scenario, the prob-
ability that such event happens is less than 4dsa

a2 = 4ds

a ¿ 1,
since ds ¿ a. Hence its impact to the final EST is ignorable
because DIN for such case is not significantly different from
that of the non-boundary case. Therefore, we will ignore
boundary effect in the rest of the paper.
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Fig. 3. An illustration of robot motion plan based on a 2D lattice-based
random walk.

B. Random Walk

Another popular motion plan is to employ a 2D random
walk to traverse the searching space. As illustrated in Fig. 3,
we partition the entire searching space using a 2D finite lattice
with a spacing of 2ds in each dimension. Denoting Ns as
the number of lattice nodes, we have Ns = a2

4d2
s

nodes. Finer
lattice is possible but usually associated with higher energy
cost because the robot has to make a lot more turns.

The robot always moves from one lattice node to its
neighboring node with equal probabilities. The robot does not
cross the boundaries. According to [22], this is a finite 2D
lattice with reflective boundaries. Recall that a tour starts at
the moment the robot enters the circle. Since the robot might
not enter the circle at the exactly same location in different
tours, each tour is not necessarily a completely closed curve
as that in the slap method case. The closed curve tour in Fig. 3
only happens with a probability of 1/4.

To compute the EST in (6), we need to compute E(D).
Recall that the robot always starts at origin. Given the location
of target (Xt, Yt), computing the mean time that it takes the
robot to follow the random walk to reach a particular location
(Xt, Yt) is the mean first passage time (MFPT) [23], [24]
problem in stochastic modeling. The exact solution to this
problem is expressed in the format of pseudo Green functions
and cannot be explicitly analyzed. Since a À ds, there are a
large number of nodes a2

4d2
s

in the 2D lattice and each robot
move takes 2ds

v time. Hence we can apply the recent results
of MFPT using its asymptotic format in [25],

E(D|Xt, Yt) ≈ a2

2vds

(
α0 + α1 ln

√
X2

t + Y 2
t

)
, (17)

where α0 and α1 are constants and can be determined by
Monte Carlo methods. According to [25], α0 and α1 strikingly
do not depend on lattice size but local transitional properties.
Hence,

E(D) =

∫ a

0

∫ a

0

E(D|Xt = x, Yt = y)
1

a2
dxdy, (18)

≈ α0a
2

2vds
+

α1

2vds

∫ a

0

∫ a

0

ln
√
x2 + y2dxdy. (19)

Since∫ a

0

∫ a

0

ln
√
x2 + y2dxdy = a2 ln a+

π + 2 ln 2− 6

4
a2

we have

E(D) ≈ a2

2vds

(
α0 + α1 ln a+ α1

π + 2 ln 2− 6

4

)
. (20)

The remaining unknown term in (6) is E(τOUT
e−λτIN

1−e−λτIN
).

Given the robot speed v, τIN is uniquely determined by the
distance in the circle DIN, which is independent of the overall
trajectory. Also E(τOUT) ≈ E(τOUT + τIN) given that a À ds.
Hence,

E(τOUT

e−λτIN

1− e−λτIN
) ≈ E(τOUT + τIN)E(

e−λτIN

1− e−λτIN
). (21)

Since the 2D lattice-based random walk is undirected and
symmetric in transitional probability, we know that the sta-
tionary probability of staying inside the circle is pc =

πd2
s

a2 .
Therefore, we know the following is true according to Renewal
Reward theorem,

E(τIN)

E(τOUT + τIN)
= pc =

πd2s
a2

. (22)

Plugging (22) into (21), we have

E

(
τOUT

e−λτIN

1− e−λτIN

)
≈ a2

πd2s
E(τIN)E

(
e−λτIN

1− e−λτIN

)
. (23)

Now, we focus on the computation of τIN. Since the lattice
has a spacing of 2ds, two scenarios exist when the tour on the
lattice intersects the circle: i) the nearest lattice point on the
tour is inside the circle and ii) the nearest lattice point on the
tour is outside the circle as illustrated in Fig. 4. Let us define
events that scenarios i) and ii) happen as events Ei and Eo,
respectively. Since the circle center is uniformly located in the
searching space,

P (Ei) =
πd2s
4d2s

=
π

4
= 1− P (Eo). (24)

When event Eo happens, we know that the robot trajectory
intersects the circle as a straight line as shown in Fig. 4(a).
Hence we have

τIN|Eo =
DIN

v
, (25)

where DIN is defined in (9) and the right side of | is the
condition for the equality to be true. This is a notation
convention widely used in stochastic modeling [19]. Hence

E(τIN|Eo) =
πds
2v

, and (26)

E

(
e−λτIN

1− e−λτIN
|Eo

)
= g(ds, λ). (27)

When event Ei happens, one lattice point is inside the circle.
As illustrated in Fig. 4(b), the lattice point inside the circle
partitions the lattice edges inside the circle into four parts:
l1, l2, l3, and l4. When a robot trajectory intersects the circle,
the part of the trajectory inside the circle can be divided into
two segments, which are defined as L′ and L′′, respectively.
L′ refers to the segment that the robot takes to arrive at the
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Fig. 4. An illustration of how the robot trajectory in solid line intersects the
circle. (a) Scenario i): when the nearest lattice point on tour is located outside
the circle. (b) Scenario ii): when the nearest lattice point on tour is located
inside the circle. The dashed line in the figure is part of the lattice.

lattice node and L′′ refers to the segment that the robot takes
to leave the circle. Hence

τIN|Ei =
L′ + L′′

v
.

Since L′ and L′′ have equal probabilities to take l1, l2, l3, and
l4, there is a total of 16 combinations. Conditioning on the 16
(L′, L′′) combinations and the circle center location (Xt, Yt),
we get the same results as shown in (26) and (27). Combining
those results for the Ei and Eo events by conditioning on
them, we have the unconditional expected values,

E(τIN) =
πds
2v

, and (28)

E

(
e−λτIN

1− e−λτIN

)
= g(ds, λ), (29)

where g(·) is defined in (15). Plugging (20), (23), (28), and
(29) into (6), we can obtain the EST for the random walk case,

E(Ts) ≈ a2

2vds

(
α0 + α1 ln a+ α1

π + 2 ln 2− 6

4

)

+
1

λ
+

a2

2dsv
g(ds, λ). (30)

Comparing (30) to (13) , we have the follow conclusion,
Corollary 1: With the same field side length a, the sensing

range ds, and the signal transmission rate λ, the E(Ts) value
of the slap method is asymptotically smaller than that of the
random walk when a → ∞.

Proof: It is straightforward because E(Ts) = Θ(a2) for
the slap method from (13) while E(Ts) = Θ(a2 ln a) for the
random walk according to (30).

C. Analysis of Different Robot Configurations

Theorem 1 can also be used to analyze cases under different
robot configurations. Here we compare two configurations.

A low-cost robot team (LCRT) case: We have n identically-
configured low-cost robots. To coordinate the searching, we
partition the searching space into n sub square fields with an
area of a2/n each and allocate one robot for each sub square
field.

A single expensive robot (ASER) case: We have an expen-
sive robot equipped with a very capable sensor that has a
sensing area equal to the combination of those of the n low-
cost robots. If each of the low-cost robot has a sensing range of

ds, then the area of the combined sensing region for n robots is
nπd2s. Therefore, the sensing distance for the expensive robot
is set to d′s =

√
nds to ensure the same-sized sensing coverage

at any given time.
We are now ready to compare these two robot configura-

tions. Since the slap method is asymptotically faster than the
random walk, we build on the slap method results in (30).
For the LCRT, only one robot actually has the target in its
sub field. Hence, the rest of n− 1 robots are irrelevant in the
searching process. Comparing with the original EST in (30),
we just need to replace a with a√

n
. Defining the searching

time for the LCRT as T ′
s, we have

E(T ′
s) ≈

a2

4vnds
+

1

λ
+

a2

2vnds
g(ds, λ). (31)

Defining the searching time for the ASER as T ′′
s , we have

E(T ′′
s ) ≈

a2

4v
√
nds

+
1

λ
+

a2

2v
√
nds

g(
√
nds, λ). (32)

From (15), it is not difficult to see that

g(
√
nds, λ) → 0 as n → ∞. (33)

Therefore, we have the following conclusion,
Corollary 2: When traveling at the same velocity v, the

low-cost robot team can find the target asymptotically faster
than the single expensive robot does when n increases, if 1/λ
is not the dominating factor in the EST.

Proof: From (32) and (33), we know E(T ′′
s ) = Θ( 1√

n
+

1
λ ). From (31), we know E(T ′

s) = Θ( 1n + 1
λ ). Hence the

conclusion follows.
It is actually rather surprising to see the result in Corollary 2

at the first sight. We have not expected such a significant
difference in the comparison. This conclusion is rather inter-
esting because it shows that an expensive robot with superior
sensing capability is not as good as a large number of low-cost
robots with less capable sensors when searching for targets that
intermittently transmits short duration signals.

Remark 3: This analysis also shows that if there are cost
functions associated with the number of robots, different
sensor options, or different velocity options available, we can
use the EST results as an objective function to optimize the
robot configuration for the task.

VI. EXPERIMENTS

We test our results using Monte Carlo simulation. The sim-
ulation program is written in Microsoft Visual C++.Net 2005
on a Desktop PC with an 32-bit Windows XP Professional
Edition OS. The Desktop PC has an Intel 2.13 GHz Core2Duo
CPU with 2GB RAM and a 250 GB Hard disk.

The experimental results are illustrated in Figs. 5 and 6.
Each data point in both figures is an average of 10,000
independent trials. At the beginning of each trial, we reset the
robot position to be at (0, 0) and generate the target location
according to a 2D uniform distribution. We then run the robot
according to the selected motion plan and finish the trial as
soon as the target is found.
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Fig. 5. Simulation results in (a), (b), (c), and (d) for validating Theorem 1 with respect to a, λ, ds, and v, respectively. SM stands for the slap method. RW
stands for the random walk. Model means the model prediction of the EST. Meas. means the measured mean searching time.

A. Validating Theorem 1 and Corollary 1

We test Theorem 1 using both the slap method and the ran-
dom walk because Theorem 1 is supposed to be independent
of motion plans. The simulation is set up with different a, λ,
ds, and v settings in Table I. In each setting, we collect both
the model predicted EST and the measured mean searching
time. The measured mean searching time is the average of
the searching time over the 10k trials (the “Meas.” values in
Fig. 5). The model predicted ESTs, which are the “Model”
values in Fig. 5, refer to the predicted ESTs according to
the measured D, λ, τIN, and τOUT values in the experiment.
In other words, we record their values and average them over
the 10k trials and to obtain the estimation of 1/λ, E(D), and
E(τOUT

e−λτIN

1−e−λτIN
). We then feed them into (6) to obtain the

model prediction of the EST.

Figure a (m) λ (1/sec.) ds (m) v (m/s)
Fig. 5(a) 100-1000 0.1 1.0 1.0
Fig. 5(b) 200 0.1-1.0 1.0 1.0
Fig. 5(c) 200 0.1 1-10 1.0
Fig. 5(d) 200 0.1 1.0 0.01-100

Fig. 6 200 0.1 1.0 1.0

TABLE I
PARAMETER SETTINGS FOR RESULTS IN FIG. 5 AND FIG. 6.

As illustrated in Fig. 5, the model prediction is fairly consis-
tent with the measured mean searching time under all settings.
There are more fluctuations between the model prediction
and the measured mean searching time in random walk-based
results than that of the slap method. This is expected because

of more random factors associated with the random walk.
Under the same trial number, the results from the random
walk should contain more randomness.

The curve trends with respect to a, λ, ds and v in Fig. 5
are also consistent with our analysis in (13) and (30). The
EST increases as the field side length a increases. The EST
decreases as λ, ds, and v increase. All figures show that the
random walk is slower than the slap method. In particular,
Fig. 5 (a) is consistent with the asymptotical difference in
Corollary 1.

B. Validating Corollary 2

We have also implemented both LCRT and ASER robot
configurations. Again, the parameter settings are in the last
row of Table I. The measured ESTs for both the configurations
are shown in Fig. 6. It is clear that the EST for the LCRT is
always much smaller than that of the ASER. This is consistent
with Corollary 2. Curves in the figure also show the trend that
the EST decreases as the n increases. This is consistent with
our analysis. Also, as n gets very big, the curve levels at
a non-zero value. This indicates that the signal transmission
rate dominates the searching time. On the other hand, it is not
desirable to arbitrarily increase n because the marginal benefit
would decrease.

VII. CONCLUSIONS AND FUTURE WORK

We analytically modeled the expected searching time for a
robot with a limited sensing range to search for a target that
intermittently emits short duration signals. We presented the
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Fig. 6. Simulation results for comparing two robot configurations

closed-form model for the EST. The EST model is motion-
plan independent and can be used to analyze different motion
plans or robot configurations in two case studies. In the first
case, we analyzed the slap method and the random walk and
found that the slap method is asymptotically faster than the
random walk. In the second case, the EST model revealed
the interesting result that a low-cost robot team is always
asymptotically faster than an expensive robot when the sensory
coverage is the same. In both cases, the results demonstrated
the usefulness and the capability of our EST analysis. Our
theoretically results were extensively tested using simulation.
The simulation results were consistent with the model.

This work will lead to a rich set of exciting future work. As
an extension, we can analyze cases where multiple targets are
needed to be searched. We can also develop the EST metrics
for the searching of a moving target, an un-cooperating target,
or multiple sensor combinations. Different sensor models
can also be considered. Also, the searching space may exist
obstacles. Applications of these extended results will be wide-
ranging.
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