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Abstract

To assist nature observation, we develop a bird species filtering method that takes videos from cameras with
unknown parameters as input and outputs likelihood of candidate species. The method can extract the time series of
salient extremities, which is the inter-wing tip distance IWTD), from the videos without assuming knowledge on
camera motion and perspective changes. We also derive the probability that the salient extremity can be recognized
in the 2D image frame for an arbitrary relative perspective between the camera and the bird. With the exception of
ignorable degenerated cases, we also prove that the periodicity of the ITWD in the image is the same as the wingbeat
frequency in the 3D space regardless camera parameters. This allows us to apply Fast Fourier Transformation to the
observed IWTD series to obtain wingbeat frequency. We also propose a species prediction metric using likelihood
ratios. We have implemented the algorithm and tested it in experiments using 18 video clips against 32 candidate
bird species. Experimental results validate our analysis and show that the algorithm is very robust to segmentation
error and data loss up to 30%. The algorithm achieves 61.1% detection rate with its ranked list length set to 3.

Index Terms

frequency analysis, salient extremities, periodic motion.

I. INTRODUCTION

Our group works on developing algorithms to assist nature observation. Recently, we help ornithologists study
local bird range change in South Texas that may be caused by climate change. To classify massive amount of video
data, detecting bird species becomes necessary and important. Given that bird videos may be taken by untrained
amateurs using unknown cameras at different lighting and background conditions, accurate detection of exact bird
species is difficult. Alternatively, we need to filter bird species by reducing a potentially large candidate species set
(e.g. more than 30) to a short list of bird species (e.g. 3-5 species).
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Fig. 1. Recognizing salient extremities: (a) IWTD varies periodically according to the WF. (b) IWTD is extracted as the primary feature.
(c) WF is obtained through FFT.

Since most videos containing a flying bird are taken at far field under different lighting conditions, color and
texture information becomes unreliable. In addition, camera parameters are often unknown and it is impossible to
recover flying speed or other metric measurements. To deal with the challenges, we develop a species filtering method
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using the periodicity of salient extremities for objects with a dominating body dimension that possesses periodic
motion properties. For most birds, the measure for the salient extremities is the inter-wing tip distance (IWTD)
whose periodic motion is often characterized by wingbeat frequency (WF). WF is a reliable and distinguishable
feature for bird species filtering.

The contributions of the paper are threefold: First, we present a method to extract the salient extremities from
videos and derive the probability that the salient extremity can be recognized in the 2D image frame for an arbitrary
relative perspective between the camera and the bird. We show that the probability is an increasing function of
video data amount except ignorable degenerating cases. Second, we model the body-wing structure of a bird using
a 3 degrees-of-freedom (DOFs) kinematics model. We formally prove that the periodicity in salient extremities (i.e.
IWTD) in the image frame, is determined by the wingbeat frequency (WF) in the world frame. The periodicity is
invariant to camera parameters. The two results allow us to develop an algorithm to extract IWTD series (see Fig. 1)
out of video frames and obtain WF by applying Fast Fourier Transformation (FFT) to the IWTD series. Last, we
propose a likelihood ratio-based species prediction metric using the resulting WF and its uncertainty range. The
resulting algorithm returns a ranked short candidate list of species.

We have implemented the bird species detection algorithm. The proposed method is evaluated on 18 video clips
containing 6 different species. The detection process is to evaluate the videos against a 32 bird species candidate
list. Experimental results show the proposed method achieves 61.11% detection rate when the short list length
is 3. The algorithm is also tested with different simulated segmentation error levels and appears very robust to
segmentation error. The algorithm is also very robust to data lost: it is capable of overcoming up to 30% of data
lost in the tests.

II. RELATED WORK

Our bird species recognition method is based on the analysis of bird flying motion. As an active research area [1],
[2], motion analysis mostly targets at two types of human motion: periodic or non-periodic. Our work belongs to
the first type. Periodic motion (PM) analysis provides clues to many vision problems. Briassouli and Ahuja [3]
fuse periodicity with spatial velocity for tracking and segmentation. Others [4]-[7] utilize PM to construct 3D
information from a single view. It is also used in recognition problems, such as human/animal activity recognition [8],
pedestrian detection [9], and human gesture recognition [10]. In these problems, many existing works classify
different repeating patterns to distinguish between human activities. Others perform hypothesis test on the existence
of periodic frequency, in order to recognize objects. Our method extends existing recognition problems to a new
domain: bird species recognition.

PM detection is nontrivial, and methods can be very different due to various camera settings and motion
assumptions. Previous works can be classified into four categories according to feature correspondence types. Point
correspondence is used in [11]-[13]. Feature points are extracted in frames and correspondences are estimated
to form point motion trajectories. However, as stated in [14], feature correspondence estimation is sensitive to
illumination changes, reflectance, and especially occlusion, therefore, point correspondence based methods are not
generally applicable. Template based methods are proposed in [15], [16]. Skeleton models are often established to
search for matches in image frames. Since the skeleton models capture the underlying bone structure, these methods
serve well in motion capture and tracking applications for humans or animals. However, template based methods
usually suffer high computational cost due to large searching and scaling space in the matching process.

Region correspondence based methods are introduced by Polana and Nelson [17], and extended by Cutler and
Davis [18], to capture periodicity of object locomotion. The basic assumption of these works is that the object with
repetitive motion should appear similar with its corresponding phrase in every period. By measuring the similarity
between the object in every two frames, a “similarity plot” is calculated. These methods have certain robustness
to image blurring and small background motion. However, they require: 1) translation and scaling preprocessing to
make the object stationary and of the same size in every frame; 2) small changing of background texture; and 3)
viewing angle of the object does not change significantly. Some of them also rely on linear moving trajectory of
the object.

As the fourth method, Briassouli and Ahuja [14] project the object regions onto two axes of the image coordinate,
and analyze the two 1D intensity signals by short term time-frequency distribution. The approach smartly avoids the
translation and scaling requirement and contributes in: 1) tracking and period extraction can be done simultaneously,



2) time-varying signals can be analyzed. However, its experiments do not show if the method can deal with changing
of object viewing angles, and the stationary camera assumption limits background motion.

Under a different application context, our work has to deal with an arbitrary moving camera and a free flying
object, thus the viewing angle and trajectory are both subject to significant changes. We analyze the motion
periodicity via tracking the varying of salient extremities of the object region. This helps to avoid stationary
background requirement. Our feature analysis in frequency domain do not require pre-translation or rescaling.
Since we do not calculate similarity plot, the restrictive consistent viewing angle is no longer needed.

It is also worth noting that frequency-based methods are very robust to segmentation error. There have been
many results on the extraction and enhancement of periodicity in noisy background. Existing results [19] and [20]
show that the periodic frequency still can be extracted from the frequency spectrum even under small (—10 ~ 10
dB) signal-to-noise ratio, with some noise reduction techniques. These results support our approach in the way
that with the existent signal analysis tools, the segmentation error does not overwhelm the periodic signal in the
frequency domain even when the periodic signal is weak.

Our group has developed systems and algorithms for networked robotic cameras of nature observation [21]—
[24]. Our previous work of bird species prediction [25] utilizes the bird body length and deals with static camera
and known parameters. With the new feature proposed, this work extends our previous study to more general
camera/scene settings.

III. SYSTEM OVERVIEW AND PROBLEM DESCRIPTION
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Fig. 2. System block diagram.

Let us start with a system overview before introducing our assumptions and problem definition.

A. System Overview

Fig. 2 illustrates system architecture including three main steps of the approach. The input of the system is a
sequence of video frames. Salient extremity extraction first segments the bird region from every frame, and returns
the boundary points of the bird regions. Then it searches for the IWTD in each frame, based on the extracted bird
boundaries. This step will be elaborated in Section IV. In periodicity analysis, the IWTD values are analyzed in
frequency space via FFT. This step focuses on the analysis of how the frequency signature is invariant to camera
motions, perspective changes, and camera parameters. Details are elaborated in Section V. The extracted frequency
is finally compared with every known species in the species prediction step. A list of candidate species of the input
bird is generated and ranked from the most to the least possible one. See Section VI for details.



B. Assumptions and Prior Knowledge

To introduce our bird detection problem, we have the following assumptions.

e Only one flying bird appears in the motion sequence. If there are multiple birds in the video, we can segment

them out using multiple hypothesis tracking techniques, such as [26], beforehand.

e The bird is in steady flight under normal weather, which includes gliding, soaring, circling, cruising and

level-flight, but excludes landing and taking off.

o Wing flapping motion exists in the video.

e The camera frame rate should be at least two times of the WF [27]. Since WFs of most bird species are lower

than 15 Hz, a normal camera with 30 frames per second (fps) works for most cases.

From ornithologists [28], [29], we have a table of WFs for candidate bird species (See Tab. I for a few examples).
These WFs are obtained by manually counting the continuous flapping motion. We use this information as the prior
knowledge for our algorithm. Note that s is species id, and p and o are the mean and the standard deviation of
the WEF, respectively.

S n (Hz) o (Hz) Species

6 3.18 0.227  Kittiwake

8 3.05 0.129  Herring Gull

12 4.58 0.183  Fulmar
TABLE 1

PRIOR KNOWLEDGE OF BIRD WFs.

C. Problem Definition

Define 79 as the period length of the wing flapping motion. Then the WF can be denoted as fy = 1/79, and the
corresponding circular frequency is wg = 27 fo. The error bound of fjy is denoted as f.. Define N, as the number
of candidate species in the prior information and S = {1, ..., N} as the candidate specie set. d(t) and D(t) are
denoted to be the IWTDs at time/frame ¢ in pixel coordinates and in 3D space, respectively. Define L'(-|-) as the
likelihood that a bird with fy and f. belongs to species s. The bird species recognition problem can be defined as
two sub problems,

Definition 1 (Extraction of Salient Extremities). Given a bird flying image sequence, extract time series d(t).

Definition 2 (Species Prediction). Given d(t) and the candidate set {{j1s,05},s = 1,..., N5}, estimate fo, fe, and
compute I (jus, 05| fo, f.), Vs € S.

Let us begin with the first problem.

IV. EXTRACTION OF SALIENT EXTREMITIES

The extraction of salient extremities can be divided into two steps: 1) motion segmentation that extracts the
foreground object (bird) boundary from every frame, and 2) recognizing IWTD from the bird boundary for each
frame.

A. Motion Segmentation

This step takes the frame sequence as input and outputs the boundary of foreground object in each frame. Since

a flying bird is highly dynamic in motion, appearance and shape, and the background is moving as well, many

segmentation methods are not applicable. Here, we propose an unsupervised method for motion segmentation based
on the optical flow technique. Fig. 3 illustrates the four-step process as detailed below.

1) For a frame I(t) at time ¢ (the topmost thumbnail in Fig. 3), we apply Liu’s optical flow algorithm [30] to

calculate the flow on each pixel, w.r.t. the subsequent frame I(¢+ 1). This algorithm is a combination of [31]



Original image

.................... T

Fig. 3. A block diagram of motion segmentation. Note that thumbnails to the right of the block diagram indicate intermediate results. Black
pixels in last two thumbnails indicate foreground which represents the bird region.

and [32], and returns a 2D flow vector w(z,y) := (u(x,y),v(z,y)) for each pixel (x,y). The red dots in
the second thumbnail point to the optical flow direction.

2) Since background pixels share a similar motion pattern, which is different from that of the foreground pixels,
we can model the background flow using a 2D Gaussian distribution (see the middle thumbnail in Fig. 3). We
apply the Minimum Covariance Determinant Estimator [33] to obtain the estimated mean W and covariance
of the distribution with a 75% inlier ratio and an iteration number of 100.

3) The Mahalanobis distance between every flow vector w and the background mean W is then calculated. For
those distances that fall out of a flexible quantile of the chi-square distribution, we label their corresponding
pixels as foreground using [34] which provides an adaptive selection of the quantile. The second thumbnail
from the bottom of Fig. 3 shows a result of this labeling process.

4) We apply an Active Contour algorithm [35], [36] to the labeled binary image (as an initial mask) to locally
generate a smooth contour of the bird (the last thumbnail in Fig. 3). We further filter out false detections via
size and color consistency constraints. Therefore, a set of boundary points of the bird region on each frame
is obtained.

B. Recognizing Salient Extremities

With bird contour extracted, we can search for the salient extremities on the contour. Salient extremities refer
to the longest dimension of the body in 3D Euclidean coordinate. For birds, this is IWTD, which is defined as
Ly in the 3D coordinate. Let us define bird body length in 3D as Lp. Correspondingly, the IWTD and bird body
length in the image coordinate system are defined as ly and [p, respectively. [p may appear longer than [y due
to perspective distortions and different bird flying poses (Fig. 4). Recognizing salient extremities in image frames
is nontrivial because camera relative perspectives to the bird are unknown and may change from time to time. We
cannot identify the salient extremities by simply looking for the longest distance on the bird contour in an arbitrary
frame.

1) Finding the maximum IWTD across frames in a wingbeat period: If the video length is longer than a wingbeat
period, the moment when the flying bird fully extends the wing ought to exist in the video. At the moment, the
chance that we can find IWTD is high. In fact, we can derive the following lower bound for the probability that
the IWTD is the longest distance on the bird contour.

Lemma 1. With a single period, the probability that the IWTD is the longest distance on the bird contour at the
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Fig. 4. Examples of fully extended bird body in different perspectives.

moment when the flying bird fully extends its wings is no less than 1 — %arctan(f—fv) for an arbitrary camera
perspective.

The proof of Lem. 1 is elaborated in Appendix A. We examined all the species listed in the ornithology reference
book [37]. There are 71.0% of all the species that have the ratio Ly /Lp larger than 1.97. Their probability lower
bound is 0.701 if we just simply search for the longest distance in bird contours across the single period. When
more data are available, we have the following corollary.

Corollary 1. The probability lower bound that the IWTD is the longest distance on the bird contour across k

wingbeat periods with independent camera perspectives is 1 — (% arctan(f—vf;))k.

This conclusion can be straightforwardly derived from Lem. 1. For k wingbeat periods with independent per-
spectives, if Iy > Ip holds in at least one period then we can obtain correct IWTD in the image. In fact, according
to [37], the ratio Lyy/Lp is larger than 1.09 for all species in the book. That means using 2 independent wingbeat
periods will achieve at least 0.777 successful rate.

Remark 1. Corollary 1 shows a desirable trend that more data means high successful rate. It is worth noting that
adjacent wingbeat periods usually have correlated perspectives. We find that most videos show that perspective
change is quite significant during bird flying. Therefore, Corollary 1 still applies for periods providing sufficient
time difference between periods. The only exception is when the bird flies around the camera on the same plane
while maintaining the same distance to the camera, which is very rare.

It is also worth noting that this probability lower bound in Lem. 1 is not a tight bound. From experiments, we
find that one wingbeat period is sufficient for extracting IWTD for a majority of birds species.

Lem. 1 suggests that we can search IWTD across frames to find the frame when the bird fully extends its wing.
Denote /;; to be the Euclidean pixel distance between two boundary points 7 and j, and ¢;; to be the orientation
of the vector pointing from ¢ to j. For a particular frame ¢, we first extract the maximum value among /;;’s, for all
pairs of boundary points ¢ and j in the frame. This distance value, as well as its corresponding angle, is regarded
as an initial solution, denoted as do(t) and 7o (t):

do(t) = | ax Lij(t), (D
where m(t) is the index set of points of the bird boundary in frame ¢. 7o(¢) can be trivially computed when do(t)
is obtained. Fig. 1(a) shows examples of dy(t)’s in red dashed lines for a 9-frame sequence.

Then, we consider a sequence of frames from ¢ — A to t + A, where A has a lower bound A > ﬁ — % which
ensures the sequence with frame rate r covers at least a period for the target species. The maximum value among
do(t — A),...,do(t + A) is extracted to be the IWTD for the moment that the bird fully extends its wing in the
period.

2) Recognizing IWTD series for the entire period: When the bird does not fully extend its wing, then IWTD
might not be the longest dimension in the bird contour. The bird thumbnails corresponding to time ¢ and ¢ — 1
in Fig. 1(a) illustrate the problem. To address the problem, we introduce wing spreading direction (WSD) as the
direction of the line connecting the two wing tips. In the image space, WSD is represented by its tilting angle
n(t) w.r.t. horizontal axis at time/frame ¢. Basically, WSD describes the direction along which IWTD is extracted.
For a single period, WSD can be viewed as a constant because the camera perspective change and bird translation
movement are ignorable in the short wingbeat period. When we extract the maximum IWTD for the period, we
can obtain its WSD correspondingly. This WSD can then be applied to other frames to search for IWTDs. In the
example shown in Fig. 1(a), frame ¢ + 4 has the maximum d(¢). Hence 7o(t 4+ 4) is the WSD in that period, and

n(t) = no(t + 4).
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Fig. 5. Searching for IWTD using WSD 70(t). The initial do(¢), which found by searching for the longest distance between boundary
points, is not the correct IWTD. This is corrected by searching for d(t) in the d-neighborhood of 79(t).

With WSD obtained, we can search for IWTDs for the rest of frames. Since IWTD is the distance between
extreme points on the bird, it should correspond to the longest distance between boundary points along the WSD
in each frame (see Fig. 5). On the other hand, the actual WSD on each frame may be slightly different from WSD
obtained from the maximum IWTD because the discrepancy caused by the discretization error of WSD due to the
limited frame rate and by small changes in flying poses and camera perspectives exists. Therefore, d(t) is obtained
by searching a J-neighborhood of the obtained WSD:

d(t) = lij (t) 2)

max i
lps; (£)—n(t)| <6
where 0 is a pre-set small threshold of angular difference. § is selected to cover the aforementioned discrepancy. It

is worth noting that this procedure, to some extend, overcomes the self-occlusion problem when one of the wing
tip is occluded by the bird body.

V. PERIODICITY ANALYSIS

Although d(t) is obtained, it is unclear if d(t) reflects the WF of the target species. We need to show that
d(t) shares the same periodic property of the wingbeat motion regardless of camera parameters. We begin with a
kinematic model of the bird wing.

A. Kinematic Modeling of Bird Wings

Zy @ axis pointing inwards
Z paper plane
BirdHead = ' X
e axis pointing outwards

paper plane

Fig. 6. A kinematic model of the right wing of a bird.

Following the steady-flight skeleton model in [38], we model a bird wing using three revolute joints (see Fig. 6).
Frame O is the bird coordinate system (BCS) with its origin attached to the intersection point between the wing
and the body axis of the bird and its Z-axis pointing to the direction of the bird head. Other frames are assigned
by following Denavit-Hartenberg notations in [39], see Fig. 6.

This model has 3 DOFs: joint angles 61 and 5 at the shoulder and 65 at the elbow. The lengths of upper- and fore-
arms are Ly and L3, respectively. The coordinate of right wing tip in frame 4 is [0, 0,0, 1]7 in the homogeneous



form. Applying the forward kinematics [39] to transform coordinates from frame 4 to frame 0, we have

LocHichy + L36916(92 + 93)
LosOchy + L38910(92 + 03)
LosOy + L3s(0a + 03) ’
1

er = (3)

where ¢ means cos 6, sf means sin @, ¢(-) means cos(+), and s(-) means sin(-). Symmetrically, we can obtain left
wing tip Xy, in BCS which is the same as X,,, except that the first element is negative. Therefore, the IWTD in
3D space is

D= 2(L2091692 + L30916(92 + 93)) @

Now let us project D into the image coordinate. Since the distance from a flying bird to the camera is always
significantly larger than the bird size, we can approximate the perspective projection using an affine camera model.
Then, the camera transformation can be written as a 3 x 4 matrix P with its last row as [0, 0,0, 1].

Let x, := PX,y and xy,, := PXj,, be right and left wing tip positions in the image, respectively. Recalling
that d = x,, — Xj, 18 the distance between them, we have

d = 2(Lactictz + Lachic(02 + 03))[|p1ll2 = Dlp1ll2, (5)

where pq is the first column of P. Next we will show that d is a periodic function and reflects the WF.

B. Periodicity Analysis

In steady flight, a bird flaps its wings in a periodic pattern. Recall that the period length is 79 and the corresponding
circular frequency is wy in Section III. Pennycuick [28] shows that 7y and wq are constants in steady flight. Liu et
al. [38] show that all joint angle 6;(t)’s are periodic functions and can be expressed by a Fourier series,

0;(t) = a; + Bisin(wot + ¢i1) + i sin(2wot + ¢i2), (6)

where «;, B, Vi, ¢i1, and ¢;o are constants for ¢ = 1,2, 3. «;’s are phases. Since we only care about the basic WF
(wo), we drop the harmonic frequency component in the last component. This dropping does not change the WF
peak in the FFT of d(t) later. Thus, we can simplify (6) to the following,

92' (t) =q; + 51 Sin(o.)()t + le) (7)

Considering the geometric constraints and limits on wing joints, we know «; € [—7, 7], 5; € (0,7/2]. We are
interested in whether (5) reveals the same period length 7y. Before proving it, we have the following two lemmas
about the period length of two intermediate functions that will be used to compute the period length of d later. The
first intermediate function is defined as f(t) = cos(a + B sin(wt + ¢)), where sin(wt + ¢) is a periodic function
with period length 7 = 27 /w, B € (0,7/2]. The first lemma is,

Lemma 2. Function f(t) is a periodic function with the following period length

Tf:{lT if o # km )

5T ifa=km
where k € Z, the integer set.

The proof of Lem. 2 is in Appendix B. Before we introduce the second lemma, let us define the following
functions to simplify notations,

\IIC(OZ,B,CZ)) = f(t)
U(a,B,0) = sin(a+ Bsin(wt + ¢))
7':27T/w, Ozligzaliag

g(t) = Ve(ar,Br,01)¥e(a, B2, P2), ©

where f; € (0,7/2]. Then we have the following lemma,



Lemma 3. Function g(t) is a periodic function with its period length 7, = T, except when Boolean function
Iy, a9, B1, B2, d1, ¢2) is true where T'(aq, oz, 1, P2, d1,¢2) =11 + Lo + I's, “+’ is logical ‘OR’, and

[y = (142 = ki) - (an—2 = ko),

Lo = (1= 02) (1 =2+ (2k1 + 1)7) - (a1—2 = kom),

I3 = (81 = P2) - (91 = 2+ 2k17m) - (142 = kam),
where ‘-’ is logical ‘AND’ and k1,ks € Z.

The proof of Lem. 3 is in Appendix C. Now we are ready to compute the period length of D(¢). Let 74 be the
period length of D(t), we have the following theorem.

Theorem 1. For a bird in steady flight, the INTD, D(t), is a periodic function sharing the same period length of
the wingbeat motion 74 = Ty except that 74 = %7’0 if the following logic expression is true

(Ctl + o = kﬂ) . (041 — Qg = kﬂ) . (ag = kﬂ'),
where k € Z and ‘-’ is ‘AND’ operator.

Proof: We need to analyze the period length of D(¢) in (4). Eq. (4) has two periodic components: the first
part is cf1cfy and the second part is cf1c(f2 4 03). Denote 741 and 742 to be the period lengths of the first and the
second parts, respectively. For cf;cfs, we can apply the two lemmas and obtain the following,

T = %7—0 If F(a17a27/317627¢1a¢2) is true,
dl ) otherwise.

For cf1¢(03 + 03), let us define the following variables,
ks = Pac(d2) + Bac(d3); ke = Bas(d2) + Bas(¢3);
K56 = \/KE + K Gr.s = arctan(kg/Ks).

Now we can again apply the two lemmas and have

1 .
=1 270 I Do, 243, B1, K56, 91, Press) 18 true,
0 otherwise.

In steady flight, we know (3 # 0 because the elbow joint does not fix at an angle. Therefore 7; should be the least
common multiple of 741 and 745. Because 81 = 82 and 51 = / Iﬁg + Ii% do not happen simultaneously, Theorem 1
is proved. u

Remark 2. For a fixed camera w.rt the bird, the projective matrix does not change. Therefore, ||p1||2 remains

constant and d(t) have the same period length as that of D(t) based on (5).

Remark 3. If the camera or the bird moves, the changing of perspective introduces the frequency distribution of
Ilp1l|2(t), and the frequency property of d(t) should be the convolution of those of the bird motion and the camera
motion. As long as the changing of the camera perspective is not strictly periodic, the convolution preserves the
dominant frequency component [7] of wing flapping motions except a few isolated special degenerate cases. This
ensures that we can obtain WF fy by applying FFT to the extracted d(t).

Actually, camera motions are usually slow when a person tracks a bird at a distance. Most birds have a WF
significantly higher than 1 Hz. Therefore, we use a high pass filter to filter out the signal below 1 Hz to avoid
noise introduced by bird gliding and camera motion while preserving WF. Next we extract WF by 1) finding the
frequency fo with the highest energy and 2) resetting fo = fo/2 if there exists another peak at fy/2. The reason
is that the harmonic frequency at 2 fy sometimes dominates the fundamental frequency due to the second term in
(6). Fig. 1(c) shows the extracted WF and the frequency distribution of the signal from video in Fig. 1(a).



VI. SPECIES PREDICTION

With the extracted WF, we can predict species of the bird. However, noise exists in the measurement. We need to
know how accurate our measurement is. We first perform a variance-based error analysis before the actual species
detection with trustable measurements.

Step 1: Error Bound Analysis: Due to the discreteness in frequency domain, the extracted WF has an error bound
fe. The true WF in the video is modeled as a uniform random variable in (fo — fe, fo + fe), Which is a conservative
approximation.

Let the total number of frames to be IV, recall that frame rate of the video is 7, then the frequency interval after

T

FFT is r/N and fe = 55 is the half length of the interval. Thus, f can be expressed by the following equation,
r

f e — W
N is rounded up to a power of 2, if it is not. Eq. (10) is quite intuitive. For a video clip with a fixed frame rate,
the more frames we have, the smaller error we can get. Since the extracted WF is uniformly distributed within the
error bound, the variance of the extracted WF is

Var(fo) = 55((fo+ £) — (fo— 1)) = 312 an

For a known species s, its reference WF from the aforementioned prior knowledge has a variance of o2. We believe
that a measured WF is reliable only if its variance is less than that of the reference. Hence we establish the error
bound for reliable measurements:

(10)

Definition 3. (Error Bound for Measurements) An extracted WF measurement is trustable for species prediction
if 32 <o?

The species prediction is only performed using trustable measurements. Since more frames means a smaller
fe, the least number of frames for a fixed rate video can be calculated inversely. For a 30 fps video, 100 frames
approximately result in a measurement variance of 0.1 Hz, which is comparable to that of most species.

Step 2: Species Prediction: Had fo been error-free, the likelihood that the bird belongs to a species {ps, 05}

would be
1 _ (fo—ns)?

e W (12)

L(M& O—s‘fO) =

;

2
2no;

However, the true WF is uniformly distributed in (fo — fe, fo + fe), the likelihood function becomes

, fotfe q
L' (s, 05| fo, fe) = / = L(us, 05| f)df. (13)
fo—fe Qfe
Define G(-) as the cumulative probability function for the Gaussian distribution. Then we have,
1 f0+fefﬂs fO*.fe*Ms
L s:0s1J05Je) = G -G . 14
(10:5lf0, Jo) = 5 O 2 20 - (Rt (14

As the metric for species prediction, the likelihood is used to rank all candidate species. The resulting ranked list
is the species prediction outcome. The reason for keeping a short candidate list instead of reporting only the top
ranked candidate is that some species share close or same WF distributions, and it is not desired to miss many
false negative predictions for application.

VII. EXPERIMENTS

We have implemented the frequency-based salient extremity bird filtering algorithm using Matlab on a PC laptop
running Microsoft Windows 7 operating system. In our experiment, WSD searching range ¢ is set to 5°.



11

Fig. 7. Samples of birds test videos.

A. Dataset

The prior knowledge (extended version of Table I) from [29] contains WF means and variances for 32 different
species of birds. Their WF means vary from 2.24 Hz to 9.19 Hz.

Since there is no existing video data set to benchmark and compare bird species recognition methods, we collect
our data from online video. Original videos are downloaded from YouTube! and Internet Bird Collection’. All
videos are recorded by moving cameras. The collected dataset contains 18 video clips of different flying birds,
covering 6 species in [29]. The video dataset consists of 378 flying periods which consists of 4269 video frames.
Frame-rates of the videos vary from 15 fps to 30 fps. The ITWDs of the birds in the video range from 105 cm to
229 cm while WFs range from 2.24 to 4.58 Hz. It is worth noting that this WF range covers a majority of bird
species (> 60%) which makes it a difficult set of data to use because there many overlapping WFs among species.
Samples of testing videos are shown in Fig. 7. We can see that the set includes various flying poses and viewing
perspectives.

[video | foxfeMHz) | ptoMHz) [ video | fotfcMHz) | ptoMHz) [[video | fotfeHz) | pto Hz) |
1 3.5156 + 0.0488 | 3.61 + 0.207 7 5.4687 +0.1953 | 4.58 +0.183 13 3.3984 4+ 0.0586 | 3.31 +0.149
2 3.395 £ 0.0585 | 3.61 £ 0.207 8 3.3203 £ 0.0488 | 3.05 +=0.129 14 3.2813 +0.0586 | 3.31 +0.149
3 3.0469 + 0.1172 | 3.01 +£0.109 9 2.2266 4+ 0.0586 | 2.24 4+ 0.050 15 3.125 £ 0.0977 | 3.31+£0.149
4 2.8125 +£0.1172 | 3.01 +0.109 10 2.2266 4+ 0.0586 | 2.24 4+ 0.050 16 3.0273 +0.0244 | 3.31 +0.149
5 2.9297 +0.0977 | 3.01 +0.109 11 2.1368 +0.0486 | 2.24 4+ 0.050 17 3.3203 +0.0244 | 3.31 +0.149
6 4.6875 1+ 0.0977 | 4.58 +0.183 12 2.4585 4+ 0.0585 | 2.24 4+ 0.050 18 3.125+£0.1953 | 3.31 £0.149

TABLE 1I
COMPARISON OF THE EXTRACTED WF AND ITS ERROR BOUND (fo + f.) AND THE CORRESPONDING PRIOR KNOWLEDGE (i & o) FOR
ALL VIDEOS.

B. IWTD and WF Extraction

Our algorithm successfully extracts IWTD series, their WFs, and their WF error bounds. In fact, we only need
one period to recognize IWTD and obtain IWTD series for WF extraction, which agrees with the prediction given by
Lemma 1. Table II in next page shows a comparison between the extracted WFs and the corresponding ground truth
from [29]. It is clear that the extract WFs are very close to the ground truth, and the difference between them does
not exceed 0.3 Hz for all test videos, except for video 7. The results show that the system is capable of extracting
WFs from different camera perspectives. It shows that WF is a stable signature for the species recognition.

"http://www.youtube.com/
Zhttp://ibc.lynxeds.com/
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Fig. 8. Simulation results on testing the robustness of frequency analysis with respect to segmentation errors. (a) A sample wingbeat period
in the video (b) Blue solid curve: the ground true d(t). Red dotted curve: d(t) after adding Gaussian noise with zero mean and a standard
deviation of 10 pixels. (c) The ratio of WF peak and the average of spectrum energy, as the noise deviation increases from 0 to 100. The
ratio is always above 1 and is above 2 when noise deviation is lower than 55 pixels.

C. Robustness to segmentation error

Since our method relies on the extraction of pixel distance, the temporal feature is inevitably affected by the
foreground segmentation error at the bird wing tip. This error happens when image resolution is low or motion blur
appears. The error influences the accuracy of pixel distance d(t). We use simulation to evaluate on how segmentation
errors affect WF results. Consider the segmentation error at a wing tip to follow a zero-mean Gaussian distribution,
the Euclidean distance between wing tips follows Gaussian distribution as well. The simulation is conducted on
a real signal from test video 11 (Fig. 8(a)), where we manually annotated the wing tip positions in every image
in the video. A sequence of d(t) is therefore calculated upon the annotation and treated as a low noise ground
truth signal as illustrated as the blue solid curve in Fig. 8(b). Mean value of this signal is subtracted for illustration
purpose. The maximum and the minimum values in d(¢) are 154.1 and 60.5, respectively, while the mean of d(t)
is 108.82. Different levels of Gaussian noise is added to the signal. The red dotted curve in Fig. 8(b) show the
simulated signal when the standard deviation is 10. We gradually increase the noise standard deviation and measure
the ratio between the WF peak energy and the average spectrum energy (Fig. 8(c)). It is shown that with noise
standard derivation varies from 0 pixel to 100 pixels, the WF energy is still larger then average spectrum energy.
While in our experiment in previous subsection, the mean segmentation error of this sequence is 4.12 pixels, and
the maximum error in a frame is 37.06 pixels, which are much smaller than the simulated error. This simulation
demonstrates the robustness of the proposed WF extraction method in the presence of segmentation errors.

D. Species Prediction

To evaluate the accuracy of the ranked candidate list, we define hit rate as the percentage of returned candidate
lists that contain the correct species. To our best knowledge, there is no existing algorithms for flying bird species
recognition for videos taken by moving cameras. Previous methods on object recognition or motion analysis cannot
directly applied on the bird species recognition problem. Therefore, the comparison experiment is compared with
random guess only. We compare our algorithm output with a short list of the same length which is generated from
independent random guesses from the 32 candidate species. The results are showed in Table III. It is clear that our
algorithm significantly out perform the random guess. At a list length of 3, it reaches a hit rate of 0.6111 while that
of a random guess can only reach 0.0938. Mean Reciprocal Rank (MRR) of the 18 testing videos is 0.4401. The
rank of the correct species in the output list for each test video is showed in the RoCS row of Table IV. Though



List length 1 3 5 10
Hit rate 0.1667 | 0.6111 | 0.7222 | 1

TABLE III
HIT RATE COMPARISON AT DIFFERENT LIST LENGTHS.

the extracted WF is close to ground truth, the rank of correct species may not be very high, such as in video 4
and 12, because some species have close ground truth WFs and are not easy to be distinguished using WFs. This
is not a significant issue in practice because other information such as habitat location can be used to distinguish
birds in the ranked list.

E. Robustness to Data Loss

Inevitably, some frames of bird videos may be too blur to segment the bird which leads to the loss of IWTD
measurements. If so, our system assigns the measurement of this frame using its nearest successful antecedent.
Our frequency-based analysis is very robust to data loss. The measurement lost rate (MLR) in each testing video
is listed in Table IV. The loss rate varies from O to 30%. Even for the video with most data lost (video 18), the
correct species still can be ranked in the top three positions.

VIII. CONCLUSION AND FUTURE WORK

We developed a bird species filtering method that takes videos from cameras with unknown parameters as input
and outputs likelihood of candidate species. The method can extract the time series of salient extremities, which is
inter-wing tip distance (IWTP), from the videos without assuming knowledge on camera motion and perspective
changes. We also derived the probability that the salient extremity can be recognized in the 2D image frame for an
arbitrary relative perspective between the camera and the bird. With the exception of ignorable degenerated cases,
we also proved that the periodicity of the wingbeat in the image is the same as that in the 3D space regardless
camera parameters. This allowed us to apply Fast Fourier Transformation to the observed IWTD series to obtain
wingbeat frequency. We also proposed a species prediction metric using likelihood ratios. We have implemented
the algorithm and tested it in experiments using 18 video clips against 32 candidate bird species. Experimental
results validated our design and analysis.

In the future, we will develop recognition methods using other features such as flying speed, color and shape
in combination with frequency signatures to achieve more precise prediction. Note that the method also has the
potential to be applied to other animals with frequency characteristics.
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APPENDIX A
PROOF OF LEM. 1

Proof: When the wingspan reaches its maximum in steady flight, the wing spreading direction (WSD) is

Fig. 9. Bird body plane and wing and body stick model.
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Fig. 10. Analysis on the angle of camera optical axis.

perpendicular to the bird body axis. Model the bird skeleton by a cross (Fig. 9) with two orthogonal bars. The
two bars determine a bird body plane. Recall that the perspective camera follows a pinhole camera model and the
bird is in far field of the camera view. The relationship between a 3D point P = [X,Y, Z]7 and its 2D projection
p = [z,y]T in the image follows 2 = fX/Z and y = fY/Z where f is the camera focal length. Notations in
figures are defined as follows:

e Pgo=[Xpc,Yee,Z BC]T is the 3D coordinate of bird body center.

e Prwing and Pryng are bird left and right wing tips in 3D, respectively.

e Preqq and Ppg;; are bird head and tail end points in 3D, respectively.

e « is the angle of bird flying trajectory w.r.t. the image plane (see Fig. 10).

o 0 is the angle of bird body center projection ray w.r.t. the camera optical axis (z axis).

e Lyy is the length of IWTD in 3D, while Lg is the length of bird body in 3D.

e ly is the length of IWTD on image, while [y is the length of bird body on image.

Since the bird is in steady flight, its body plane is horizontal. The camera has a tilting angle 3 w.r.t. the horizontal
plane. We first analyze how the camera’s tilting angle affects the probability of successful recognition of salient
extremities. Consider § = 0 (the analysis is similar when 6 # 0). Plane m( represents the bird body plane in Fig. 10,
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while 7y is parallel to the image plane and intersects 7o at the bird body center. From Fig. 10, then the projection
of bird body length L’; and IWTD Lj;, on m; are:

Ly = LB\/cos2a+sin2aCOSQB (15)

W = Lw\/sin? a + cos? acos? 3 (16)

By geometry similarity, the ratio between [, and {5 can be approximated by L{;, /L5 (since the bird is in far view).
To ensure [,,/lp > 1, it must satisfy the following:

| (Luw/Lp)*cos? §
tan o > \/ (T /Lp)? —co’ 5 (17)

As || grows larger from 0 to 90°, the threshold becomes larger and the region of bird trajectory orientation « for
successful recognition becomes smaller. When § = 90° (that is the bird plane is perpendicular to the image plane),
the probability of success reaches the minimum.

In the following proof, we analyze this worst scenario only, because it gives a lower bound of the probability
of successful recognition of salient extremities. Fig. 11 shows the top view of the setting in our analysis, where
the image plane is perpendicular to the paper plane, and bird body plane is parallel to the paper plane. The bird
trajectory is assumed to be a straight line in a short time period.

By the projection relationship between 3D and 2D points, we have

I — f(Xpe+1/2Lpcosa)  f(Xpe —1/2Lp cosa) (18)
B = Zpc —1/2Lpsina Zpc +1/2Lpsina
[ f(Xpc +1/2Lwsine)  f(Xpc —1/2Lpsina) (19)
W= Zpc+1/2Lpcosa Zpc —1/2Lpcosa
That is
fLB(XBcsina+Zggcosa)
lp = 5 — (20)
Z%e — (1/2Lp)?%sin® o
fLw(XBC cosx — ZBC’ sin a)
lw = 72 2 a2 @D
5o — (1/2Ly)? cos? a



Since the bird is in far field of the camera view, Ly, Lp < Zpc, we ignore the second term in the denominator.
Therefore, the ratio between Iy and [p is

lw - Lyw | XBocosa — Zpe sin o

s Lp

~ Lp

Xposina + Zpgo cos
tand — tan «
tanftana + 1

T — (22)
Lp

To successfully recognize the salient extremity as the IWTD, the ratio lyy/lp should be greater than 1. Thus, we
have

|tan(a — )] > — (23)
w
Consider « is uniformly distributed on (—7/2,7/2), and 6 is uniformly distributed on (—©;,©}) where 0 <

20j, < 7 is the horizontal field of view of the camera. Let 5 = («a — 6), then (3 follows the triangle distribution,
with the probability density function

40 1 .
g®h7}r+4@h if —53—-Op<B<—-5+6

1 . - .

P if —24+0,<B<Z -0
fo=1 Zgren 4 1 ! 9 h< 5< S ' (24)

o Tio, U5 Onh<B<5+6

0 otherwise
Define the indicator variable I as
_J 1 iflw =B

Is _{ 0 otherwise (25)

Then, given a ratio Lp/Lyy, the probability of successful recognition of salient extremities in a wingbeat period
is the integral

+o0
Pril = 1|—} / 15 f5d3 (26)
— [ s e
[ tan 5] £
-/ fadi+ [ f3ds (28)
\tanﬁ\> 7B>0 |tanﬁ\> ,6<0

Since the absolute tangent function is symmetric, the two parts in (28) are equal. Therefore, we only consider the
integral on 8 > 0 as follows

Pr{l; = 1y } = 2/  fpdp (29)
|tanﬁ|2ﬁ,520
m—arctan( 2 L )
=2 / Y fpdp (30)
arctan(LB )

On the positive axis of 3, the triangle distribution density changes at the point 8 = 5 — ©y. Therefore, it is
necessary to compare arctan( ) with § — ©j, in order to calculate the probability. We have two cases here:
Case 1: if arctan( Lp ) <3- @h, then (30) can be unfolded to

Pr{ls = llﬁ 31)
7-© 2+On
2 oh 1 2T — 34 O 1
=2 —d 2 d 32
/arctan(LLB) Q0 6 " /;'—@;L 2(_')h7r * 49}1 ﬁ (32)

2 L
=1 — —arctan( =B

- T (33)



Case 2: if arctan(f—f;) > § — Oy, then (30) is
Pr{l; — 1\55 (34)
ﬁ—arctan(LL—V’f]) .
_» / i 26 @iSh + éh dp (35)
=1- iarctan(if/) (36)

The two cases result in the same probability equation that is independent of ©j. The larger the ratio Ly /Lp is,
the higher the successful probability can reach. Therefore, Lem. 1 is true.

|
APPENDIX B
PROOF OF LEM. 2
Proof: The function f(t) repeats at least every 7 time because
f(t+7) = cos(a + Bsin(wt + wt + ¢)) (37)
= cos(a + Bsin(wt + 27 + ¢)) (38)
= cos(a + Bsin(wt + ¢)) = f(t). (39)
Suppose the period length of f(t) is 7y, it is trivial that 0 < 74 < 7. We also have the following equation for all ¢.
cos(a + Bsin(wt + ¢)) = cos(a + Bsin(w(t + 7¢) + ¢)) (40)
Considering 8 € (0,7/2], if (40) is true, then either of the following cases must be true:
a+ Bsin(wt + ¢) =
{case I: o+ fsin(wt +wty + @), @1
case 2: —a — fBsin(wt + wTy + @) + 2k,
where k € Z. When the first case in (41) happens, we have
sin(wt + ¢) = sin(wt + wty + @) (42)
Then there are two solutions for (42):
wt+ ¢ = wt + wrs + ¢ + 2k'm, 43)
and
wt+ ¢ =m—wt —wry — ¢+ 2k, (44)

where k' € Z. However, Eq. (44) cannot be true for all ¢ because all parameters except ¢ are constants. Therefore,
only (43) is true and it becomes,
T =k'T. (45)

Since 0 < 74 < 7, k' can only have the value of 1. Therefore, 74 = 7, for all « in this case.
Similarly, if the second case in (41) happens, we can prove
2K — 1 1
7( 5 )7-:27',anda:k‘7r (46)

Combining (45) and (46), Lem. 2 is proved. [ |



APPENDIX C
PROOF OF LEM. 3

Proof: Let us decompose g(t),

g(t) = carcan W (0, B1, $1)V(0, Ba, 2)
—sa1canVy(0, B1, 01)¥c(0, B2, P2)
_CaISQQ\PC(Ou 517 ¢1)\I’s(0’ /827 ¢2)
+80413Ct2\113(0,ﬁ1,¢1>m3(0,52,¢2) (47)
and define the following intermediate variables,
k1 = B1c(p1) + Pac(pa); ke = Bis(¢1) + P2s(d2);
k3 = Prc(P1) — Bac(@2);  ka = Bic(¢r) — Bac(d2);
K12 = \/Ii%+/€%; K34 = \/fi3+/€4;
Gr,, = arctan(ka/K1); O, = arctan(rg/kK3);
Then, (47) can be transformed to
1
Z(‘I’c(alw, K125 Prry) + We(1-2, K34, Py, ) (48)

We have the following cases:

o k12 = 0: This happens if and only if 8; = B2 and ¢1 = ¢2 + (2k1 + 1)7. Then, from Lem. 2, 7, = 7 unless
A1—_9 = kQﬂ' .

o k34 = 0: This happens if and only if 31 = 32 and ¢1 = ¢2 + 2k;7. Then 7, = 7 unless a2 = kar.

o Otherwise, k12 # 0 and k34 # 0 Then, the first component of (48) has period length of 7/2 only when
a142 = k17. The second component has period length 7/2 only when «;_o = kom. Therefore, g(t) has period
length 7, = 7 unless a2 = k17 and avj_9 = kom.

Therefore, Lem. 3 is proved. [ ]



