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Abstract— We develop a localization method enabling a team S e 7 =~ N D¢

of mobile robots to search for multiple unknown transient radio / DG

sources. Due to signal source anonymity, short transmisgio o \

durations, and dynamic transmission patterns, robots canot ©) ( * l

treat the radio sources as continuous radio beacons. Moreey, O

robots do not know the source transmission power and have \ /

limited sensing ranges. To cope with these challenges, weipa W % N ®

up robots and develop a sensing model using the signal stretig ~ — D¢

ratio from the paired robots. We formally prove that the sensed

conditional joint posterior probability of source locations for * Active radio source @ Robots with reception

the m—robot team can be obtained by combining the pairwise K Inactive radio sources O  Robots without reception

joint posterior probabilities, which can be derived from signall ~! Robot sensing range for the active source

strength ratios. Moreover, we propose a pairwise ridge wallng ) o )
algorithm (PRWA) to coordinate the robot pairs based on the Fig. 1. An example of the localization scenario.
clustering of high probability regions and the minimization of

local Shannon entropy. We have implemented and validated #a

algorithm under hardware-driven simulation.

between RSS readings from dislocated listeners have been
[. INTRODUCTION proven to be effective [8]-[10]. Li et al. [11] shows that at
Imagine that a team of mobile robots is searching for least four robots are needed at the same moment in order to

sensor network deployed by enemies (see Fig. 1). The robécegalize a single source with unknown transmission power.

have little information about the sensor network except twanother approaches use antenna arrays to obtain bearing

fact that the sensor nodes emit short radio signals from tinfgadings. _Kim and Chong [12] S_hOW how tq fiqd a radio
to time. Without knowledge of the network configurationsource using two antennas with different polarization®sen

and packet structure, localizing each node is difficult cue tapproaches focus on single source localization and heece ar

signal source anonymity, short transmission durationg, af'©t concerned with the signal correspondence issue.
dynamic/intermittent transmission patterns. The robats ¢  Realizing that localizing unknown transient radio sources
only rely on radio signal strength (RSS) from intercepteds an important new problem, our group studies the problem
signals. However, the transmission power of the radio ssurcunder different setups and constraints. First, we assume a
is unknown and may vary from time to time. A new methoctarrier sense multiple access based protocol is used among
is needed for this multi-source localization problem that inetworked radio sources [13], [14] which allows us to
coupled with issues in signal correspondence, variableesou develop a particle filter-based approach. Then, we relax the
transmission power, and robot sensing range limits. assumption and develop a protocol-independent localizati
The recent development of radio frequency-based locadcheme using a spatiotemporal probability occupancy grid
ization can be viewed as the localization of “friendly” radi (SPOG) [15]. Our recent work [16], [17] find that teamed
sources because researchers either assume that an iatlividabots are more efficient than a single robot when the tasget i
radio source continuously transmits radio signals (simida transient under the same sensing coverage. That resul shif
a lighthouse) [1]-[4], or assume that robots/receivers ai@ur attention to the multi-robot based approach in this pape

a part of the network and understand the detailed packetthe contributions of this paper are twofold. First, we
information [5]{7]. However, such informationis notaly& formally prove that the sensed conditional joint posterior
available for an unknown network. When signal sources alSrobability of source locations for the:—robot team can

not cooperative, RSS readings are the primary informatiqfe optained by combining that of pairwise joint posterior

for localization because RSS attenuates over diStanceeS"brobabiIities which are based on RSS ratios and also con-

signal transmission power at the source is not availabiesa sjger reception range limits. The new sensing model can be
. . . _ _ combined with the SPOG in [15] to address signal correspon-
This work was supported in part by the National Science Fatiod dence issue. Second. we bropose a pairwise ridae walkin
under CAREER grant 11S-0643298 and MRI-0923203. _ : , prop pairv g 9
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thefSIts}/:@%O“e%e Statlogy ;X 77843, USA, (Emaitkcyoung, dzsong,  clustering of high probability regions and the minimizatiof
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USA, (Email:j gyi @ ut ger s. edu) the algorithm under a hardware-driven simulation.



[I. PROBLEM DEFINITION for recursive update [15]. As more RSS readings enter the
A. Problem Scenario system over time,P(C;|Z* = z*) converges and allows

Both robots and radio sources reside in a 2D Euclidearr?bOts to localize each radio source.

space. We also make the following assumptions: C. Problem Formulation

1) Each robot is equipped with an omni-directional an-
tenna with a limited sensing range.

2) All robots are coordinated using a centralized contro

8) The unknown network traffic is light and each target,, present timek when a new RSS reading is received.
radio transmission is short, which are the typical Char(’)nceP(Z’“ — 7%|C1) is obtained, we can use (1) and (2)

acteristics of a low power sensor network. to compute posterior sensor location distributl(C;|Z* =

4) Transmission powers of radio sources are unknown tzq) which leads to robot trajectory planning

Itg(?art(i)c?r?stso?r::(;ri?};ggilgseggo?ottlTr?;r? t:ame. However, Definition 2 (Planning Problem)Given the updated
ge. P(C;|Z* = ZF), plan trajectories for each robot at the
B. Spatiotemporal Probability Occupancy Grid beginning of each planning period.

To infer the transmitter locations and transmission rates e start with the sensing problem first in Section IIl.
based on perceived signals, we use a Bayesian framework to
keep track of the knowledge of unknown radio sources. Here -
we extend the SPOG proposed in our previous work [15]. The sensor modeP(Z* = z*|C}) is very complex.
SPOG partitions the searching region into small and equdt is a joint conditional distribution of ann-dimensional
sized grid cells. Define € A; as the cell index variable random vector. To derive the conditional probability, we
whereN; := {1,...,n} is the grid cell index set and is the model the signal transmission uncertainty, derive pagwis
total number of cells. SPOG tracks two types of probahilistisensing model based on signal strength ratio to remove the
events:C; represents the event that celcontains a radio dependence on source transmission power, and propose a
source and”} represents the event that ceélls the active sensing fusion scheme to aggregate the output of all pairs to
source when a transmission is detected. Defit@) as obtain the high order modét(Z* = z*|C}). For simplicity,
the probability for event. P(C;) and P(C}) characterize the time superscript is dropped in this section by assuming
spatiotemporal behaviors of transient radio sources. Mate that all values correspond to present tifneThus, P(Z* =
we ignore collision cases because robots sense the radfC;) becomesP(Z = z|C}).
signal strength (RSS) as soon as the transmission is adtiat _ .
and the probability of two or more transmissions initiatéd aA Signal Propagation Model
the exact same moment is negligible in a light traffic network For a robot equipped with an omni-directional antenna, the

Letl € M := {1,...m} be the robot index variable distance to the active radio source and source transmission
wherem is the total number of robots antM is the robot power largely determine the perceived RSS. Assume the
index set. Discrete timé refers to each moment when aactive radio source is located at the center of cellLet
transmission is detected by robots. Let the discrete random = [z;,v;]” and x; = [z, y]” be the center location
variable ZF ¢ [1,255] N N be the sensed RSS readingof cell i and the location of robot, respectively, when
(from an 8-bit receiver) of thé-th robot at timek. Define the transmission is sensed. Defidg =| x; — x; || as
ZF = [ZF,...,ZF]T as a discrete random vector of all thethe Euclidean distance between and x;. Following the
sensed RSS readings at tih@nd letz* := [zF,..., 2% ]T be  signal propagation model [18], the expected RSS of rébot
corresponding values. As a convention, we use lower casissdenoted ag); and measured in units of dBm:
of random variables or vectors to denote their values.

At time k, eventZ* = z* is perceived by robots. The W= w; — 10810g;o(dii), (3)
posterior probabilityP(C;|Z* = z*) over the grid needs where source power level; is unknown and3 is the signal
to be updated. According to [15], this is actually a nestedecay factor.
multivariate Bayesian process, An RSS level is not a constant but a continuous random
variable due to uncertainties in transmissions. Assume the

To utilize the Bayesian framework, we need to derive a
Fensing model first; )
" Definition 1 (Sensing Problem)Derive P(Z* = z*|C})

IIl. SENSING MODEL

P(Cy|ZF = 7F) = e D - :
N robot radio listener has an infinite resolution, its perediv
( P(ZF =2*|CHP(CH)+ > RSS would be a continuous random variaBefor robot!.
P(Ci) 3 opiwer P(ZF = 2¥|C5)P(CY) Moreover, robots can only detect the transmission signal if
Sier P(Z* = z¥|CHP(C}) » (1) an ac'Five .radio source is located in their sensing ranges, ea
) P(Z’“ — ZH e P(C) of which is determined by an RSS threshold denoted by
P(CHZF =7F) = _ —t i , (2) To characterize sensing range limit and background noises
Yier P(ZF = 2F|1CHP(C}) in sensing, we have

whereP(Z* = z*|C}) is the sensing model. Egs. (1) and (2)
can be easily modified to an incremental conditional format

Y, if Z>(
¢, otherwise

Z) = p +wi, Wherey; = { (4)



wherew; follows the independent and identically distributed DefineZzl,iq, Z},Bq ande?Bq as the sensor readings of the
(i.i.d.) Gaussian with zero mean and a varianceodf robot pair (p,q) corresponding to components 6f;, 10
Note that3 in (3) ando? can be obtained by calibration. and £y, respectivelyZ,_, in (7) will be one of these three
Therefore, the probability density function (PDF) &f|C}  types. Note thaP(Z)° , € Z,_,|C}) is a constant because it

is fz01(z) = Bel(uy,,0%), where Bel(u,,0?) is the provides no information due to no reception. We now focus
Gaussian PDF. As a convention, the subscripf 6f is the on derivingP(Z}! , € Z, ,|C}) and P(Z)° , € T,,_,|C}).
corresponding random variable of the PDF function. Let us computeP(Z,! , € 7, ,|C}) first. From (3) and

Actually, the sensed RSS readidf is an integer due to (4), the mean valuéu, — j,) of z)! , becomes
receiver hardware limit. As a convention, we as® indicate

the integer value of continuous variable DefineZ; as an pp — Hq = Vp — g = 108 1log %, 9)
RSS interval, P
11 1
T, = (- 05,5 +0.5] CR. () @andthe PDF o, ,[C/ is

. ~ . dyi

Thus, we have the relation betweg&hn and Z; given C?, fzgiqwil (zzliq) = Bel <10ﬁ log,, d_q.’ 202> . (20)
P
P(Z, = z|C}) = P(Z, e I,|C}) = / fzcr(z0)dz. Thus, we have the following lemma.
z€h ©6) Lemma 2:

This is actually the sensing model when there is only one 11 1 Fp—2atl
robot. Since this model relies on unknown source power level P(Zy—y € Tp—4|C7) = S fz31 0 (2)dz
w;, it is not a viable sensing model, but provides a foundation o L
for the next step. = [Fzgiqwcz (Zp —Zg+1) - Fzu o1 (Zp — 24 — 1)} ,

(11)

where F;u c1(+) is the cumulative distribution function of
For a robot pair(p,q), p # ¢, recall the possible RSS f,., \01()7
readings form setg, andZ, as defined in (5), respectively. T facilitate the understanding of the dual detection case,
According to our convention?(Z, € I, Z, € Z,/C}) is @ Fig. 2(a) shows an example to illustrate the corresponding
pairwise conditional probability give@}. We are now ready posterior probability?(C}|Z1L, € T, _,).
to show thatP(Z, € 7,,, Z, € Z,|C7) can be obtained from  por p(710 ¢ 7, |C1), we have the following result.
its RSS ratio regardless of source transmission powerdevel | emma 3:
~Deflne~ Zp_q = Zp — Zy4 and_ letZ,—, = (%3 — 24 — 1 5y —Zat1
1,2, — 2, + 1] C R be the interval ofZ,_, values. p(Z;Qq eIp7q|Cil) - W(l_/ Fyu |C_1(z)dz),
P(Zy,_q € I,-4|C}) denotes the probability of pairwise dif- N Ep—%q e
ference giverC. Due to space limit, we have the following (12)
Lemma with its proof in our online technical report [19]where77
supplementing this paper.
Lemma 1:

B. Transmission Power Independent Pairwise Sensing

10 is the normalizing factor.

Again, the proof of Lemma 3 is in our technical report [19].
This result also does not depend on source transmission
P(Z, €T, Z, € T,|C}) = LP(Zp_q €T, ), (7) power. As an exa}mple, Flig.120(b) illustrates the correspugndi

Npq posterior probabilityP(C; |Z,° , € T, ).
wheren,, is the normalizing factor.

It is worth noting, since the RSS readings are in log scal
the difference between the two readirigs , actually means ~ Now we are ready to show that the-dimensional joint
a RSS ratio which does not depend on source transmissiepnditional probabilityP(Z* = z*|C}) can be reduced to
power levels. Computind®(Z,, € Z, 4|C}) is nontrivial a combination of pairwise conditional probabiliti&¥ Z, <
because some of robots may not have readings due 1p, 7, € 7,|C}). We have the following lemma.
limited sensing ranges. Based on (4), the robot index setLemma 4:

M is partitioned into two disjoint setel = M; U My - 1
which correspond to the sets of robots with and without P(Z =2C}) =~ [[ P(%, €1,,7Z, € Z,|C}), (13)
receptions, respectively. As a result, we have three types o g (r,a)€€

pairs: no detection for either robot, single detection, dnal \yherey) is the normalizing factor and remains the same for
detection. Definef as the set for all possible pairs whichgj| ;, andq values.

consists of three disjoint subsefs= £11 U £19 U o Where  again, the proof of Lemma 4 is in our technical report [19].

7 _ 5 1
S ={(p.q)lp < q,p € M1,q € My}, Now, we can complete the sensor mod%(IZ__ z|C}).
E10 = {(pq)lp € Ma,q € Mo} Combining Lemmas 1- 4, we have the following theorem.
10 ’ b 0J Theorem 1:The high dimension joint conditional proba-
€0 = {(P,9)lp < ¢,p € Mo,q € Mo} (8)  bility sensing modelP(Z = #|C?) can be decomposed as a

&. Sensor Fusion of Multiple Pairs



P(CHZ}L, € Tp—y)
P(03|Z;9q €ZIp—q)

@ (b) ©

Fig. 2. Sample cases of posterior condition distributiohsignal source location given thaH(Cil) initially uniform across cells: (a) dual detection, (b)
single detection, and (c) fusion of all pairs. The red stahésactive radio source location. This is obtained udtd,_, € Ip,q\C}) and the Bayesian
framework in (2). The grid size i50 x 50. Black and white dots represent robots with and without pgoms, respectively.

combination of pairwise conditional probabilities, wheren” = I i 1'[(;,&%5106771“’ Ty is the normalizing
Fou 1on (Gp— 3,4+ 1 factor. s e =
P(Z =3|C}) = % H _Z,:p’fl‘ci (l(pg _q;L_)l) ) Again, Fig. 2(c) illustrates the corresponding posterior
(ra)€En ZpmalCETP probability P(C}|Z = z), which is the fusion of all pairs.
Zp—Zqtl It is desirable that the adjacent regions of the red star have
X ( 1)_[ (1 - / ) Fzit o1 (Z)dz)7 (14) higher probabilities than that of other regions.
P,q)EE10 #r %

" . i IV. ROBOT MOTION PLANNER
wheren is the normalizing factor and remains the same for

all p andgq values.

<— On-ridge movements

.. i . ~ < - Off-ridge movements
Proof: Combining Lemma 1 with Lemma 4, the sensing 401 @ ]

model becomes

. 1 1 —
P@=#Cl) =+ T[ +=P(Zy € TpmilC)) %0

(p.g)ee 'P1

g1 | (pgee 10}

1 1 20+
(_ H — H P(Zy—q € T—4|C})
n
(p
1

= P(Zp—q € Ip—q|cz‘1)v (15)

wheren’ = ﬁH(M ce g 1S the normalizing factor and

; Fig. 3. An illustration of level sets with probability thitesld of 0.1,
remains the same for aﬁ andq values. ridges, and Pairwise Ridge Walking Algorithm with two paw$ robots
over a50 x 50 grid.

Applying (8) to (15) and combining Lemmas 2 and 3, the

sensing model is rewritten as Theorem 1 summarizes how to compu®Z = z|C}).

With the sensing model, the Bayesian framework in (2) can

- 1
—zlcH) = = 11 1 . . . R -
P(Z=2|C;) = H P(Zy=q € Ip—4lC7) derive the posterior source location distributiaR&C;|Z =

(p.9) €1 z). The next step is to develop a multi-robot motion planner
X H P(Z;Qq €L, 4|C}) that enables robots to quickly localize radio sources using
(p,9)E€10 the SPOG. We build on the ridge walking algorithm (RWA)
v H P(Zggq c Ip,q|C}) in [15]. RWA ha_s l_Jeen dem_gned for a smg!e robot without
(20) €800 sensing range limit to localize mult|pl.e_rad|o sources. The
= s s o4 experimental results have shown that it is an efficient frame
- i H Zy2,IC7 (pr Z‘{+ ) ) work. However, RWA is not designed for multiple robots and
(p.0)EEN —FZ;I,Q\CQ (Zp = 24— 1) significant revisions are needed. Let us begin with a brief
Zp—Za+1 review of RWA.
X H (1 —/ Fzu |C_1(z)dz), RWA uses a probability threshold plane that intercepts
(p,q)€E10 Zp—Zq Pq P(C;|Z = z) to generate level sets that enclose all cells

(16) with P(C;|Z = z) no less than the threshold. The irregular



closed curves in Fig. 3 are examples of level sets. Ridges amtere P(C;|ZY = 2,r,(t),d,) is obtained from (1) and
created by extracting the longest dimension of each isblat¢2) after calculating the sensing model (14) wilf. We
level set. The directed red line segments in Fig. 3 are ridgeshoose the optimal;, that minimizes the following Shannon
In RWA, a 3-opt heuristics algorithm is employed to computentropy for the cluster region over the periagd when the
an Euclidean traveling salesperson (TSP) tour for the singiobot is insideR,,,
robot that must include all ridges. The TSP tour is partiidn thr,  Wmaz
into on-ridge and off-ridge segments. For off-ridge segisen ¢ = argmin/ Z Z H(t,w,v,d,). (19)
the robot moves at its fastest speed. For on-ridge segments, du Jy

the robot spends the time proportional to the summatiogyte that here we assume thatis evenly distributed over
of posterior conditional probability?(C;|Z = z) over the integer values ifw,min, wmas). In fact, we can estimate the

corresponding isolated level set on each ridge. This meags, o 5ccurate distribution ab once more received signals
that the robot spends more time in high probability regiongjo.ome available to improve the model
which increases the localization efficiency.

W=Wmin VESy

Since we have more than one robot, we need many sub V. EXPERIMENTS
tours instead of a single TSP tour. We pair up robots and
treat a pair of robots as a super robot. Assumings an 12000 o 10000 o

even number, we have /2 super robots. Therefore, we need 3 ™ 3 et renom watk
8000 @ Pairwise Patrol
@ Regular Patrol

@
]
S

- - Pairwise Random Walk
—X - Regular Random Walk
@ Pairwise Patrol
@' Regular Patrol

to partition the TSP tour inton/2 sub tours and assign
each super robot to a sub tour. The partition is based ¢
k-means clustering algorithm [20] withw/2 as the cluster
number to cluster ridge sets. For each cluster, we again u
a 3-opt heuristics algorithm to find the TSP and the rest ¢
RWA follows. Hence, we name this approach pairwise ridge @ (b)
walking algorithm (PRWA).

The remaining issue is how to determine the distanczéogdrfés (E)Xﬁizgiezgtﬁéis;‘ﬁ 62) n"fﬁ}%'&"‘ﬁ)‘??gé&‘? vs. numbe radio
between each paired robots. Comparing Fig. 2(a) and (b), we ' '
notice that the dual detection case provides more infoomati
(less uncertainty) about radio source locations than thglesi
detection case does. The spatial information contained

@
=]
]
S

»
=
3
3

Localization time(st
Localization time(sec.)

N
S
3
3

8
number of radio sources number of robots

We have implemented the algorithms and the simula-
tion platform using Microsoft Visual C++ .NET 2005 with
. OpenGL on a PC Desktop with an Intel 2.13GHz Core 2
a distribution can be measured by the Shannon entropy , .
. . . uo CPU, 2GB RAM, and Windows XP. The radio sources
information theory. In order to choose the best distance . . .
d’ between theu-th pair, we formulate this problem by are XBee Pro with ZlgBeg'I_'/802.15.4 OEM radio frequency
minimizing the Shannon entropy. modu!es prodl_Jced l_3y Digi Inte_rnatlonal Inc. The z_;\nter_ma
) _ _ is calibrated first with the radio sources. The calibration
Define S, as the set of cells in the isolated level set thaggiaplishes the parameters in (3). We use the data from the
correspond to the ridge clust®,. Let cellv € S,. Assume  req| hardware to drive the simulation experiments below.
that the radio sourcg, = [z,,y,|" is located at the center  The grid is a square witho x 50 cells. Each grid cell has
of cell C', by ignoring the minor intra-cell difference. Define 5 sjze of50.0 x 50.0 cm?. Each radio source generates radio
Zj,, as the mean RSS reading at robowe have, transmission signals according to and. Poisson process
2 = w — 108logyg (diw), (17) with a rgte of A = 0.05 packets per second. W_e choose the
probability convergence threshold as= 0.9 which means
wherew € [Wmin, Wmae] IS the unknown source transmis-if p(C;|Z = z) > 0.9, the algorithm outputs the cell as a
sion power which varies from,,i, 10 wmaz- radio source location. During each trial of the simulation,
Define Z¥ = [Z%,Z%]" as the RSS readings for thewe randomly generate radio source locations in the grid and
robot pair. Definer, (t) as the center position of the robotrandomly set their power levels as one of five power levels
pair at timet. We know r,(t) because PRWA provides offered by XBee Pro nodes.
the trajectory for the super robot using the center position We compare the PRWA algorithm to four heuristics. Two
of the robot pair as the position on the trajectory. Denotef the four heuristics are based on random walk: a pairwise
P(C{|Z¥ = 2, r,(t),d,) as the posterior probability that random walk and a regular random walk. In the pairwise
cell i contains a radio source giveif, r,(t) andd,. Define random walk, robots are paired just as PRWA does. Each
H(t,w,v,d,) as the Shannon entropy over the probabilityoair is treated as a super robot to perform a random walk
distribution P(C;|Z¥ = 2%,r,(t),d,) givenv,w andd,. together while all robots perform independent movements
H(t,w,v,d,) is given by in the regular random walk. The remaining two heuristics
fe are based on a fixed-route patrol: the robots patrol the field
H(t,w,v,d,) = — Z ( P(Gi|Z; =2 ’rjﬂ(t)’ du) ) using a predefined route that covers the search region. Again
ies, - < In P(GH|Zy) = 2, ru(t), du) robots are either paired which results in a pairwise patrol o
(18) non-paired which results in a regular patrol. Robot pairs in



the pairwise patrol or individual robots in the regular phtr

(2]

are distributed evenly along the route to increase coverage
The experiment compares all five methods under different
numbers of radio sources and robots. Figs. 4(a) and 4(b)
illustrate experiment results. Each data point is an aweragl3l
of 100 independent trials. The results show that PRWA
is consistently the fastest method under all comparisong4]
Also, the pairwise random walk and the pairwise patrol
are consistently faster than the regular random walk and
patrol, respectively. This is expected because pairedtsobo[s]
are more efficient with their limited sensing ranges. Anothe
interesting observation is that the two random walk-based
methods are faster than the two fixed-route patrol methodgs]
This is expected because random walk can bring robots
together from time to time, which increases the number of,

effective pairs and hence listening efficiency. The fixedteo
patrol methods emphasize coverage and spread robot p

ai
or individual robots apart along the route and hence cann(ﬁ

create many effective pairs, which decreases localizafon
ficiency. The results in Fig. 4(b) also show that the diffeen
between the five methods decreases as the number of robé%

increases. However, in reality, the number of robots isrofte

constrained to where PRWA is superior.

VI. CONCLUSIONS ANDFUTURE WORK

[10]

We reported a new localization method that enables a team
of mobile robots to localize multiple unknown transienticad (11]
sources. To cope with the challenges from signal correspon-
dence, limited sensing ranges, and unknown transmissiga]
power, we paired up robots and developed a sensing model
using the signal strength ratio from the paired robots. Wgg3;
formally proved that the sensed conditional joint posterio

probability of source locations for the—robot team can be

obtained by combining that of pairwise joint posterior probi4
abilities. Moreover, we proposed a pairwise ridge walking
algorithm (PRWA) to coordinate the robot pairs based on the
clustering of high probability regions and the minimizatio [15)
of local Shannon entropy. We implemented the algorithm

and tested it under hardware-driven simulation. Resutts/sh

that PRWA-based localization consistently outperfornme thyig)
other four heuristics in all settings tested. We are culyent
testing our algorithm using physical experiments. Resul 7l
will be reported in a subsequent journal version. In the
future, we will address the decentralized control issue b

proving that the joint posterior probability updating pess
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