
Efficient Algorithms for Shared Camera Control∗

Sariel Har-Peled† Vladlen Koltun‡ Dezhen Song§ Ken Goldberg§

Abstract
We consider a system that allows n networked users to share
control over a robotic webcamera. Each user guides the
camera pan, tilt and zoom, by drawing a rectangle in the
user interface. The server adjusts the camera to best sat-
isfy the user requests, by solving a geometric optimization
problem that requires fitting one rectangle to many. We
improve upon previous results with an O(n3/2 log3 n) time
exact algorithm for this problem. We also present a sim-
ple near-linear time ε-approximation algorithm. We have
implemented the latter and report on experimental results.

1. Introduction
Background. Robotic webcameras are now commercially
available. They can be placed at sites of major interest,
such as a sports event, rock concert, rescue operation, or
space station. Live images from the site are accessible to
many users via the Internet. Since the camera is robotic,
its pan, tilt and zoom parameters can be controlled by the
users on-line. The challenge is to find the parameters that
best satisfy many simultaneous users.

In existing robotic webcamera implementations [2, 3], each
user gets exclusive control of the camera for a given time
slot, after which the control moves to the next user in the
queue. This has numerous disadvantages. At any given
time, all users but one are inactive and prone to frustration.

†Department of Computer Science, DCL 2111, University
of Illinois, 1304 West Springfield Ave., Urbana, IL 61801,
USA. sariel@uiuc.edu
‡Computer Science Division, University of California,
Berkeley, CA 94720-1776, USA. vladlen@cs.berkeley.edu
§IEOR Department, University of California, Berkeley, CA
94720-1777, USA. {dzsong,goldberg}@ieor.berkeley.edu∗Work on this paper by Vladlen Koltun has been partially
supported by NSF Grant CCR-01-21555. Work on this pa-
per by Sariel Har-Peled has been partially supported by NSF
CAREER award CCR-0132901. Work on this paper by Ken
Goldberg and Dezhen Song has been partially supported by
NSF Grant IIS-0113147 and by Intel Corporation.

A potentially malicious user has complete control over the
camera for a whole time slot. At events of wide interest, the
majority of users never get to participate, since the event is
long over before their turn arrives.

We propose a system where users share control over the
camera at all times. Every user specifies the desired camera
parameters via an intuitive interface. The server determines
an orientation and zoom for the camera that aim to best sat-
isfy the requests. Users are free to update their requests at
any time, and the camera adjusts dynamically. The system
is scalable, allowing any number of users to join or leave.

Underlying our “ShareCam” system are efficient geomet-
ric algorithms for selecting the optimal camera position.
Their task is to dynamically adjust the camera in a way
that best satisfies the desires of the users. Clearly, these
server-side algorithms in charge of the camera have to suc-
cessfully reconcile sometimes drastically different user re-
quests. These algorithms are the focus of this paper.
Additional applications. Aside from the obvious appli-
cations to entertainment, the ShareCam system can be used
for education, journalism and research. Moreover, the geo-
metric algorithms presented in this paper are applicable in
other scenarios of shared (possibly Internet-based) control
of a single mechanism, for instance the collaboratively oper-
ated industrial robot arm described by Goldberg and Chen
et al. [12, 13], the remotely managed waste cleanup sys-
tem presented by Cannon and McDonald et al. [7, 17], and
the “Tele-Actor” system of Goldberg and Song et al. [14],
in which the motion of a single human agent is driven by
multiple user votes. Our algorithms can also be applied to
certain other optimization problems that require fitting one
rectangle to a set of input rectangles, encountered, e.g., in
architecture and city planning.
Problem formulation. The ShareCam user interface con-
sists of two windows. The first displays the live visual stream
received from the robotic camera. The second is a panoramic
window that shows a fixed image of the whole accessible re-
gion of the camera (e.g., the overview of the stadium). This
is the window in which the users specify their requested
camera parameters (pan, tilt, and zoom). This is done by
simply drawing an axis-parallel rectangle that delimits the
part of the accessible region that is currently of interest to
the user. The rectangle has a fixed aspect ratio correspond-
ing to the aspect ratio of the camera. Thus such a rectangle
uniquely specifies the orientation and zoom of the camera,
as requested by the user. A small rectangle corresponds to a
large requested zoom level, implying that the user wishes to
see the delimited area in detail. The panoramic window also

1

(a) (b)

Figure 1: The content of the panoramic window of the ShareCam user interface is shown in (a) and (b).
For the sake of clarity, we do not show the preview image of the whole region accessible by the camera that
is usually shown to ShareCam users in this window. The solid rectangles are requests made by 18 users of
the system. The camera rectangle computed by our approximation algorithm is shown dashed in (a). For
comparison, (b) shows the optimal camera rectangle, computed by a brute force algorithm.

displays the rectangles drawn by other users currently logged
into the system, as well as the camera rectangle, showing the
area currently viewed by the camera; see Figure 1.

At any given time, the ShareCam server is thus faced with
the following geometric optimization problem (referred to
below simply as the ShareCam problem). Given a collection
R = {R1, . . . , Rn} of axis-parallel rectangles with a com-
mon aspect ratio (called the user rectangles), where n is the
current number of users, find an axis-parallel rectangle Copt

(called the optimal camera rectangle), with the same aspect
ratio, that maximizes the global satisfaction function

S(C) = SR(C) =

n
∑

i=1

Si(C),

where Si(·) is the individual satisfaction function of user i.
This function measures the similarity of Ri and C, and can
be defined in several possible ways. We introduce the fol-
lowing function, which we call Intersection Over Maximum
(IOM):

Si(C) = IOM(C, Ri) =
Area(C ∩ Ri)

max(Area(C),Area(Ri))
.

If C is disjoint from Ri, Si(C) = 0; if C overlaps Ri exactly,
Si(C) = 1; if C partially overlaps Ri, 0 < Si(C) < 1; in-
creasing the size of C while keeping the overlap area C ∩Ri

fixed causes Si(C) to diminish. The last property encour-
ages the camera to not only have the requested area in view,
but also at the appropriate zoom level. After all, if the user
requests the camera to concentrate on a certain detail, hav-
ing this detail on screen but at a much lower zoom level
does not bring perfect satisfaction. Otherwise, the optimal
camera rectangle would always tend to contain the whole
accessible region, with little consideration of user requests.

Another similarity function that can be adopted as Si(C)
is the Intersection Over Union (IOU) measure, also known

as the Jaccard measure [5, 16, 21]:

IOU(C, Ri) =
Area(C ∩ Ri)

Area(C ∪ Ri)
.

Intersection Over Union is directly related to the Symmetric
Difference (SD) measure:

SD(C, Ri) =
Area(C ∪ Ri) − Area(C ∩ Ri)

Area(C ∪ Ri)

= 1 − IOU(C, Ri).

The unnormalized version of the SD measure was used by de
Berg et al. [10] to assess the dissimilarity of two polygons.

Although Intersection Over Union satisfies the properties
described above for Intersection Over Maximum, it does not
possess the favorable properties of the latter, as analyzed
in Section 2. We thus adopt Intersection Over Maximum
throughout the sequel.
Previous work. The ShareCam problem bears some re-
semblance to other geometric optimization problems, in par-
ticular to variants of the p-center and the p-median prob-
lems [4]. However, no question substantially similar to the
ShareCam problem has, to our knowledge, been previously
studied.

The ShareCam problem was introduced by Song, Van der
Stappen, and Goldberg [20], who have also outlined prelim-
inary solutions. They discretize the range of zoom values
that the camera can adopt into a set of m equally spaced
values. A specific zoom fixes the side lengths of the camera
rectangle, since its aspect ratio is fixed a priori. Hence, for
a given zoom value, the ShareCam problem simplifies to fit-
ting a fixed rectangle to the set of user rectangles. Song et
al. [20] show how to solve this problem in time O(n2). They
thus compute the optimal camera rectangle independently
for each zoom value, yielding m candidate rectangles Ci,
each of them optimal for a specific zoom. They then choose
the one that provides the highest value of the satisfaction

2

function SR(Ci). The overall running time of the algorithm
is thus O(mn2).

This procedure finds the camera rectangle that is optimal
among all rectangles with one of the m allowed zoom levels.
The discretization of the range of zoom levels makes sense in
light of the limitations of current robotic camera technology,
and allows for practical algorithms. The iteration over the
set of m different zoom levels slows down the computation by
only a small constant. Unfortunately, the above algorithm
takes time O(n2) even when the zoom is fixed.
Our contribution. Following Song et al. [20], we search
for an optimal camera rectangle independently for each zoom
level of the camera, and then choose the global optimum.
The focus of our work is thus obtaining more efficient algo-
rithms for solving the ShareCam problem when the size of
the camera rectangle is fixed.

For this setting, we present an exact algorithm that runs
in time O(n3/2 log3 n). This compares favorably with the
quadratic running time achieved in [20]. This result is de-
scribed in Section 4.

We also present a simple ε-approximation algorithm that

runs in time O(N log N), where N = O
(

n log2(1/ε)

ε2

)

. Specif-

ically, for a given parameter ε > 0, our algorithm finds
in this time a camera rectangle C that satisfies S(C) ≥
(1 − ε)S(Copt), where Copt is the optimal camera rectan-
gle for the given zoom level. In other words, the algorithm
computes, in near-linear time, a camera rectangle whose sat-
isfaction value is as close to optimal as specified by ε. This
result is described in Section 3.

We have implemented this approximation algorithm and
compared its performance to the algorithm presented in [20].
Surprisingly, despite the strong asymptotic superiority, the
current implementation of the new algorithm is slower unless
the number of users is impractically large. This is discussed
in Section 5.

2. Preliminaries
As described in the previous section, we can assume that

the zoom level of the camera is fixed. The camera rectangle
is thus determined by the coordinates of its center point p
in the plane, and can be expressed as C(p). We are given a
set R = {R1, . . . , Rn} of user rectangles. For a given user
rectangle Ri, the satisfaction function Si(·) can be viewed as
a bivariate function defined over the two-dimensional plane:

Si(p) = δiArea(C(p)∩ Ri),

where δi = 1/(max(Area(C(p)),Area(Ri))) is constant, since
Area(C(p)) is determined by the fixed zoom level. The
graph of Si has the form of a plateau, as illustrated in Figure
2. The locus of points p for which C(p) ∩ Ri 6= ∅, and thus
Si(p) > 0, is the Minkowski sum of Ri with 2C(o), where
o = (0, 0) is the origin. We denote this rectangle by D(Ri).
It can be partitioned into nine regions over which Si(p) is
differentiable:

(i) The central region, over which C(p) ⊆ Ri or Ri ⊆
C(p). Over this region, Si(p) = min(Area(C(p)),
Area(Ri))/ max(Area(C(p)),Area(Ri)), which is con-
stant.

(ii) Four side regions, over which two corners of C(p)
are inside Ri, or two corners of Ri are inside C(p).
Over each of these regions, Si(p) is a linear function.

(iii) Four corner regions, over which one corner of C(p)
is inside Ri and one corner of Ri is inside C(p). Over
each of these regions, Si(p) = a+ bx+ cy +dxy, where
(x, y) = p and a, b, c, d are appropriate constants.

A useful property of Si(p) is that it is piecewise linear over
any x-parallel or y-parallel line. That is, Si(p) is a piecewise
linear univariate function when p ranges over (x, c) or over
(c, y), for any constant c. In particular, consider sweeping
D(Ri) with a y-parallel line `, say from left to right. At
the first phase of the sweep, ` intersects the two left corner
regions and the left side region; during this phase, the graph
of Si(p) over ` is a trapezoid whose height grows linearly,
while the lengths of its bases remain fixed. At the second
sweeping phase, ` intersects the central region and the top
and bottom side regions; during this phase, Si(p) over ` is
fixed. The last sweeping phase is a mirror image of the first,
at which the height of the trapezoidal graph of Si(p) over `
diminishes linearly until it becomes zero.

3. Approximation Algorithm
We start with an informal overview. The algorithm pro-

ceeds as follows. First, for every i, we construct a collection
of weighted rectangles that ε-approximates Si(p) in the fol-
lowing sense:

Definition 3.1 (a) A function g(·) is said to ε-approximate
a function f(·), if:

• For all x ∈ R
2, g(x) ≤ f(x).

• For all x ∈ R
2, such that f(x) ≥ (ε/50)c, we have

(1 − ε)f(x) ≤ g(x), where c = maxp∈R2 f(p).

(b) For a set R of weighted rectangles in the plane, let
WR(·) be the corresponding weight function, returning for
each point in the plane the cumulative weight of the rect-
angles that contain it. A set R of weighted rectangles ε-
approximates a function f(·) if WR(·) ε-approximates f(·).

The ε-approximation of Si(p) is obtained by subdividing
D(Ri) into a collection Ri of rectangles, and setting the
weight of a rectangle r ∈ Ri to be the minimal value attained
by Si(p) over r. This is similar to the standard procedure
of discretizing a function in order to efficiently compute its
integral. The precise way in which we generate the subdi-
vision of D(Ri) is described in Lemma 3.2. Informally, we
‘slice’ the graph of Si(p) at numerous heights, project the
slices onto the xy-plane, obtaining a number of level sets of
Si(p), and, for each pair of (almost) consecutive level sets,
approximate the area bounded by these two curves by axis-
parallel rectangles, whose weight we define as the height of
the lower among the two level sets that bound them.

Consider the overall collection R = ∪iRi of weighted
rectangles obtained by independently approximating each
function Si(p) by Ri, for 1 ≤ i ≤ n, as above. Consider
the maximally covered point p0 that maximizes the value of
WR(·). Lemma 3.3 shows that C(p0) is a 3ε-approximation
of the optimal camera rectangle. Our problem thus reduces
to finding the maximally covered point given a collection of
axis-parallel rectangles. Theorem 3.4 shows how this can be
done efficiently using a sweep-based algorithm.

3

Figure 2: The graph of the satisfaction function Si(·) is shown on the left. The height map of another such
function is shown on the right, partitioned by dashed lines into nine regions over which it is differentiable.
Darker colors indicate higher values; black marks the maximal value reached by the function; white marks
value zero. Note that perceptual distortions introduced by the human visual system might make the gradation
of color from black to white seem non-linear in the side regions, despite its actual linearity.

3.1 Approximating the Individual Satisfaction
Functions

Let us now fill the gaps left by the above high-level de-
scription. We start with the ε-approximation of Si(·) by a
collection of weighted rectangles.

Lemma 3.2 For a user i, one can compute a set Ri of
O

(

(log(1/ε)/ε)2
)

rectangles, such that WRi
(·) is an

ε-approximation of Si(·).

Proof. See Figure 3 for an illustration of our construc-
tion. By an appropriate affine transformation we can assume
that both the camera rectangle and the user rectangle Ri are
squares, and that the side length of the camera rectangle
is 1. Such affine transformation exists because the camera
rectangle and Ri have the same aspect ratio. We assume
without loss of generality that the bottom left corner of Ri

lies at (1/2, 1/2), and its side length is α > 1. The latter
assumption can be made due to the fact that the definition
of Si(C) = IOM(C, Ri) is symmetric with respect to C and
Ri.

We can trivially ε-approximate Si(·) in the side regions
where it is a linear function, using O(1/ε) weighted rectan-
gles that form a ‘staircase’. The central region of Si(·) can
be represented precisely by just one rectangle. We are left
to treat the four corner regions. Since the function Si(·)
is symmetric, it suffices to show how to construct an ε-
approximation for only one of these regions. We thus show
how to approximate Si(·) on the square [0, 1] × [0, 1], which
is the bottom left corner region of Si(·).

We note that the construction described below is insen-
sitive to scaling, and for convenience multiply Si(·) by α2.
This ensures that maxp∈R2 Si(p) = 1.

For j = 1, . . . , M , let γj =
{

p ∈ [0, 1]2
∣

∣

∣
Si(p) = βj

}

,

where βj = min((1 + ε)jε/50, 1) and M =
⌈

log1+ε(50/ε)
⌉

=

O
(

log(1/ε)
ε

)

. Thus the curve γj is the βj-level set of Si(·),
i.e., the planar projection of the horizontal cross-section

(‘slice’) of the graph of Si(·) at height βj . M will be re-
ferred to as the number of slices.

Notice that our carefully made assumptions imply that
Si(p) = xy for p = (x, y) ∈ [0, 1]2. Thus, Si(p) = βj implies
y = βj/x. The curve γj is thus simply the image of the
univariate function fj(x) = βj/x inside the unit square.

Let Pj be the minimum link polygonal path that lies be-
tween the curves γj and γj+1. We consider the set of all Pj ,
for 1 ≤ j ≤ M − 1, and construct its vertical decomposition
[11]. This results in a collection of rectangles, all lying be-
tween γj and γj+2, for various 1 ≤ j ≤ M −2. We define the
weight of each such rectangle as the height βj of the lower
curve γj . These are the weighted rectangles that approxi-
mate Si(·) in the bottom left corner region. Their number
is bounded by the complexity of the vertical decomposition,
which is O(

∑M
j=0 |Pj |).

We now show how to compute the chains Pj and ana-

lyze the quantity
∑M

j=0 |Pj |. Fix a number j and assume
for simplicity that βj+1 < 1. Define the chain as Pj =

p1p
′

1p2p
′

2 . . . p
′

mj−1pmj
. The points pk and p

′

k are computed
as follows.

Let xj,1 = βj+1 = (1 + ε)j+1ε/50 and

p1 = (xj,1, fj+1(xj,1)) =
(

(1 + ε)j+1 ε

50
, 1

)

∈ γj+1.

p1 is the first vertex of Pj . The odd vertices of Pj lie on γj+1

and the even ones lie on γj . We compute an odd vertex pk of

Pj by shooting a horizontal ray to the right from p
′

k−1 until

it hits γj+1. We compute an even vertex p
′

k by shooting a
vertical ray down from pk until it hits γj .

More formally, let pk = (xj,k, fj+1(xj,k)) ∈ γj+1, and
consider the vertical segment emanating from pk downward

until it hits γj . Let p
′

k = (xj,k, fj(xj,k)) ∈ γj denote the
endpoint of this segment on γj . Next, let xj,k+1 be the x
coordinate of the intersection point of γj+1 with the hori-

zontal ray emanating from p
′

k to the right. By construction,

xj,k+1 is the solution to the equation
βj

xj,k
=

βj+1

xj,k+1
. Thus,

either xj,k+1 = 1 (i.e., we have reached the right ‘opening’

4

Figure 3: The height map of the weight function
WRi

(·) of the rectangles Ri that approximate Si(·) .
The number of slices M is 15.

of the area between γj and γj+1), or xj,k+1 = (1 + ε)xj,k =
(1 + ε)kxj,1 = (1 + ε)kβj+1. This yields

pk = (xj,k, fj+1(xj,k)) =

(

(1 + ε)kβj+1,
βj+1

xj,k

)

=

(

(1 + ε)k+j+1 ε

50
,

1

(1 + ε)k−1

)

,

and

p
′

k =

(

(1 + ε)k+j+1 ε

50
,

1

(1 + ε)k

)

.

This completes the specification of the chain Pj . We have

|Pj | = O

(

log1+ε

1

βj+1

)

= O(M − j) ,

and
∑M

j=0 |Pj | = O(M2) = O
(

(log(1/ε)/ε)2
)

. This com-
pletes the proof of the lemma.

3.2 Approximating the Global Satisfaction
Function

We have shown in the previous subsection that an indi-
vidual satisfaction function Si(·) can be efficiently
ε-approximated by a set Ri of weighted rectangles. We
next prove that the union R = ∪iRi, for 1 ≤ i ≤ n, is
a good approximation for the global satisfaction function
SR(·). Specifically, the following lemma implies that the
weight function WR(·) 3ε-approximates SR(·).

Lemma 3.3 Let g1, . . . , gn be n functions that respectively
ε-approximate the functions S1, . . . , Sn. Let
U = maxp∈R2 SR(p) and let U = maxp∈R2

∑n
i=1 gi(p). Then

U ≥ U ≥ (1 − 3ε)U.

Proof. Let popt = popt(R) be the point realizing U .
Clearly, if for i = 1, . . . , n, we have gi(popt) ≥ (1−ε)Si(popt)
then the claim trivially holds, as U ≥ ∑n

i=1 gi(popt) ≥
(1 − ε)U .

This fails if for some i, gi(popt) < (1−ε)Si(popt), which by
Definition 3.1 holds only if 0 < Si(popt) < (ε/50)ci, where
ci = maxp∈R2 Si(p). Let

I =
{

i
∣

∣

∣
Si(popt) < (ε/50)ci, i = 1, . . . , n

}

and define

U− =
∑

i∈I

Si(popt) and U+ =
∑

i/∈I,i=1,...,n

Si(popt).

Note that U = U− + U+. If U− < εU , we are done, as
U ≥ (1 − ε)U+ ≥ (1 − ε)2U ≥ (1 − 3ε)U . Thus assume
that U− > εU . Consider a function Si(·) that contributes
(positively) to U− and observe that C(popt)∩Ri 6= ∅. Thus,
Si(popt) < ε maxp∈R2 Si(p). Also note that either at least
one of the corners of C(popt) is inside Ri, or, alternatively,
two of the corners of Ri are inside C(popt).

Consider the former case first. Let q1, q2, q3, q4 be the four
corners of C(popt), and let q1 be a corner that lies inside Ri.
Clearly, Si(q1) ≥ ci/4; this is true whenever the center of
the camera is placed inside the rectangle Ri.

In the latter case there are two corners of Ri inside C(popt),
and Ri is smaller than C(popt). It can be easily verified that
this implies (again) that

max (Si(q1), Si(q2), Si(q3), Si(q4)) ≥ ci

4

Let ϕ(p) =
∑

i∈I Si(p). We have

ϕ(q1) + ϕ(q2) + ϕ(q3) + ϕ(q4) ≥
∑

i∈I

ci

4

≥
∑

i∈I

50

4ε
Si(popt) >

12

ε
U− >

12

ε
εU = 12U ,

which implies that

max
c

ϕ(qc) > 3U > max
c

S(qc) ≥ max
c

ϕ(qc),

which is a contradiction.

3.3 Computing the Approximate Camera
Rectangle

The previous subsections show that we can reduce the
problem of finding an ε-approximate camera rectangle to
the problem of finding, given a collection of weighted axis-
parallel rectangles, the maximally covered point in the plane
that maximizes the cumulative weight of the rectangles that
contain it. Indeed, put E = (log(1/ε)/ε)2. Lemma 3.2 shows
that we can (ε/3)-approximate Si(·) with a collection Ri of
O(E) weighted rectangles. This collection can trivially be
computed in time O(E log E). (With a little more insight,
it can actually be computed in time O(E), but the crude
bound O(E log E) will suffice.) Consider the collection R =
∪i=1,...,nRi. Lemma 3.3 implies that WR(·) ε-approximates
S(·). To compute an ε-approximate camera rectangle it thus
suffices to find the point p0 = maxp∈R2 WR(p), which is the
maximally covered point in the above sense. In the proof of
the following theorem we show how this can be done in time
O(N log N), where N = |R| = O(nE).

Theorem 3.4 Given a set R = {R1, . . . , Rn} of user rect-
angles and a parameter ε > 0, we can compute a point
p0 ∈ R

2, such that SR(p0) ≥ (1− ε)maxp∈R2 SR(p), in time

O(N log N), where N = O
(

n log2(1/ε)

ε2

)

.

Proof. In light of the above, we concentrate on comput-
ing the point p0 = maxp∈R2 WR(p). This is done with a
sweep-based algorithm. Our approach is very similar to the
one used by de Berg et al. [9] to find, given two collections of

5

respectively red and blue squares, a point in the plane that
maximizes the difference between the number of red and the
number of blue squares that contain the point.

We sweep the collection R with a vertical line `, from left
to right. At any given time, the intersection R∩` is a collec-
tion of weighted intervals on `. This collection changes only
when ` reaches the left (resp., the right) side of some rect-
angle r ∈ R. At this point, a weighted interval on ` appears
(resp., disappears). Throughout the sweep we maintain the
maximally covered point on `. That is, given the collection
of weighted intervals on `, we maintain the point on ` that
maximizes the cumulative weight of the intervals that con-
tain it. The heaviest point among those maintained in this
fashion during the sweep is the point p0 we are looking for.

It remains to give the details of the data structure we
maintain on `. Recall that at any given time we have a
set of weighted intervals I and we want to keep track of
the maximally covered point. We use a modified version of
the segment tree [11]. It is a balanced binary tree on the
elementary intervals into which ` is partitioned by I. Every
leaf u corresponds to an elementary interval i(u); every inner
node v corresponds to the interval i(v) that is the union of
the intervals corresponding to its children: i(v) = i(left(v))∪
i(right(v)). In addition, every node stores pointers to a set
S(v) ⊆ I of weighted intervals from I. The intervals S(v)
are those intervals of I that contain i(v) but do not contain
i(parent(v)).

In addition to the above standard components of the seg-
ment tree structure [11], we associate with every node v the
weight w(v), defined to be the cumulative weight of the in-
tervals S(v), and the ordered pair (p(v), w(p(v))) that spec-
ifies the maximally covered point p(v) among all points in
i(v), and the weight w(p(v)) of this point. These parame-
ters, as the rest of the segment tree, are initialized bottom-
up. For a leaf u, the point p(u) is set to be an arbitrary point
in i(u), and its weight w(p(u)) is set to w(u). For an inte-
rior node v, if w(p(left(v))) > w(p(right(v))), we set p(v) =
p(left(v)) and w(p(v)) = w(p(left(v))) + w(v); otherwise,
p(v) = p(right(v)) and w(p(v)) = w(p(right(v))) + w(v).

It is clear that the maximally covered point on ` is the
point p(r) associated with the root r of the tree. Stan-
dard analysis implies that the tree can be constructed in
O(m log m) time, where m = |I| [11]. Recall, however, that
we need to maintain the data structure dynamically through
the sweep. We do this as follows. Project all the horizon-
tal edges of all the rectangles of R horizontally onto the
y-axis. This results in a subdivision of this axis into O(N)
intervals. We construct a balanced binary tree on the ele-
mentary intervals of this subdivision. This tree serves as a
backbone for our segment tree, and ensures that the segment
tree remains roughly balanced through the sweep. Inserting
or removing a weighted interval now amounts to updating
the information associated with certain nodes of this fixed
tree. The properties of the segment tree imply that the num-
ber of nodes affected by any single insertion or deletion is
O(log N), and that they can be traversed in O(log N) time
[11].

We start the sweep from −∞ with the weight w(v) of
every node v in the tree being 0; the number of weighted
intervals intersecting ` in the beginning is 0. We then sweep
the collection R, inserting and removing intervals into the
data structure as we go along, until we get to +∞, where
all the weights are 0 again. We make O(N) insertions and

deletions, and standard analysis shows that each such oper-
ation can be carried out in time O(log N) [11]. The overall
running time of the sweeping algorithm is thus O(N log N),
which subsumes the time O(N log E) needed to construct
the approximation rectangles R. This completes the proof
of the theorem.

Remark 3.5 After the submission of this extended ab-
stract, Chan [8] found a way of representing each individ-
ual satisfaction function by only O(1/ε2) weighted rectan-
gles, such that the algorithm of Theorem 3.4 still produces
an ε-approximate solution using these rectangles. This im-
proves the running time of the algorithm to O(N log N) for
N = O(n/ε2). The main idea behind the alternative con-
struction of rectangles is that the cumulative weight function
they define does not have to ε-approximate S(·). It is suffi-
cient for the purpose of the algorithm that the value of this
weight function be ε-close to the value of S(·) when S(·)
achieves its maximum.

4. Exact Algorithm
We will extend the sweeping algorithm of Theorem 3.4

to compute the exact maximum of S(·). Unfortunately this
extension is not trivial, since we are now not sweeping a
collection of weighted rectangles, but rather a collection of
n individual satisfaction functions Si(·). The cross-section
of each such function with the vertical sweep-line ` changes
continuously for part of the sweeping process, and this cross-
section is no longer a weighted interval on `, but rather
a trapezoid-like function. We need to maintain the maxi-
mum of the sum of n such continuously changing functions
throughout the sweep. Fortunately, the favorable properties
of the functions Si(·), described in Section 2, will come to
our rescue.

For a specific 1 ≤ i ≤ n, let Li be the set of eight lines
(four horizontal and four vertical) that partition the plane
into rectangular cells, such that inside each cell, the function
Si(·) is differentiable. See Figure 2 and note that Si(·) =
0 inside the 16 unbounded cells of the arrangement of Li.
Let the collection of the 9 bounded cells (rectangles) of this
arrangement be Ei, and define E = ER = ∪i=1,...,nEi. Also
let G = GR denote the (grid) arrangement of L, where L =
LR = ∪i=1,...,nLi. The following lemma is equivalent to [20,
Theorem 1] and is given here for completeness.

Lemma 4.1 The maximum of S(·) is achieved at a vertex
of G.

Proof. Assume, for the sake of contradiction, that the
maximum of S(·) is not achieved at a vertex of the grid G,
but rather at a point p that lies in the interior of a cell or
an edge of G. Assume, without loss of generality, that the
edge in the latter case is horizontal. Let ` be the horizon-
tal line spanned by p. Let f(t) = S(`(t)) be the restriction
of S to `. The properties outlined in Section 2 imply that
the univariate function f(t) is piecewise linear, and is linear
inside each elementary interval on ` (these are the intervals
bounded by consecutive intersections of ` with the vertical
lines of L). Since, by assumption, p lies inside such an ele-
mentary interval, the value of f(·) on one of the endpoints of
this interval is at least as large as f(p). If p lies on an edge
of G, this brings an immediate contradiction. Otherwise, if

6

p lies in the interior of a cell of G, consider the endpoint p′

of the elementary interval on ` that contains p, for which
f(p′) ≥ f(p). (Since p is assumed to be the maximum, we
actually have that f(p′) = f(p).) p′ lies on some vertical
line `′ ∈ L. We can repeat the same reasoning as above
with respect to p′ and `′, showing that S(p′′) ≥ S(p′), for
one of the endpoints p′′ of the elementary interval on `′ that
contains p′. This is a contradiction that proves the lemma.

This lemma shows that it is sufficient to search for the
maximum of S(·) on the horizontal lines `1, . . . , `m of L.
Let y1, . . . , ym be the y-coordinates for which `i ≡ (y = yi),
respectively. Define also fi(t) = S(`i(t)) to be the restriction
of S to `i. As follows from Section 2, fi(t) is piecewise linear,
and is linear in between consecutive vertical lines of L. We
seek to locate maxt maxi=1,...,n fi(t). This will be achieved
with the help of the data structure described in the following
lemma.

Lemma 4.2 Let P (t) = {(a1, g1(t)), . . . , (au, gu(t))} be a
set of u points that are moving along vertical trajectories in
the plane, at constant speeds. That is, a1, . . . , au are the
fixed x-coordinates of the points and g1, . . . , gu are linear
functions. Then

(a) The upper part CH(P (t)) of the convex hull of P (t) un-
dergoes O(u) combinatorial changes throughout time.

(b) CH(P (t)) can be maintained in a kinetic data structure
of size O(u) that allows estimating its extreme point
in any direction in time O(log u). The data struc-
ture can be initialized in time O(u log u) and undergoes
O(u log u) structural changes (events) throughout time.
Each change can be processed in time O(log2(u)). The
overall time needed to maintain the data structure is
thus O(u log3 u).

Proof. Part (a) is a standard exercise: Since all points
move at fixed speeds, no point can leave CH(P (t)) and then
appear on it again. Any point thus appears and disappears
at most once. Since any combinatorial change of CH(P (t)) is
caused by some point appearing or disappearing, this proves
part (a).

To construct the data structure of part (b) we use a di-
vide and conquer approach, and modify the data structure
of Overmars and van Leeuwen [18] to our needs. Here is
a sketch of the basic idea: Split the points into a left half
and a right half, and process the halves recursively. This
yields a binary tree. For every node in the tree, the recur-
sive processing yields the two separate hulls associated with
the children of this node. We connect them by a bridge that
we associate with the node. Part (a) implies that this bridge
undergoes O(ui) changes throughout time, where ui is the
number of points handled by the subtree rooted at this node.
The data structure thus has O(u log u) structural changes at
all of its levels. Its size is linear in u since every node main-
tains only a constant amount of information that specifies
the bridge between the hulls of its two children. The above
recursive initialization process takes O(u log u) time. We
omit the technical details, which can be found in Overmars
and van Leeuwen [18]. In particular, each structural change
can be handled in time O(log2 u).

����� ���	�

�

�

 ��

Figure 4: For a bridge qt stored at a node v, we
have to maintain a certificate that testifies that qt
is a valid bridge. Here p, q, r (resp., s, t, u) are the
three consecutive vertices of the convex hull of the
points stored in the left (resp., the right) subtree
of v. These certificates testify that the triplets
(u, s, t), (s, t, q), (q, r, t), (p, q, r) of moving points are not
collinear. For each such certificate, we compute the
time when it is violated; namely, when the three rel-
evant points become collinear. These are the times
when the convex hull of the moving points changes
and we need to update the data structure.

To correctly handle the motion of the points we need to
transform the above into a kinetic data structure (see Basch
et al. [6] and Guibas [15]). Any node in our tree contains
a bridge (between the convex hulls of its left and right chil-
dren), which can be certified, in the sense of [6], using a
constant number of certificates, see Figure 4. Namely, by in-
specting the four adjacent edges to the bridge in the children
convex chains, and the (moving) points that define them, we
can in constant time compute the first time where this bridge
is no longer legal. Putting these time events into a queue, we
can detect the next time when the convex hull undergoes a
combinatorial change, and then handle these internal events
by performing the appropriate insertions and deletions in
the data structure. See [6] for further details.

As for estimating the extreme points of CH(P (t)), observe
that at any time t, our data structure is (essentially) the
data structure of Overmars and van Leeuwen. As such, it
can answer the queries as claimed.

This lemma suggests the following approach to our prob-
lem of maintaining the maximum of S(·) over the sweep-line
`: Maintain the convex hull of the moving points (yi, fi(t))
as described in the lemma, and keep track of its highest point
through time. The problem is that the functions fi(t) are
not linear but piecewise-linear, so we might need to appro-
priately update the data structure whenever the sweep-line
` reaches a vertical line of L. At each of the O(n) such ver-
tical lines, a linear number of points (yi, fi(t)) might change
their velocity (this happens when the function fi(t) changes
its slope), so overall the number of updates we have to per-
form might be as large as quadratic.

We overcome this difficulty by batching successive lines
`i into batches of cardinality k = d√ne. Namely, we de-
fine Li =

{

`k·(i−1)+1, . . . , `k·i

}

, for i = 1, . . . , r, where r =
dn/ke. We will also denote by Pi the batch of points

{

(yk·(i−1)+1, fk·(i−1)+1(t)), . . . , (yk·i, fk·i(t))
}

that corresponds to Li. Let us now look closer at the be-
havior of these points.

The velocity of a point belonging to Pi changes whenever
the sweep-line ` reaches a vertical edge of one of the rectan-
gles in E, such that this edge contains the mentioned point.
However, if this rectangle edge contains all the points in the

7

Figure 5: The robotic camera used by our system.

batch Pi, we can handle the velocity changes of all these
points together. Specifically, we can associate a function
Bi(y, t) with Li, such that for a point (yj , fj(t)), fj(t) =
Bi(yj , t) + gj(t), where i is the number of the batch that
contains this point. For all i, the points

{

(yk·(i−1)+1, gk·(i−1)+1(t)), . . . , (yk·i, gk·i(t))
}

are stored in the data structure of Lemma 4.2. Thus, han-
dling a rectangle edge that contains all of Pi amounts to up-
dating Bi(y, t) (in constant time), and the invariant fj(t) =
Bi(yj , t) + gj(t), for all points (yj , fj(t)) in Pi still holds.
We call an event as above global with respect to the batch i.
Otherwise, if the encountered rectangle edge contains only
some of the points in Pi, the event is said to be local with
respect to this batch. Every event is local with respect to
at most two batches, and global with respect to at most
O(

√
n) (which is their total number). Whenever a batch i

encounters a local event, we explicitly update the velocities
of all the points in the batch, and simply rebuild the data
structure associated with it.

Recall that our goal is to locate the maximum of S(·).
Lemma 4.1 implies that it is sufficient to compute, for all
i = 1, . . . , r, the highest point on the upper hull CH(Pi) of
Pi, and to do so only whenever this batch is being updated
because of a global or local event.

Let us explain how we handle this computation when Pi

encounters a global event. Since the convex hull CH(Pi) is
maintained in the data structure described in Lemma 4.2
we can locate its highest point in time O(log n). The points
stored in the data structure do not take into account the
global function Bi(y, t). Since Bi(y, t) is linear in y for a fixed
t, adding this function to all the points, as described above,
simply ‘skews’ the convex hull. Finding the highest point on
the ‘skewed’ hull Bi(y, t)+CH(Pi(t)) is equivalent to finding
the extreme point of CH(Pi(t)) in a specific direction, which
can be inferred from Bi(y, t) in constant time. As follows
from Lemma 4.2, this can be done in time O(log n).

Overall, a global event can be easily be handled in time
O(log n) per affected batch. We first update in constant
time the associated function Bi(y, t), and then find in time
O(log n) the highest point on the skewed convex hull. This
point is a candidate for being the highest point of S(·), and
as such, it is compared with the highest point encountered
so far. Since there are O(

√
n) batches and O(n) events (ver-

tical edges of rectangles from E) throughout the sweep, the

processing of all global events takes time O(n3/2 log n).
When a batch encounters a local event, we explicitly re-

build the associated data structure. We thus need to deposit
at this point O(

√
n log3 n) units of time, to cover for the time

Figure 6: 400 randomly generated rectangles.

we will need to maintain this data structure, as explained
in Lemma 4.2. Also, whenever we rebuild the convex hull
as above, we compute its highest point, which is a candi-
date for being the highest point of S(·) as above. Overall,
processing a local event takes time O(

√
n log3 n) per batch.

Since there are O(n) events, and each of them is local for

only two batches, this amounts to O(n3/2 log3 n) time spent
on local events overall. Combined with the above analysis
of global events, this yields the following main result of this
section.

Theorem 4.3 Given a set R = {R1, . . . , Rn} of user rect-
angles, we can compute a point p0 ∈ R

2, such that SR(p0) =

maxp∈R2 SR(p), in time O(n3/2 log3 n).

Remark 4.4 After the submission of this extended ab-
stract, Chan [8] found an alternative exact algorithm for
computing the maximum of S(·). It is based on a technique
described by Overmars and Yap [19] and achieves running

time O(n3/2 log n).

5. Implementation and Experiments
We have implemented the approximation algorithm of Sec-

tion 3 and integrated it with the rest of the ShareCam infras-
tructure, which includes a functional networking module and
is currently on-line [1]. We have carried out experiments on
a Dell PowerEdge Server 2650 with a Dual Intel Xeon 2.4Ghz
CPU and 2GB of RAM. (Only one CPU was utilized.) We
use Visual C++ and Windows. Our pan/tilt/zoom robotic
camera is the Canon VC-C4, shown in Figure 5. Figures 1
and 3 were produced using our implementation. Figure 1(a)
shows 18 user rectangles and the camera rectangle computed
by our algorithm. Figure 1(b) shows the optimal camera
rectangle for this input that was computed by the algorithm
of [20].

We have compared the performance of our algorithm to
the algorithm of Song et al. [20]. The comparison used
randomly generated collections of user rectangles. We have
not generated the rectangles uniformly at random since the
rectangles then tend to cover the plane in a homogeneous
fashion, such that the global satisfaction function values are

8

number of users Song et al. [20] This paper
200 15 125 (0.88)
400 32 204 (0.86)
600 125 562 (0.87)
800 157 781 (0.88)
1000 281 1578 (0.86)

Table 1: The table shows the running times (in mil-
liseconds) of the algorithms of [20] and of Section 3.
The ratio of the global satisfaction value generated
by our algorithm to the optimal value found by the
algorithm of [20] is shown in parenthesis.

almost the same everywhere. This is not a realistic model of
user input. As an alternative, we first select four seed points
uniformly at random. To generate a rectangle, we select
one of the seed points at random or, with small probability,
select none. If one of the seed points is selected we compute
the rectangle using a normal distribution centered at the
selected seed. Otherwise the rectangle is chosen from the
uniform distribution over the plane. Figure 6 demonstrates
400 rectangles generated in this fashion.

A sample from our experimental results is presented in
Table 1. In this table, the number of slices made by our al-
gorithm to approximate the individual satisfaction functions
is M = 3 (see Section 3). As the accuracy values in Table 1
indicate, we have observed that in practice the dependence
of the approximation quality of our algorithm on M is con-
siderably better than the conservative bound guaranteed by
Theorem 3.4.

On the other hand, the algorithm was consistently slower
than its counterpart, despite having superior asymptotical
running time. This asymptotical superiority does ensure
that our algorithm outperforms [20] beyond a certain num-
ber of users. This number is, however, in the hundreds of
thousands, when both algorithms are no longer practical.

The bottleneck for our algorithm seems to be the large
number of segment-tree insertions and deletions performed
during the sweep. For M = 3 slices, each individual satis-
faction function is represented by about 50 rectangles. For
1, 000 users this translates to about 100, 000 insertions and
deletions. We are currently looking into various ways of
achieving speed-up in practice, which include optimizing our
segment tree implementation.

Acknowledgements
The authors would like to acknowledge the helpful sugges-
tions of Timothy Chan, Shankar Krishnan, Mark Pauly,
Frank van der Stappen, and Suresh Venkatasubramanian.

6. REFERENCES
[1] http://tele-actor.net/sharecam

[2]
http://www.x-zone.canon.co.jp/WebView-E/all/list.htm

[3] http://www.globalcam.net/demos.html

[4] P. K. Agarwal and M. Sharir. Efficient algorithms for
geometric optimization. ACM Comput. Surv.,
30:412–458, 1998.

[5] A.Z.Broder. On the resemblance and containment of
documents. In Compression and Complexity of
Sequences, 1998.

[6] J. Basch, L. J. Guibas, and J. Hershberger. Data
structures for mobile data. Journal of Algorithms,
31(1):1–28, 1999.

[7] D. J. Cannon. Point-And-Direct Telerobotics: Object
Level Strategic Supervisory Control in Unstructured
Interactive Human-Machine System Environments. PhD
thesis, Stanford Mechanical Engineering, June 1992.

[8] T. Chan. Personal communication.

[9] M. de Berg, P. Bose, O. Cheong, and P. Morin. On
simplifying dot maps. In Proc. 18th European Workshop
on Computational Geometry, pages 96–100. 2002.

[10] M. de Berg, O. Cheong, O. Devillers, M. van Kreveld,
and M. Teillaud. Computing the maximum overlap of
two convex polygons under translations. Theory of
Computing Systems, 31:613–628, 1998.

[11] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. Computational Geometry: Algorithms
and Applications. Springer-Verlag, Berlin, Germany, 2nd
edition, 2000.

[12] K. Goldberg and B. Chen. Collaborative control of
robot motion: Robustness to error. In International
Conference on Intelligent Robots and Systems (IROS),
2001.

[13] K. Goldberg, B. Chen, R. Solomon, S. Bui, B. Farzin,
J. Heitler, D. Poon, and G. Smith. Collaborative
teleoperation via the internet. In IEEE International
Conference on Robotics and Automation (ICRA), April
2000.

[14] K. Goldberg, D. Song, Y. Khor, D. Pescovitz,
A. Levandowski, J. Himmelstein, J. Shih, A. Ho,
E. Paulos, and J. Donath. Collaborative online
teleoperation with spatial dynamic voting and a human
“tele-actor”. In IEEE International Conference on
Robotics and Automation (ICRA), May 2002.

[15] L. J. Guibas. Kinetic data structures — a state of the
art report. In P. K. Agarwal, L. E. Kavraki, and
M. Mason, editors, Workshop on Algorithmic
Foundations of Robotics, pages 191–209. 1998.

[16] T. Haveliwala, A. Gionis, D. Klein, and P. Indyk.
Evaluating strategies for similarity search on the web. In
Proceedings of WWW, 2002.

[17] M. McDonald, D. Small, C. Graves, and D. Cannon.
Virtual collaborative control to improve intelligent
robotic system efficiency and quality. In IEEE
International Conference on Robotics and Automation,
April 1997.

[18] M. H. Overmars and J. van Leeuwen. Maintenance of
configurations in the plane. J. Comput. Syst. Sci.,
23:166–204, 1981.

[19] M. H. Overmars and C.-K. Yap. New upper bounds in
Klee’s measure problem. SIAM J. Comput.,
20:1034–1045, 1991.

[20] D. Song, A. F. van der Stappen, and K. Goldberg.
Exact and distributed algorithms for collaborative
camera control. In Workshop on Algorithmic
Foundations of Robotics, 2002.

[21] R. C. Veltkamp and M. Hagedoorn. Shape similarity
measures, properties, and constructions. In Proceedings
VISUAL 2000, volume 1929, pages 467–476. Springer,
2000.

9

