
Decentralized Searching of Multiple Unknown and Transient Radio Sources

Chang-Young Kim, Dezhen Song, and Jingang Yi

Abstract— We develop a decentralized algorithm to coordi-
nate a group of mobile robots to search for unknown and
transient radio sources in an open field. In addition to their
limited mobility and ranges of communication and sensing,
the robot team has to deal with challenges from signal source
anonymity, short transmission duration, variable transmission
power, and the unknown source number since the radio sources
may not be friendly. Building on our prior work, we propose
a two-step approach: first, we decentralize belief functions
that robots use to track source locations using checkpoint-
based synchronization, and second, we propose a decentralized
planning strategy to coordinate robots to ensure the existence
of checkpoints. We formally analyze memory usage, data
amount in communication, and the expected searching time for
the proposed algorithm. We have implemented the proposed
algorithm and compared it with two heuristics in simulation
based on real sensory data. The experiment results show that
our algorithm successfully trades a modest amount of memory
for the fastest searching time among the three methods.

I. INTRODUCTION

The fast development of wireless sensor network (WSN)
technology provides great tools to collect information. How-
ever, WSNs can also be a significant threat to our security
and privacy in hostile environments (e.g. an enemy may
deploy a sensor field to detect troop movements). The
large number of miniature sensors in a large field makes
it difficult to manually search and neutralize the sensors. We
are developing algorithms to enable a team of mobile robots
to perform the task.

In this “robot network” vs. “sensor network” setup, each
party has its own advantages and limitations. Robots have
mobility while sensors do not. Robots know their own loca-
tions and received signal strength (RSS) readings. However,
robots do not understand the network protocol of the sensor
network and have to treat sensors as plain radio sources.
Furthermore, signal source anonymity, short transmission
duration, variable transmission power, and the unknown
source number further challenge robots in addition to their
communication and sensing range constraints.

Building on our prior work, we propose a two-step ap-
proach: first we decentralize belief functions that robots use
to track source locations using checkpoint-based synchro-
nization, and second we propose a decentralized planning
strategy to coordinate robots to ensure the existence of
checkpoints. We formally show that our planning algorithm
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ensures the decentralized belief functions to be synchronized
periodically with explicit analysis on memory and commu-
nication requirements. Furthermore, the expected searching
time of our algorithm is insensitive to the number of radio
sources. We have implemented the proposed algorithm and
compared it with two heuristics in simulation based on
real sensory data. The experiment results show that our
algorithm successfully trades a modest amount of memory
for the fastest searching time among the three methods in
comparison.

II. RELATED WORK

Searching for multiple transient radio sources under com-
munication and sensing range constraints relates to the
emerging fields of RSS-based localization, multi-robot mo-
tion estimation and planning.

The recent development of radio frequency-based local-
ization can be viewed as the localization of “friendly” radio
sources because researchers either assume that an individual
radio source continuously transmits radio signals (similar to
a lighthouse) [1], [2], or assume that robots/receivers are
a part of the network and understand the detailed packet
information [3], [4]. However, such information is not always
available for an unknown network. When signal sources are
not cooperative, RSS readings are the primary information
for localization because RSS attenuates over distance. When
signal transmission power at the source is not available, ratios
between RSS readings from dislocated listeners [5], [6] or an
antenna array [7] have been proven to be effective in obtain-
ing bearing and/or range readings. These approaches focus
on single source localization and hence are not concerned
with the signal correspondence issue in the multi-source case.

In multi-robot research area, decentralized estimation of
robot positions and poses has recently gained a lot of atten-
tion. Durrant-Whyte et al. [8]–[10] develop the decentralized
estimation technology for the static sensor network using
the information filter based on the distributed Kalman filter
framework. Based on relative observations between multi-
ple robots, researchers propose various decentralized multi-
robots localization schemes by the decentralized extended
Kalman filter (EKF) [11], which is decomposed into a
number of smaller communicating filters, and by the decen-
tralized maximum a posteriori (MAP) estimator [2]. Leung et
al. [12] also tackle the decentralized multi-robot localization
problem by a concept of the checkpoint, which is a delayed
synchronization of observation after exchanging observations
between robots. Researchers extend the checkpoint concept
to Decentralized-Simultaneous Localization and Mapping
(D-SLAM) [13] and the decentralized information transfer



scheme [14] based on communication resources available.
Capitan et al. [15] also propose a delayed synchronization
for decentralized estimation using the information filter. Most
of the decentralized estimation methods focus on estimating
robot positions and orientations with range or heading read-
ings from onboard sensors. Our problem is similar in the
way that we can benefit from the range and heading sensory
models, but it is different because we focus on estimating
positions of transient targets instead of robots themselves.

Also in multi-robots research, Pereira et al. [16] propose
the decentralized planning under sensing and communication
constraints while keeping connectivity with the neighbors.
By using decentralized multi-robots, Bhadauria et al. [17]
address the Data Gathering Problem (DGP) in which multiple
robots gather information from deployed sensor networks.
In this work, they formulate the DGP as Travel Salesman
Problem (TSP) instances, and propose a two sub tour plans.
One tour is a counterclockwise tour and the other is a
clockwise tour to ensure that the two tours cover entire
deployed sensor nodes. Another aspect in the decentralized
planning is synchronization. Martinez et al. [18], [19] an-
alyze motion synchronization of decentralized multi-robots
introducing a network of locally connected agents on the
tour using the agree-and-pursue algorithm. These works on
communication and sensing constraints inspire our work.
Unlike the popular pursuit-evasion game, radio sources in
our problem do not move. However, the stationary nodes
do not make the problem simpler because radio sources are
transient and can change transmission power from time to
time which forms a different type of problem.

Realizing that searching for unknown transient radio
sources is an important new problem, our group studies
the problem under different setups and constraints. First, we
assume a carrier-sense-multiple-access based protocol is used
among networked radio sources [20], which allows us to
develop a particle filter-based approach. Then we relax the
assumption and develop a protocol-independent Bayesian lo-
calization scheme [21], [22]. Our recent works [23], [24] find
that teamed robots are more efficient than a single robot when
the target is transient under the same sensing coverage. That
results shift our attention to the multi-robot based approach
in this paper. This paper differs from the centralized pairwise
searching method in [25] by decentralizing belief functions
and proposing a new decentralized planning algorithm.

III. PROBLEM DEFINITION

Our searching problem builds on the following setup and
assumptions:

1) Both robots and radio sources reside in an open 2D
Euclidean space.

2) Each robot has a limited communication range and a
limited sensing range.

3) Each robot knows its position using the Global Posi-
tioning System (GPS). GPS clocks also provide accu-
rate time for the synchronization purpose.

4) The unknown network traffic is light and each target

radio transmission is short, which are the typical char-
acteristics of a low power sensor network.

5) Transmission powers of radio sources are unknown to
robots and may change from time to time. However,
locations of radio sources do not change.

For the new decentralized approach, we will follow the
same problem definition in the corresponding centralized
versions [21], [22], [25], where the searching problem is
partitioned into two sub problems:

Definition 1 (Sensing Problem): Given the RSS readings
and corresponding locations from robots, update robot belief
functions for radio source locations.

Definition 2 (Planning Problem): Given the belief func-
tions, plan robot trajectories to increase searching efficiency.
We will concretely define the belief functions in detail later
in the paper. As we can see, this is a Monte Carlo type
algorithmic approach with the following stopping time for
radio source detection,

Definition 3 (Searching Condition): A radio source is
considered as found if the belief function is bigger than a
preset threshold pt.
Now let us begin with the sensing problem.

IV. DECENTRALIZED BELIEF FUNCTIONS

Belief functions track the radio source distribution based
on RSS readings and robot locations. They are usually built
on a Bayesian framework and antenna models to allow
incremental update. In our previous work [21], [25] on
the centralized localization of transient and unknown radio
sources, we propose a Spatial Temporal Occupancy Grid
(SPOG) as the robots’ common belief functions. Let us
review it first and then we will decentralize SPOG.

A. A Brief Review of SPOG

SPOG partitions the searching region into small and equal-
sized grid cells. Define i ∈ N as the cell index variable
where N := {1, ..., n} is the grid cell index set and n is the
total number of cells. SPOG tracks two types of probabilistic
events: Ci represents the event that cell i contains a radio
source and C1

i represents the event that cell i is the active
source when a transmission is detected. C1

i actually reflects
the relative transmission rates among multiple sources, which
is a temporal dimension signature. Define P (C) as the
probability for event C. P (Ci) and P (C1

i ) characterize
spatiotemporal behaviors of transient radio sources.

Let l ∈ M := {1, ...,m} be the robot index variable where
m is the total number of robots and M is the robot index
set. Note that m is always an even number since we will
pair robots up later. Discrete time k or the corresponding
continuous time tk refers to each moment when a trans-
mission is detected by robots. Let xk

l := [xk
l , y

k
l ]

T be the
location of robot l at time k and Xk := [xk

1 , ...,x
k
m]T be a

set of all robot locations at time k. Let the discrete random
variable Z̃k

l be the RSS reading of the l-th robot at time k.
Define Z̃k := [Z̃k

1 , ..., Z̃
k
m]T as a discrete random vector of

all the RSS readings at time k and let z̃k := [z̃k1 , ..., z̃
k
m]T be

corresponding values. As a convention, we use lower cases
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of random variables or vectors to denote their values. Define
Z1:k := {z̃1, ..., z̃k} as the set of all RSSs sensed from
the beginning of the searching to tk. Define P (Ci|Z1:k) as
the conditional probability that cell i contains at least one
radio source given Z1:k. Similarly, we define P (Ci|Z1:k−1),
P (C1

i |Z1:k), and P (C1
i |Z1:k−1).

At time k, event Z̃k = z̃k is perceived by robots. The
posterior probability P (Ci|Z1:k) over the grid needs to
be updated. According to [21], this is actually a nested
multivariate Bayesian process,

P (Ci|Z1:k) = P (Z̃k = z̃k|C1
i )P (C1

i |Z1:k−1)+
P (Ci|Z1:k−1)×∑

s̸=i,s∈N P (Z̃k = z̃k|C1
s )P (C1

s |Z1:k−1)


∑

i∈N P (Z̃k = z̃k|C1
i )P (C1

i |Z1:k−1)
, (1)

P (C1
i |Z1:k) =

P (Z̃k = z̃k|C1
i )P (C1

i |Z1:k−1)∑
s∈N P (Z̃k = z̃k|C1

s )P (C1
s |Z1:k−1)

,

(2)

where P (Z̃k = z̃k|C1
i ) refers to the conditional probability

for event (Z̃k = z̃k) when cell i is transmitting. This is the
sensing model. In [21], [22], we have shown how to obtain
P (Z̃k = z̃k|C1

i ) from antenna radiation pattern and signal at-
tenuation model. It is worth noting that P (Z̃k = z̃k|C1

i ) has
to be established on signal ratios from robot pairs when the
source transmission power is unknown. Since this problem
is detailed in the centralized version [25], we omit it here. It
is worth noting that SPOG allows different antenna models
and is flexible in different antennas or robot configurations.
Eqs. (1) and (2) are in an incremental conditional format for
recursive update. As more RSS readings enter the system
over time, P (Ci|Z1:k) converges until P (Ci|Z1:k) > pt
which means that searching condition in Def. 3 is satisfied.

B. Decentralized SPOG (D-SPOG):

In the decentralized system, each robot has to maintain its
own local SPOG by accumulating RSS readings internally
and exchanging information with other robots whenever
other robots move into its communication range. However,
the centralized SPOG described in (1) and (2) depends on
the strict order of complete observation set Z1:k. Robots
cannot arbitrarily use their partial receptions to generate a
local SPOG. Furthermore, robots cannot keep their readings
forever for future information exchange due to limited on-
board memory space.

Before we address this problem, let us take a close look
at the decentralized system. There are three types of discrete
events in the decentralized system: detection events referring
to moments when a transmission is detected by robots,
rendezvous events describing moments when a robot moves
into another robot’s communication range, and planning
events describing moments when a robot starts a new path
planning. Recall that k is the time index variable for the
detection event. Denote j and κ as the rendezvous event and
the planning event, respectively. Define tj,kκ to describe the

three events in the continuous time domain as a convention
in the paper. To reduce cluttering, we may also use a reduced
version such as tk and tj for the corresponding event time.
tκ indicates the beginning of the κ-th planning period.

An effective coordination plan should allow robots to
exchange information among each other so that all robots
have the same set of observations Z1:k at time j, tj ≥ tk.
This is the time that all robots can update their SPOG
up to time k. In such a way, the centralized SPOG can
be decentralized and synchronized among all robots. The
“delayed synchronization” concept is proposed as a check-
point by Leung et al. [12]. Let us denote Y (tk, tj) as the
checkpoint. Note that each checkpoint for a robot always
has two time variables: it begins with an early detection
event time and ends with a future rendezvous event time
because information is always generated by detection events
and synchronized by rendezvous events.

Robot
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Fig. 1. A sample information flow graph for four robot pairs. Gray
rectangles represent robot rendezvous events. Arc arrows in vertical direction
indicate information exchange between robots in communication range.
Black and white circles represent events for robots with and without
detection of active radio transmissions, respectively.

Fig. 1 shows an information flow graph to illustrate the
checkpoint concept and how information is passed around
the distributed robot pairs in D-SPOG. Note that robots have
been paired up in this graph because it takes two robots
to obtain a signal ratio for radio sources with unknown
and variable transmission powers. We ignore the intra-pair
communication because a pair can always talk to each other
according to planning. Following the arc arrows in vertical
directions, we can see that both Y (tj,k+1

κ , tj+2,k+3
κ ) and

Y (tj+1,k+2
κ , tj+3,k+4

κ ) are checkpoints.
To build a D-SPOG, the remaining question is how

each robot stores and exchanges information. Say that
Yl(t

k−1, tj−1) is the last checkpoint for robot l. After the
update at tj−1, D-SPOG for the robot l is synchronized
up to tk−1 with the fictitious centralized SPOG according
to the checkpoint property. Robot l only needs to store its
own locations and RSS readings after tk−1, which results in
significant saving in memory. Due to the fact that robots
without detection may not know the time of the radio
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transmission, each robot has to keep track of its trajectory in
addition to RSS readings. Let Wk−1,t

l be the measurement
set internally generated by robot l between tk−1 and current
time t, t > tk−1:

Wk−1,t
l =

{
xl((t

k−1, t]), zl((t
k−1, t])

}
, (3)

where xl(·) is the robot trajectory and zl(·) is the RSS
reading set for the duration. Similarly, we define Wk−1,j

l

and Wk−1,k
l by replacing t with tj and tk, respectively.

Let us define the measurement set of robot l at rendezvous
time tj as Γk−1,j

l which contains information from both its
on-board sensors and other robots. To describe the moment
right before the robot l encounters another robot, we intro-
duce a (·)− notation. It is clear that Wk−1,j

l ⊆ (Γk−1,j
l )−.

At tj , robot l meets robot p, which has measurement set
(Γk′−1,j

p )− prior to the information exchange where tk
′−1 is

the detection event time of the last checkpoint that robot
p has. Note that tk

′−1 and tk−1 are not necessarily the
same. The two robots first compare the two times because
a newer time means a more recent D-SPOG. The other
robot should synchronize its SPOG to the recent one. After
synchronizing their SPOGs, they need to synchronize the
measurement set. Note that we have (Γk−1,j

l )− for robot
l and (Γk′−1,j

p )− for robot p before the synchronization.
Without loss of generality, we assume tk−1 ≥ tk

′−1, the
synchronization process is,

Γk−1,j
l = Γk−1,j

p = (Γk−1,j
l )− ∪ (Γk−1,j

p )−, (4)

where (Γk−1,j
p )− = (Γk′−1,j

p )− \ Γk′−1,k−1
p is obtained

by discarding the measurement between tk
′−1 and tk−1, a

reduction in memory usage.
After the rendezvous event, each robot needs to search

if a more recent checkpoint can be established. For robot
l, it checks Γk−1,j

l to see if the measurement set contains
information from all other robots for detection events hap-
pened after the k− 1-th detection event by searching for the
maximum δ,

δ = arg max
δ∈Z∩[−1,∞) and tk+δ≤t

δ

[
Πm

p=1(W
k−1,k+δ
l ⊂ Γk−1,j

l )

]
,

(5)
where (Wk−1,k+δ

l ⊂ Γk−1,j
l ) is a logic operation which

returns 0 if the relationship is not satisfied and 1 otherwise.
Only the existence of nonnegative solution indicates a new
checkpoint Yl(t

k+δ, tj) can be established and hence the D-
SPOG can be updated. After the update, it is clear that D-
SPOG is equivalent to the centralized SPOG update with a
delay of t− tk+δ . We have the following lemma,

Lemma 1: To ensure proper update of D-SPOG at check-
points, both the amount of information that every robot stores
onboard and the amount of information exchange during the
rendezvous event between two robots are O(n+m(t−tk−1)),
where t is current time and tk−1 is the detection event time
of the latest checkpoint.

Proof: Each robot has to store a D-SPOG which takes
O(n) memory space. At the worst case scenario, Γk−1,t

p may
contain m−1 robots’ trajectories and RSS reading sets from

tk−1 to t. Since the trajectory storage using a fixed period
and the mean number of transmissions is linear to the time
duration, hence the overall amount of information stored on
each robot is O(n+m(t− tk−1)). Since both D-SPOG and
their measurement sets need to be synchronized during the
rendezvous of robots, the lemma holds.

However, if just one robot is geographically isolated with
others which results in no communication to others, no
checkpoint can be established. t− tk−1 becomes unbounded
and the robot may quickly run out of memory which leads to
failure. To address this problem, we propose a decentralized
planning that guarantees periodic checkpoint existence.

V. DECENTRALIZED PLANNING

The decentralized planning strategy needs to take check-
point existence, communication range limit, synchronization,
and searching time into consideration. We build the new
planning strategy on our existing ridge walking algorithm
(RWA), which was designed for the centralized version of the
problem in [21], [22]. RWA and its variants have been proved
to be effective in accelerating the convergence of P (Ci|Z1:k)
to reduce searching time and have excellent scalability.

A. A Brief Review of RWA and Pairwise RWA (PRWA)

In SPOG or D-SPOG, P (Ci|Z1:k) is the conditional
probability that cell i contains a radio source. RWA plans a
path for a single robot by building on this spatial distribution
of radio sources. We generate a level set L(p), p ∈ (0, 1]
by using a plane parallel to the ground plane to intersect
the mountain-like distribution P (Ci|Z1:k) at height p. The
intersection generates L(p) which contains all cells with
P (Ci|Z1:k) above the plane. L(p) usually consists of several
disconnected components. The irregular contours in Fig. 2(a)
is an example of L(0.1). For each component, we define
its ridge as the longest line segment along its dominating
direction [22]. We know each ridge has very high probability
of being close to a potential signal source. We generate a
Traveling Salesperson Problem (TSP) tour which contains all
ridges. For off-ridge segments, the robot moves at its fastest
speed. The solid red and dashed blue lines in Fig. 2(a) repre-
sent on-ridge and off-ridge movements, respectively. For on-
ridge segments, the robot spends the time proportional to the
summation of posterior conditional probability P (Ci|Z1:k)
over the corresponding isolated level set on each ridge.
This allows the robot to spend most of its time on ridges,
then the intuition yields the ridge walking algorithm (RWA)
as detailed in [22]. RWA has shown superior convergence
performance and scalability in searching for multiple signal
sources.

PRWA extends RWA to plan trajectories for a team
of robots to handle unknown and changing transmission
power in [25]. First, PRWA expands SPOG by developing
a pairwise sensing model based on RSS ratios from robot
pairs instead of assuming known absolute source transmis-
sion power. Second, PRWA coordinates robots in pairs by
minimizing information entropy so that a robot pair can be
viewed as a super-robot in planning. We will inherit the
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pairwise sensing model and coordinate robots in pairs in this
decentralized version.

B. Decentralized Pairwise Ridge Walking Algorithm
(DPRWA)

Similar to RWA, DPRWA coordinate robot pairs to patrol
on TSP tours that link all ridges. We generate a TSP tour in
each planning period. In fact, each planning period is divided
into two parts: short inter-ring movements for transition
between TSP tours in adjacent planning periods followed
by long intra-ring movements for time allocated for robots
to patrol the TSP tour.

1) Inter-Ring and Intra-Ring Movements: Let us begin
with inter-ring movements. Before the planning period starts,
each robot pair computes the TSP tour. All robot pairs
actually share the same TSP tour from the synchronized
D-SPOG. Inter-ring movements allow robots to move from
current TSP tour to the next. Each robot has a pre-allocated
beginning position on the TSP tour (detailed later as initial
positions for intra-ring movements). Therefore, the amount
of travel time for inter-ring movement can be predicted as
soon as the TSP tour for the planning period is established.
Define Du,κ as the inter-ring travel time of the u-th robot
pair. To synchronize the starting time of intra-ring move-
ments of all robot pairs, every robot pair waits until all other
robot pairs reach at their initial positions. Define Dmax

κ as the
maximum travel time: Dmax

κ = argmaxu Du,κ. For those
robots that arrive early due to short traveling distance, they
need to wait ωκ

u = Dmax
κ − Du,κ before the synchronized

intra-ring movements start. Synchronization will be detailed
later in Section V-B.3. To save time for patrolling TSP
tours, robots moves at their fastest speed to shorten inter-
ring movement time.

Now let us introduce intra-ring movements. Since the TSP
tour is a continuous loop, it can be mapped to a circular
ring in time with its circumference being the time for a
single pair of robots to traverse the entire TSP tour, which
is defined as τ0. The mapping is one-to-one if we fix a point
correspondence in the mapping. For example, the leftmost
point (the smallest in lexicographic order) on the TSP tour
corresponds to the 9 clock position on the time ring as the
green stars shown in Figs. 2(a) and 2(b). All robots share
this mapping rule to synchronize their positions on the time
ring. The introduction of time ring can facilitate our planning.
Under the time ring, the inter-ring movements can also be
simplified as shown in Fig. 2(d).

As illustrated in Fig. 2(b), each pair of robots are evenly
distributed on the time ring. Define ϕu,κ and ϕ

′

u,κ as the
position and speed of the u-th robot pair on the time ring,
respectively. Robots’ speeds on the time ring are unitary
based on the definition of the time ring. Odd and even
pairs are initially assigned to move on the time ring coun-
terclockwise and clockwise, which are represented as 1 and
-1, respectively. Recall there are m robots and hence m/2

pairs. We have

ϕu,κ =
2τ0(u− 1)

m
, and ϕ

′

u,κ =

{
1 if u is odd,
−1 otherwise,

(6)
as the initial positions and speeds for robot pairs. Fig. 2(b)
illustrates initial positions and directions (represented by the
heading direction of each robot) of four robot pairs. When
two robot pairs rendezvous on the time ring, they exchange
information and then reverse their moving directions. There-
fore, each robot pair oscillates on the time ring centered at
its initial position as shown in Fig. 2(c).

Define T as the time of the intra-ring movements. The
robot pairs have to execute the intra-ring movements long
enough to ensure the existence of the checkpoint.

Lemma 2: Each robot pair has at least one checkpoint if
the intra-ring movement time T is

T =

{
τ0
2 if m

2 is even,
τ0
2 + τ0

m otherwise. (7)

Proof: Starting from its initial position, robot pair
u meets its two neighbors u − 1 and u + 1 and returns
to the initial position with a period of 2τ0

m . The furthest
point is half circle away, τ0/2. The two rendezvous bring
information from further both downstream (from u + 1 at
lower half circle) and upstream (from u − 1 at upper half
circle). Imagine the information is sent out from the furthest
robot pair from both upstream and downstream directions.
When the information reaches the robot pair u, it contains
information from all robot pairs. There are two cases: even
and odd numbers of robot pairs. For the even case, due to
the unitary speed, τ0/2 is the exact time when robot pair u
gathers the information. Eq. (5) has a nonnegative solution
and a new checkpoint is established. For the odd case, the
proof is similar except that there needs to be an additional
half period for meeting the additional pair.
Fig. 1 illustrates the information flow and checkpoint existent
for the four robot pair case in Fig. 2(b) and Fig. 2(c) under
the oscillating intra-ring movements.

2) Memory Usage and Expected Searching Time:
DPRWA ensures periodical checkpoint existence which leads
to guaranteed performance. To measure the algorithm perfor-
mance, we employ two metrics: memory usage for each robot
and the expected searching time for each radio source.

For the memory usage, following Lemma 2, we have the
following theorem,

Theorem 1: DPRWA guarantees D-SPOG has a time de-
lay less than Dmax

κ + T if comparing the D-SPOG to
the centralized SPOG. To achieve that, each robot requires
O(n+m(Dmax

κ + T )) memory space.
The expected searching time for a radio source has to

depend on the source transmission rate. Assume a radio
source i transmits signals according to a Poisson process
with a rate of λi. In [24], we have introduced the expected
searching time (EST) for a single-robot-single-target case.
Let us extend this analysis to DPRWA. Denote Ts as the
searching time. Similar to the EST analysis of RWA in [22],
we tighten the convergence condition from the probability
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Fig. 2. Sample results for the decentralized planning using 4 robot pairs. (a) Sample robot trajectories of DPRWA. The solid red and dashed blue lines
represent the on-ridge and off-ridge movements, respectively. (b) An example of the intra-ring movements on the time ring. (c) Changes of robot pair
directions corresponding to the intra-ring movements. (d) An example of the inter-ring movements using time ring space instead of Euclidean space.

threshold pt to the condition of signal saturation. Radio
source i is considered to be found if the robot pairs hear the
transmission within the distance of da of the radio source.
da is set to be small such that if the transmission is heard,
the probability threshold pt must be reached. This defines
a sensing circle with its center at the radio source i and a
radius of da. Define τIN and τOUT as portions of the time when
traveling within and outside distance of da of radio source
i, respectively. Hence

Dmax
κ + T = τIN + τOUT. (8)

We have the following theorem,
Theorem 2: The expected searching time E(Ts) of radio

source i has the following upper bound,

E(Ts) ≤ Dmax
κ +

τ0
m

+
1

λi
+ (Dmax

κ + T )E
( e−λiτIN

1− e−λiτIN

)
.

(9)
Proof: From Theorem 1 in [24], the expected searching

time E(Ts) of transient radio source i is,

E(Ts) = E(D) +
1

λi
+ E

(
τOUT

e−λiτIN

1− e−λiτIN

)
, (10)

where D is the amount of time from the beginning of the
search to the moment that the robot is within distance da of
the radio source i for the first time. The theorem is built on
the general case that the searching process can be modeled
as a delayed alternative renewal reward process [26]. In our
case, the renewal period starts at the first entry to the sensing
circle by the robot team at each planning period. It is not
exactly the same as the planning period but will share the
same expected period length with the planning period. Since
the search begins with the inter-ring movements in the first
planning period, let us define probability event B as the event
if the robot team meets the radio source during inter-ring
movements. Therefore,

E(D) = E(D|B)P (B) + E(D|B)(1− P (B)). (11)

Event B is a small probability event given the large searching
field size. Hence P (B) ≪ 1−P (B) ≈ 1. Since the point of
the first entry to the sensing circle could be anywhere on the
time ring, it is uniformly distributed on the time ring. Also,

we have m/2 pairs of robots evenly distributed on the time
ring,

E(D|B) = Dmax
κ +

1

2

τ0
m/2

= Dmax
κ +

τ0
m

≥ E(D). (12)

Since the search region is usually much larger than the
sensing region τIN ≪ Dmax

κ + T , we have

E(τOUT) ≈ Dmax
κ + T (13)

from (8). Since each renewal period is independent and
identically distributed (i.i.d.), it allows us to apply Theorem
1 in [24]. Since Dmax

κ + T is independent of τIN, plugging
(12 and 13) into (10), we have the result in (9).

Remark 1: An important result given by Theorem 2 is the
fact that entries in (9) are not sensitive to the number of radio
sources. This means that our DPRWA algorithm has excellent
scalability when number of radio sources increases.

3) Algorithm: We summarize our DPRWA as follows.
Note that this algorithm runs on each robot pair, which skips
the details of the internal coordination within each pair.

Synchronization: The algorithm runs at tκ, the beginning
of planning period κ. The algorithm relies on the D-SPOG
at tκ−1, which is the synchronized belief function across
all robots. Therefore, all robots will have the same TSP tour,
which ensures their motions are synchronized given the same
plan, accurate clocks from GPS, and the same mapping rule
between the time ring and the Euclidean space.

Virtual ridges: One point that we have yet to explain is
the virtual ridge mentioned in line 2 of Alg. 1. Define smax

as the maximum number of ridges. If there are not enough
ridges generated from the D-SPOG, we employ virtual ridges
to ensure that there are smax ridges. The main reason is that
we do not want the robot to only explore regions with high
probabilities. Virtual ridges are generated uniformly random
in the searching region and also refreshed at every planning
period. The virtual ridge sets are synchronized in the same
way that D-SPOG does. The introduction of virtual ridge can
be simply viewed as a sampling approach to cover regions
with low probabilities.

Sparse sensor fields: The DPWRA in Alg. 1 forces all
robots to share a single TSP tour. This is efficient when
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Fig. 3. Experiment results when comparing the DPRWA, the pairwise random walk, and the pairwise fixed-route patrol: (a) The maximum memory space
usage using number of detection events stored on-board. (b) and (c) Searching time comparison while changing number of robots (b) or number of radio
sources (c).

Algorithm 1: Decentralized Pairwise Ridge Walking
Algorithm

input : D-SPOG at tκ−1

1 Apply the level set O(n)
2 Compute ridges and merge them with pre-generated virtual ridges
O(smax)

3 Compute the TSP tour from the merged ridge set O((smax − 1)!)
// Inter Ring Movements

4 Compute Du,κ and Dmax
κ O(1)

5 Move to initial positions O(1)
6 Wait ωκ

u O(Dmax
κ )

// Intra Ring Movements
7 while t ≤ tκ +Dmax

κ + T do O(T )
8 Patrolling along the TSP tour O(1)

9 if ϕj,k
u,κ = ϕj,k

u−1,κ or ϕj,k
u,κ = ϕj,k

u+1,κ then
10 ϕ

′j,k
u,κ = −ϕ

′j,k
u,κ O(1)

11 Update Γj,k
u,κ O(1)

12 end
13 end

radio sources are relatively dense (i.e. the distances between
disconnected components in the level set are less than the
communication range). However, sharing a TSP tour might
not be efficient when the radio source are sparsely distributed
in the searching region because robots have to waste a
lot of time on off-ridge movements running between radio
sources. Since the communication range is much larger than
the sensing range given that robots have more power and
better antenna than radio sources, the sensing processes
in D-SPOG are independent across distant groups, which
allows us to partition D-SPOG spatially into disjoint distant
groups. Each group is treated as a separated problem with no
requirement to merge D-SPOG during the partition. We can
regroup periodically should inter-group distances change. At
the moment of re-grouping, we can merge D-SPOG across
groups. Robot pairs will be proportionally dispatched to
different groups according to the total P (Ci|Z1:k) of each
group. We may have to merge some close groups when there
is an insufficient number of robot pairs. For each group, we
apply Alg. 1.

VI. EXPERIMENTS

To validate the algorithm, we have implemented the algo-
rithm and a simulation platform. The radio sources are XBee
Pro with ZigBeeT/802.15.4 OEM radio frequency modules
produced by Digi International Inc. We use the RSS readings
from XBee Pro to drive the simulation experiments. We
cannot use real robots because we do not have robots that
can patrol the searching field of about a football field size
for more than 20 hours, which is a basic requirement for
a realistic setup. We simulate iRobot Create in the process,
which has a maximum speed of 40 cm/s. The grid is a square
with 50× 50 cells. Each grid cell has a size of 50.0× 50.0
cm2. Each radio source generates radio transmission signals
according to an i.i.d. Poisson process with a rate of λ = 0.05
packets per second. The radio sources also dynamically vary
their transmission power using one of 5 power settings in
XBee Pro, which results in a varying sensing range from
1.67 to 3.45 meters. We set τ0 = 500 seconds in the
simulation. We choose the probability convergence threshold
as pt = 0.9. During each trial, we randomly generate radio
source locations in the grid.

We compare the DPRWA algorithm to two heuristics
including a pairwise random walk and a pairwise patrol. In
both heuristics, robots are paired just as DPRWA does. In
the former, each pair is treated as a super robot to perform
a random walk together. In the later, robot pairs follow a
linear formation with an equal inter-pair distance to be the
maximum communication distance. Since global connectiv-
ity is maintained for the pairwise patrol, it degenerates to the
centralized planning.

Fig. 3 illustrates the simulation results by using mem-
ory usage and searching time as metrics while changing
communication range, number of robots, and number of
radio sources. Each data point is an average of 20 inde-
pendent trials. There are six radio sources to be searched in
Figs. 3(a) and 3(b). In Figs. 3(a) and 3(c), eight robots are
employed. The communication range is set to be six meters
in Figs. 3(b) and 3(c). Since the pairwise patrol maintains
global connectivity, it requires the least amount memory for
synchronization purpose. The pairwise random walk is the
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opposite because the time between checkpoints for robots
can be very long. Our DPWRA requires more memory
than that of the patrol but still much less than that of the
random walk (see Fig. 3(a)). When it comes to the searching
time, DPRWA is significantly faster than its counterparts
(see Figs. 3(b) and 3(c)). The advantage is even more
when number of robots are limited, which happens when the
search is constrained by resources. Fig. 3(b) also compares
DPRWA with the centralized PRWA (CPRWA) in [25]. It is
surprising that DPRWA EST is about the same as CPRWA
despite the advantage that CPRWA has in coordination and
synchronization. Fig. 3(c) further confirms Theorem 2 that
the EST of DPRWA is insensitive to number of radio sources.
In conclusion, DPRWA successfully trades a modest amount
of memory for the fastest searching time among the three
methods along with excellent scalability due to its invariance
to number of radio sources.

VII. CONCLUSION

We developed a decentralized algorithm to coordinate a
group of mobile robots to search for unknown and transient
radio sources in an open field under mobility, communication
range, and sensing constraints. Building on our prior work,
we proposed a two-step approach: first we decentralized
belief functions that robots use to track source locations using
checkpoint-based synchronization, and second we proposed a
decentralized planning strategy to coordinate robots to ensure
the existence of checkpoints and coordinated searching. We
formally analyzed memory usage, data amount in commu-
nication, and searching time for the proposed algorithm.
We implemented the proposed algorithm and compared it
with two heuristics in simulation based on real sensory data.
Our algorithm successfully performed the searching task
and showed a clear advantage in searching time without
significant increase of memory usage.
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