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Abstract— Unlike the traditional feature-based methods, we
propose using motion vectors (MVs) from video streams as
inputs for visual navigation. Although MVs are very noisy and
with low spatial resolution, MVs do possess high temporal reso-
lution which means it is possible to merge MVs from different
frames to improve signal quality. Homography filtering and
MV thresholding are proposed to further improve MV quality
so that we can establish plane observations from MVs. We
propose an extended Kalman filter (EKF) based approach to
simultaneously track robot motion and planes. We formally
model error propagation of MVs and derive variance of the
merged MVs, which provide the necessary observation error
model for the EKF. We have implemented the proposed method
and tested it in physical experiments. Results show that the
system is capable of performing robot localization and plane
mapping with a relative trajectory error of less than 5.1%.

I. INTRODUCTION

Many visual navigation approaches rely on correspon-

dence of features between individual images to establish

geometric understandings of image data. To do that, im-

age data are often first reduced to a feature set such as

points. Then extensive statistical approaches such as random

sample consensus (RANSAC) are employed to search for

feature matches that satisfy the expected geometry rela-

tionships. Such geometric relationships enable us to derive

robot/camera ego-motion estimation or scene understandings

in different applications such as visual odometry or simul-

taneous localization and mapping (SLAM) [1]. The inherent

drawback of these approaches is the expensive computation

load and robustness of feature extraction, which is often

hindered by varying lighting conditions and occlusions.

On the other hand, recent streaming videos are transmitted

after complex compression. These algorithms exploit sim-

ilarities between blocks of pixels in adjacent frame sets,

which are characterized as motion vectors (MVs), to reduce

bandwidth needs (Fig. 1(a)). Compared with optical flows,

MVs have lower spatial resolution (per block vs. per pixel)

but higher temporal resolution because MVs are extracted

from multiple frames instead of mere two adjacent frames.

MVs carry the correspondence information and are readily

available from the encoded video data.

Despite all the aforementioned advantages, MVs are not

easy to use because of their low spatial resolution and

relatively high noise. Here we explore how to use MVs

for simultaneous localization and planar surface extraction

(SLAPSE) for a mobile robot equipped with a single camera.

We establish the MV noise models to capture the observation
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Fig. 1. (a) Original MVs represented by red arrows. (b) Filtered MVs
represented by blue arrows. (c) Satellite image of an experiment site. Black
line is manually measured ground truth camera trajectory, red line is the
estimated trajectory. (d) Estimated plane positions and camera trajectory.

error. We formulate the SLAPSE problem and study how to

extract planes from MVs using planar homography filtering.

We then develop an extended Kalman filter (EKF) based

approach with planes and robot motion as state variables.

We have implemented our algorithm using C/C++ on a PC

platform and tested the algorithm in physical experiments.

The results show that the system is capable of performing

robot localization and plane mapping with a relative trajec-

tory error of less than 5.1%.

II. RELATED WORK

SLAPSE relates to recent progress in visual navigation

for mobile robots, MPEG compression, and dense 3D re-

construction.

SLAPSE can be viewed as visual SLAM with special

observation inputs. In a regular SLAM framework, the

physical world is represented by a collection of landmarks

which are primarily features observed from images, such

as key points [2]–[5], line segments [6]–[11], curves [12],

and surfaces [13]. In these feature-based approaches, SLAM

performance is largely dependent of feature distributions and

correspondences. Building on these approaches, our SLAPSE

takes advantage of the fact that MVs encode correspondences

of segmented scene by overcoming the noise in the MV data.

Many efforts have been made to improve the accuracy and



speed of MV computation in MPEG encoding. However, few

studies have been conducted on utilizing MVs in complex

vision problems. The main reason is because MVs are very

noisy and have spatially low resolution. MVs have been

applied in fast image-based camera rotation estimation [14],

2D object tracking [15], and image stabilization [16]. All of

these approaches employ voting or averaging like strategies

with region-based smoothing to obtain either foreground or

background information separately. SLAPSE problems need

to recover both the scene structure and the robot motion

which require MVs with much less errors. We merge MVs

across multiple adjacent frames to improve the signal to noise

ratio, analyze errors on merged MVs, and utilize geometry

relationship for better noise filtering.

MVs directly provide correspondences between pixel

blocks. Once planes are identified through MVs in the

SLAPSE problem, their corresponding pixel blocks are sub-

sequently reconstructed in 3D. This is close to feature-

based dense reconstruction, which usually requires precise

dense correspondence between images. Recent dense re-

construction approaches start with a sparse set of salient

points, and construct dense surfaces using photoconsistency

and geometrical constraints [17]. More relevant works [18]

utilize variational optical flow [19] to establish dense surface

meshes from point clouds. These works inspire us to use

MVs in scene mapping.

Our group focuses on developing monocular visual nav-

igation techniques for energy and computation constrained

robots. Using a vector-field approach [20], we develop a

lightweight visual navigation algorithm for an autonomous

motorcycle. We also address depth ambiguity problem

through planning for small robot systems [21]. We have

attempted different features for visual odometry such as

vertical line segments [22], [23] and high level features [24],

[25] to improve robustness. Through the process, we have

learned shortcomings of feature-based approaches, which has

motivated this work.

III. BACKGROUND AND PROBLEM DEFINITION

A. A Brief Introduction to Motion Vectors

Video encoders such as MPEG 1/2/4 often utilize block

motion compensation (BMC) to achieve better data com-

pression. BMC partitions each frame into small macroblocks

(MB) (e.g. each MB is 16× 16 pixels for MPEG 2). During

encoding, block matching is employed to search for similar

MBs in anchor frames. If a matching block is found, an MV

is established. Note that each MV only represents a 2D shift

in the image frame.

We use MPEG 2 as an example, and our analysis can

be easily extended to other BMC-based encoding formats.

There are often three types of frames (or slices of a frame):

intra coded, predictive coded, and bidirectionally predictive

coded, namely, I, P, and B frames, respectively. P and B

frames consist of MBs defined by MVs pointing to their

anchor frames. I and P frames are used as anchor frames

for block matching. As illustrated in Fig. 2(a), a P frame is

always predicted from the closest previous P or I frame and
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Fig. 2. (a) GOP structure for an MPEG 2 video stream. Note that the arrows
on top of the frames refer to reference relationship in computing MVs. (b)
MVs between adjacent I and P frames can be obtained either directly (e.g.
red dotted lines) or indirectly through B frames (e.g. blue dashed lines).
(c) Sample MVs overlaid on top of their video frame. Line segments and
circles represent MVs and their pointing direction.

each MB has only one MV referring to the past. To achieve

more compression, B frames utilize the closest P or I frames

from both the past and the future as anchor frames. Each MB

in B frame has up to two MVs point to both future and past

anchor frames. The frame sequencing structure is referred to

as group of pictures (GOP) in the MPEG protocols. In more

advanced video format (e.g. MPEG 4), an MB can have as

many as 16 MVs pointing to many reference frames.

B. Modeling Noise in Motion Vectors

If an MB centered at (ui, vi) in frame i finds the cor-

responding position (uj , vj) in the anchor frame j through

block matching algorithm (BMA), then the resulting l-th MV

can be defined as

mi→j
l (ui, vi) =

[

∆u

∆v

]

=

[

uj − ui

vj − vi

]

, (1)

where u and v are frame coordinates. For simplicity, we

sometimes use mi→j
l to represent an MV between the two

frames. An MB may contain many MVs. Some of them

originate from the center of the MB and others may not (e.g.

the reverse MV of mi→j
l (ui, vi) is not necessarily located at

the center of an MB in frame j).

Although containing image correspondence information,

MVs are difficult to use due to noise introduced by BMA,

which searches the most similar block in a given range. When

video frames contain repetitive patterns, false matches can be

generated. This is not a problem for video compression but

presents a huge challenge to scene understandings. Some-

times, occlusions and scene changes may cause BMA to fail

to find a matching. Say that BMA finds the correct matching

with probability p, which is defined as event EM . It is worth

noting that p is also often affected by robot/camera moving

speed. To avoid that, we can set frame rate proportional to

the moving speed to reduce the variation in p. As observed

from data, a regular street driving in urban area often has

p > 0.6.

Even when a correct matching is found, BMA still has

limited accuracy. MPEG 2 and 4 warrant 0.5 and 0.25 pixel
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accuracy, respectively. When the correct matching is found,

this error e
i→j
l = mi→j

l − m̄i→j
l can be modeled as a 2D

zero mean Gaussian

e
i→j
l |EM ∼ N(02×1,Σ), (2)

where term ·|EM indicates that this is a conditional distribu-

tion, m̄i→j
l is the true mean of the MV, and covariance matrix

Σ = diag{σ2, σ2} is a diagonal matrix. We set σ = 0.25
to conservatively capture the 0.5 pixel accuracy for MPEG

2. This accuracy level is sufficient for video presentation.

However, due to the small time difference in adjacent frames,

the motion parallax can be as small as 2-4 pixels, which leads

to large relative error. Compounded with false matches, MVs

are too noisy to be directly used for scene understanding.

C. Problem Formulation

To formulate SLAPSE problem, we assume that the in-

trinsic matrix of the camera is known as K through pre-

calibration and the scene is dominated by planes, such as

building facade and paved roads. Thus, the understanding of

scene structure relies on estimating 3D planes.

Here all the 3D coordinate systems are right hand systems.

Let us define

• {Ck} as the 3D camera coordinate system (CCS) in

frame k. For each CCS, its origin locates at the camera

optical center, z-axis coincides with the optical axis and

points to the forward direction of the camera, its x-axis

and y-axis are parallel to the horizontal and vertical

directions of the CCD sensor plane, respectively,

• Rk and tk as the rotation and translation of {Ck} w.r.t.

frame {Ck−1},

• πi,k = [nT

i,k, di,k]
T is the i-th 3D plane in {Ck}, where

ni,k is the plane normal and di,k is the plane depth, and

• π̃i,k = ni,k/di,k as the inhomogeneous form of a plane.

Therefore, the problem is defined as below:

Definition 1: Given the set of MVs up to time/frame k,

{mi→j
l |i, j ≤ k}, extract planes, estimate plane equations

and camera pose Rk and tk in each frame.

IV. SYSTEM ARCHITECTURE

The SLAPSE problem can be solved using an EKF-based

filtering approach as shown in Fig. 3(a). The system takes

MVs as the input, and tracks the 3D configuration of planes

and camera poses. A key issue of the procedure is how to

extract planes from MVs, which is detailed in Fig. 3(b). Let

us start with the planar surface extraction.

V. PLANAR SURFACE EXTRACTION

Planes are identified through MVs. Given that MVs may

have multiple reference frames, we need to merge them

to facilitate the plane extraction. Moreover, it is necessary

to understand how errors in MVs are accumulated and

propagated in the MV merging process.
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Fig. 3. System diagrams: (a) Overall SLAPSE diagram based on EKF. (b)
A blowup view of plane extraction.
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Fig. 4. MVs in B frames are merged into the nearest P and I frames.
Arrows indicate the MV referencing directions. (a) A sample GOP. (b) The
GOP can be decomposed into IP, PP and PI types.

A. Motion Vector Merging

According to the noise model in Section III-B, an MV

represents correct MB correspondence between the current

B or P frame and its reference frame with probability p.

We name MVs with correct correspondence as in-line MVs

(IMVs). From scene understanding point of view, IMVs have

limited spatial resolution and relatively high noise. However,

IMV set is actually temporally abundant. The adjacent frames

differ by 1/30 or 1/25 seconds. If done properly, we can

utilize IMV’s temporal abundance to further reduce noise

level. Since IMV accuracy determines the accuracy of scene

structure, it is important to monitor the IMV variance level.

Therefore, the subsequent questions are 1) what is the

probability that the IMVs exist across multiple frames and

2) how accurate are these IMVs.

We begin with question 1). For a sample GOP in Fig. 4(a),

we can draw the MV reference relationship in Fig. 4(b).

Interestingly, the continuous frame sequence can be broken

into segments with each segment beginning with an I/P frame

and ending with the nearest subsequent I/P frame. Segments

overlap by sharing common I or P frames. Let nB be the

number of B frames in each segment. nB = 3 in Fig. 4.

Utilizing these natural segments, we check IMV existence
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every nB + 1 frames as defined by each segment. There are

three types of segments according to beginning/ending frame

types: IP, PP, and PI. IP and PP share a similar structure: a

direct reference between the two and nB indirect references

from B frames. PI pairs do not have the direct reference

because I frames are not constructed from MBs. Define

events EIP, EPP, and EPI for the existence of IMV for an

MB across the nearest IP, PP, and PI frames, respectively.

We have the following lemma.

Lemma 1: For an MB, the probability of existing at least

one IMV across the nearest I/P frame pair is,

P (EIP) = P (EPP) = 1− (1− p)(1− p2)nB , (3)

P (EPI) = 1− (1− p2)nB . (4)

Proof: We can view the MV reference relationship

in Fig. 4(b) as a probability graph where each edge has a

probability of p that the MV is a correct correspondence.

Therefore, for each path passing B frames, the probability

that both left and right edges are correct is p2. Subsequently,

the probability that the path is incorrect is 1 − p2. EPI

happens if all paths passing B frames are incorrect. Hence

P (EPI) = (1−p2)nB . Eq. (4) holds. Similarly, we can obtain

P (EIP) and P (EPP).

Lemma 1 indicates that using B frames can increase the

probability of IMV existence. In fact, we often have more

than one IMV for each MB. Let us define frame index (also

used as time index) variable k and k+1 corresponding to an

adjacent P/I pair in a segment (see Fig. 4(b)). Define set LIMV

as the set of IMVs for the MB. We know that IMVs are from

two sources: the direct reference between I or P frames and

indirect references from B frames. The error in the former

follows N(02×1,Σ) in (2) whereas the error in the latter is

the summation of two independent 2D Gaussian in (2) and

hence follows N(02×1, 2Σ). We define event ED if there

exists a correct direct reference and d as the index for the

MV. For each MB, we aggregate MVs at I or P frames by

minimizing the Mahalanobis distance,

mk+1→k
l |ED =

√
2mk+1→k

d +
∑

η∈LIMV,η 6=d m
k+1→k
η√

2 + |LIMV| − 1
,

(5)

mk+1→k
l |ED =

1

|LIMV|
∑

η∈LIMV

mk+1→k
η . (6)

The aggregation results in the following error distribution:

Lemma 2: The error e
k+1→k
l = mk+1→k

l − m̄k+1→k
l of

the resulting MV is distributed with zero mean:

e
k+1→k
l |E∗ ∼ N(02×1,Σ∗|E∗), (7)

where condition ‘∗’ represents IP, PP, and PI pairs, and three

conditional covariance matrices are:

ΣPI|EPI =

[

nB
∑

i=1

2

i

(

nB

i

)

p2i(1− p2)nB−i−1

1− (1− p2)nB

]

Σ, (8)

ΣIP|EIP = ΣPP|EPP = (1− p)ΣPI|EPI

+p

[

nB
∑

i=0

2 + i

(i+
√
2)2

(

nB

i

)

p2i(1− p2)nB−i

]

Σ. (9)

Proof: See Appendix.A.

Remark 1: Actually, both (8) and (9) are decreasing func-

tions of nB. This means that merging MVs from B frames

into the nearest I/P frames reduces error variance. This

process allows us to exchange the redundant temporary

resolution to better spatial resolution.

This allows us to obtain a set of merged MVs which

are denoted as Mk+1→k = {mk+1→k} for each adjacent

frames k+1 and k. Lemmas 1 and 2 ensure IMV existence

and derive the corresponding error. A merged MV mk+1→k

provides a correspondence relationship between an MB in

k+1 and an MB in k which naturally leads to correspondence

extraction step.

B. Correspondence Extraction and MV Thresholding

Define xk to be the homogeneous form of a point in image

k. We represent the motion correspondence by a point pair:

xk = xc
k+1 +

[

mk+1→k

0

]

, (10)

where xc
k+1

is the center of mk+1→k’s MB in k + 1, and

xk is its corresponding position in frame k. Therefore, a set

of correspondences between frame k and k + 1 is obtained:

Ck+1→k ={xk ↔ xc
k+1 : mk+1→k ∈ Mk+1→k}. (11)

To reduce the influence of MV noise in plane estimation,

we only consider planes with sufficient motion parallax. This

is handled by eliminating MVs belonging to the plane at

infinity which is defined as π∞.

According to [26], points in π∞ remain still during camera

translation, therefore, they can be detected if the camera

rotation is eliminated from the images.

For a pair of adjacent frames k and k+1, their fundamen-

tal matrix is first estimated using correspondence Ck+1→k.

Camera rotation and translation are then decomposed using

[27]. We re-project all xk’s to frame k + 1 using only the

rotation matrix, which results in a set of points x′
k+1

.

x′
k+1 = sK(kk+1R)−1K−1xk, (12)

where s is a scalar, and (kk+1
R) is the matrix that rotates

{Ck} to {Ck+1} according to the convention used in [28].

The distance between x′
k+1

and xc
k+1

is calculated, and

the MV is considered in π∞ if the distance is below a

threshold ǫm. Denote the correspondence set for π∞ as

Ck+1→k
∞ ={xk ↔ xc

k+1 : ‖x′
k+1 − xc

k+1‖ < ǫm}, (13)

where subscript ∞ means it corresponds to the plane at

infinity and ‖ · ‖ represents the L2 norm. Hence the set of
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correspondences is further reduced to

Ck+1→k
m = Ck+1→k \ Ck+1→k

∞ , (14)

where subscript m means the thresholded correspondence set

with sufficient motion parallax.

C. Homography Fitting

With the correspondence set extracted, plane extraction

can be performed by verifying the homography relationship.

The extraction of planes also helps filter IMVs from the

correspondence set.

Consider two adjacent frames (IP, PP or PI) after MV

merging and thresholding (Fig. 3(b)). We have the correspon-

dence set Ck+1→k
m . We apply RANSAC framework to extract

2D planes and IMVs. RANSAC first samples a minimum set

of correspondences to obtain a homography that represents

the coplanar relationship

xk = λHxc
k+1, (15)

where H is a 3× 3 matrix and λ is a scalar.

Each correspondence provides two equations to (15). Since

a homography H has at most 8 degrees of freedom (DoFs),

only four correspondences are needed to determine a minimal

solution. A normalized direct linear transformation (DLT)

can be applied to obtain an initial H (page. 109 of [26]).

Then, a correspondence resulting in an error below a given

threshold:

‖xk − λHxc
k+1‖ < ǫh, (16)

is labeled as an inlier to the plane.

To extract multiple planes, RANSAC is applied iteratively

until it reaches a given maximum iteration number or there

are not enough unlabeled correspondences to form a mini-

mum solution. Denote the correspondence set Ck+1→k
π,i for

plane πi (defined by homography Hi) as

Ck+1→k
π,i ={xk ↔ xc

k+1 : ‖xk − λHix
c
k+1‖ < ǫh}. (17)

Hence we obtain a set of Nk+1 planes with correspondences

{Ck+1→k
π,1 , ..., Ck+1→k

π,Nk+1
} from frame k and k + 1.

Note, if a set of planes with correspondences

{Ck→k−1

π,1 , ..., Ck→k−1

π,Nk
} have been extracted between

frames k − 1 and k, we first run RANSAC to sample the

minimum solutions only from MBs of existing planes.

Thus every existing plane πi has a chance to find its

corresponding plane correspondence set Ck+1→k
π,i in frame

k + 1. Then a regular RANSAC is applied to the remaining

correspondences to discover new planes between frames k
and k + 1.

VI. PLANE TRACKING WITH EKF

With planes extracted, we can feed them as observations to

an EKF framework to estimate the global plane equations and

camera poses. An EKF filtering approach usually consists of

prediction and update steps.

A. EKF Prediction

In the state space description, we define state vector µk

to be consisted of plane equations in inhomogeneous form,

camera rotation angles and angular velocity, and camera

translation and its velocity in frame k,

µk = [π̃T

1,k, ..., π̃
T

Nk,k
, rTk , t

T

k , ṙ
T

k , ṫ
T

k ]
T, (18)

where r = [α, β, γ]T defines the Euler rotation angles in

X ′Y ′Z ′ order, t = [tx, ty, tz]
T defines the camera translation

w.r.t. previous frame, and ṫ defines translation velocity in

current frame.

Denote Euler rotation matrix R̄k = R(τ ṙk) in Y ′X ′Z ′

order. The state transition of the i−th plane equation is

π̃i,k+1 =
R̄T

k π̃i,k

τ ṫ
T

k R̄
T

k π̃i,k + 1
. (19)

We assume the camera follows constant angular velocity and

linear translation velocity. Hence the state transition is,














rk+1 = τ ṙk
tk+1 = τ ṫk
ṙk+1 = ṙk

ṫk+1 = R̄k ṫk

. (20)

B. EKF Update

To utilize rich information from MVs, we do not consider

simply making a direct observation of the plane equations.

Instead, we use the correspondence sets Ck→k−1

π,i ’s to update

the state vectors.

For frame k, the observation of a plane πi,k is a set of

points {xk−1} from Ck→k−1

π,i . Define rotation matrix Rk =
R(rk) following the Y ′X ′Z ′ Euler form. The observation

model for plane πi,k takes the state vector µk and an

additional variable xc
k as input:

xk−1 = h(µk,x
c
k) = K[Rk − tkπ̃

T

i,k]K
−1xc

k, (21)

where K is the intrinsic matrix of the camera. The Jacobian

matrix is computed by taking partial derivatives on µk.

Lem. 2 in Sec. V-A provides the error model for the

merged MVs, and is applied in setting the noise covariance

for the EKF observation.

Note that, since the camera rotation and translation are

involved in the observation model for each plane, rk and tk
are also updated with observations.

C. Deleting and Adding Planes

Similar to landmark management in SLAM, planes have

finite lifespan in the continuous video stream. We need to

handle the appearance and disappearance of planes in camera

views (see Fig. 3(a)).

When transiting from frame k to k + 1, if π̃i,k has

corresponding set Ck+1→k
π,i = ∅ in frame k + 1, then π̃i,k+1

in the state vector and its corresponding dimensions in the

state covariance matrix are deleted, before EKF update.

After EKF update in frame k, if a new plane is discov-

ered in frame k, its initialized plane equation and variance

are added to the state vector and state covariance matrix.
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Moreover, since the filter formulation relies purely on planes

in EKF updating step, the update is skipped if there are no

planes in current state vector. This is not an issue as long as

building facades are in the field of view.

VII. EXPERIMENTS

The proposed method is implemented in C/C++ on a

desktop PC. Videos and images are acquired with Casio Ex-

ZR200 and Panasonic DMC-ZS3 cameras, with a resolution

of 640×480 pixel captured at 30 frames per second. Cameras

travel in an urban area at a speed between 25 and 50 kph.

A. Plane Extraction

Fig. 5. Sample images in plane extraction dataset.

(a) ǫh = 1 (b) ǫh = 2 (c) ǫh = 2 (d) ǫh = 4

Fig. 6. Example of extracted planes. Dots with different colors indicate
different extracted planes. (a-b) show all planes extracted in the frame. (c-d)
show two incorrect extractions.

To evaluate the performance of plane extraction, 7 videos

of different scenes in MPEG-2 format have been acquired.

We sample 50 pairs of adjacent frames from the videos, and

manually label planes in images as ground truth. Fig. 5 shows

sample thumbnails from the dataset. In this experiment, MVs

in π∞ have not been filtered out.

As the error threshold of RANSAC changes, the number of

extracted planes and the true positive (TP) rates vary. Tab. I

shows how the plane extraction result is influenced by ǫh.

Note that we restrict the minimum size of an extracted plane

to be 20 MBs.

TABLE I

PLANE EXTRACT RESULTS W.R.T. ǫh

ǫh (pixel) 1 2 3 4
# extracted planes 101 183 174 215

TP rate (%) 91.09 83.61 73.56 72.09

Fig. 6 shows four example frames. Dots in the same color

indicate an extracted plane. It is clear that the algorithm is

able to extract primary planes. However, it may miss some

reflective glass/mirror surfaces, such as the leftmost wall in

Fig. 6(b), and texture-less surfaces such as the ground. Some

false extractions, such as Fig. 6(c), claim trees as a plane due

to far depth. In fact, Fig. 6(d) shows the necessity of MV

thresholding with π∞ (Sec. V-B), because far field objects

tend to mix together when ǫh is not tight enough.

B. SLAPSE Results

To evaluate overall system performance, we perform field

tests in two sites. Ground truth is manually acquired with

meters and Bosch ZLR225 laser distance measurer with an

accuracy of ±1.5 mm.

The 3D estimation is up to scale of the initial camera

translation. Sample results from the first site are shown in

Fig. 1. It is clear that the system is able to extract dominant

planes in the scene.

We project the camera trajectories to {C0} and scale the

results by the camera translation in the first step. Comparison

with manually measured ground truth is showed in Tab. II.

We denote D as the total traveled distance in each site, and

a ˆ on a variable stands for the ground truth value. Denote

t0→k as the estimated camera translation from frame 0 to k.

The mean relative error of camera location is defined as:

ǫD =
1

N
Σk

‖t0→k − t̂
0→k‖

‖t̂0→k‖
, (22)

where N is the total number of tracked frames.

We evaluate the estimated building facades and road

segments which appear in the camera scene for at least half

a second. The number of evaluated planes in each site are

shown in Tab. II. Define the mean absolute error of plane

depth ǫd and plane orientation ǫn as:

ǫd =
1

ΣiNi

ΣiΣk|di,k − d̂i,k|, (23)

ǫn =
1

ΣiNi

ΣiΣk| arccos(nT

i,k · n̂i,k)|, (24)

where Ni is the number of frames plane i appears. Tab. II

shows the mean errors for each site, where the depth errors

are less than 0.65 meters and orientation errors are less than

7.07 degrees.

TABLE II

SLAPSE RESULTS

Site D (m) ǫD(%) # planes ǫd (m) ǫn (degs.)

1 42.1 2.9 5 0.61 7.07
2 37.5 5.1 4 0.65 3.26

VIII. CONCLUSIONS AND FUTURE WORK

We explored how to use MVs from video streams for

SLAPSE for a mobile robot equipped with a single camera.

Using MVs in the MPEG-2 protocol as an example, we

established the MV noise models to capture the observation

error. We formulated the SLAPSE problem and studied

how to extract planes from MVs using planar homography

filtering. We then developed an extended Kalman filter (EKF)

based approach with planes and robot motion as state vari-

ables. We implemented our algorithm using C/C++ on a PC

platform, and tested the algorithm in physical experiments

in two sites. The results showed that the system is capable

of performing robot localization and plane mapping with a

relative trajectory error of less than 5.1%.
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In the future, we plan to utilize the MVs in the plane at

infinity for rotation estimation. We can also detect moving

obstacles by group MVs with similar motion. The entire sys-

tem can be merged under an interactive multi-model (IMM)

EKF to improve results and provide a comprehensive naviga-

tion solution. Local bundle adjustment can be embedded as

a post-processing step to improve plane estimation accuracy.

We will also include the plane segmentation through the re-

projection of MBs. Also, the MVs can be combined with

feature-based approaches and/or other sensors to form hybrid

methods.

APPENDIX

A. Proof of Lemma 2

Let us begin with ΣPI. Denote ξ = |LIMV| as the number

of IMV for the MB. ξ is conformal to binomial distribution

B(nB, p
2),

P (ξ = i) =

(

nB

i

)

p2i(1− p2)nB−i. (25)

Event EPI means ξ ≥ 1. Therefore, we have,

P (ξ = i|ξ ≥ 1) =
P (ξ = i, ξ ≥ 1)

1− P (ξ = 0)
=

(

nB

i

)

p2i(1− p2)nB−i

1− (1− p2)nB
, for i = 1, ..., nB. (26)

Recall that ΣPI|EPI = Var(ek+1→k
l |EPI) where Var(·) means

the covariance of the random rector. Conditioning on the

value of ξ, from the property of conditional variance, we

know

Var(ek+1→k
l |EPI) =

E(Var(ek+1→k
l |EPI, ξ)) + Var(E(ek+1→k

l |EPI, ξ)) (27)

= E(Var(ek+1→k
l |EPI, ξ)), (28)

where E(·) means expectation of the random vector. Eq. (28)

is true because Var(E(ek+1→k
l |EPI, ξ)) = 02×2 due to the

fact that each e
k+1→k
l is zero mean. From the property of

conditional expectation, we have,

E(Var(ek+1→k
l |EPI, ξ)) =

nB
∑

i=1

Var(ek+1→k
l |EPI, ξ)P (ξ = i|ξ ≥ 1). (29)

According to (6), ek+1→k
l |(EPI, ξ) is an average of i inde-

pendent Gaussian N(02×1, 2Σ). Hence the resulting vector

is still Gaussian with

Var(ek+1→k
l |EPI, ξ) =

2Σ

i
. (30)

Combining (26-30), we obtain (8).

It is clear that ΣIP|EIP and ΣPP|EPP share the same value

due to the same structure shown in Fig. 4(b). We use ΣIP|EIP

to show the proof process. Conditioning on the event ED,

we have

ΣIP|EIP = E(Var(ek+1→k
l |EPI, ED)) (31)

= Var(ek+1→k
l |EPI, ED)P (ED)

+ Var(ek+1→k
l |EPI, ĒD)P (ĒD)

= Var(ek+1→k
l |EPI, ED)p+ΣPI|EPI(1− p). (32)

Note that (31) is true because the zero mean property

is applied to conditional variance computation (similar to

(28)). Also, when ĒD occurs, ΣIP|EIP is reduced to ΣPI|EPI

according to Fig. 4(b).

To compute Var(ek+1→k
l |EPI, ED), we can further condi-

tion on ξ, which is similar to how (8) has been derived.

However, there are two different scenarios: the first is that

(25) becomes

P (ξ − 1 = i) =

(

nB

i

)

p2i(1− p2)nB−i (33)

and we do not need to use the conditional binomial defined

in (26) because ED means ξ − 1 ≥ 0 is always true.

Consequently, (29) is modified as

E(Var(ek+1→k
l |EIP, ED, ξ)) =

nB
∑

i=0

Var(ek+1→k
l |EIP, ED, ξ)P (ξ − 1 = i). (34)

The second difference is the fact that we employ (5)

to aggregate heterogeneous Gaussian distributions which

include one error vector in N(02×1,Σ) and ξ − 1 error

vectors in N(02×1, 2Σ). Therefore, (30) is changed to the

following,

Var(ek+1→k
l |EIP, ED, ξ) =

2 + i

(
√
2 + i)2

Σ (35)

because (5) is just a linear combination of independent Gaus-

sian distributions. Combining these equations, we obtain (9).
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