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Abstract

One important performance index of routing mechanisms in sensor net-
works is sensor lifespan. In our settings, sensors are energy-constrained by
batteries and located far away from the access point. A sensor dies once
its battery dies. Since the radio transmission consumes a lot of energy, re-
searchers proposed several routing mechanisms to save energy to prolong
the sensor lifespan. So far, the comparison of different routing mecha-
nisms are based on simulation and little analytical results were available.
In this project, we use graph and stochastic modeling techniques to com-
pare the sensor lifespan among different routing mechanisms including
direct transmission, minimum energy transmission, static clustering, and
dynamic clustering.

1 Introduction

Sensor networks become more and more popular as cost of sensor gets cheaper
and cheaper. The sensor network is a wireless network formed by a group of
sensors deployed in same region, which can be used to measure air pressure,
temperature, acceleration, etc. Sensors transmit signals via radio signal. Since
sensors are now small and cheap, they can be deployed in large scale. They be-
come more and more important for applications like security, traffic monitoring,
agriculture, war field, etc.

Most of those sensors are powered by batteries. The lifespan of a energy-
constrained sensor is determined by how fast the sensor consumes energy. Sen-
sors use energy to run circuitry and send radio signals. The later is usually a
function of distance and takes a large potion of the energy. Researchers are now
developing new routing mechanisms for sensor networks to save energy and pro-
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long the sensor lifespan. Four primary routing mechanisms are direct transmis-
sion, minimum energy transmission, static clustering, and dynamic clustering.

Sensor lifespan is an important performance index for comparison of different
routing mechanisms. So far, the comparison between routing mechanisms is
based on simulation results. To author’s knowledge, little analytical results
have been available. In this project, we will use graph theory and stochastic
modelling techniques to assess the sensor lifespan quantitatively.

2 Related work

In [1], Heinzelman, Chardrakasan, and Balakrishnan propose Low-Energy Adap-
tive Clustering Hierarchy (LEACH), which is an energy-efficient communication
protocol for wireless microsensor networks. The application scenario is,

• The base station is fixed and located far from the sensors.

• All nodes in the network are homogeneous and energy-constrained.

LEACH is a dynamic clustering method. In this method, time is partitioned
into fixed intervals with equal length. At the beginning of each interval, each
sensor becomes a cluster head with some predefined probability. The cluster
heads then broadcast messages to their neighbors. Other sensors receive mes-
sages and join a cluster by choosing the cluster head with the strongest signal.
During the interval, cluster members send information to their cluster head.
The cluster heads aggregate the information, compress the information, and
route the information to the remote access point. Once the interval ends, the
whole clustering process restarts. Hence, the clusters and cluster heads are
not fixed. Since the cluster heads consume more energy than cluster members
in radio transmission, the rotation of cluster heads makes energy consumption
more evenly across all sensors in the network. Therefore, the sensor network
can last longer. In [1], Heinzelman et al. compare LEACH with direct trans-
mission, minimum energy transmission, and static clustering. The simulation
results show that the LEACH can extend the sensor network life up to eight
times longer than its closest competitors.

In this project, we follow the same assumptions in [1] and use graph theory
and stochastic modelling techniques to explicitly compute the sensor life time
for the four routing mechanisms.

[I WILL ADD MORE RELATED WORK IN PAPER VERSION. FOR
PROJECT REPORT, I DO NOT HAVE TIME TO DO SO.]

3 Problem definition

In this section, we first introduce inputs and assumptions of the sensor network
system. We try to follow the assumptions in [1] so that we can compare the
simulation result with our analytical model later.
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3.1 Inputs and assumptions

Sensors are identical and energy constrained. Since we are interested in studying
the energy efficiency, we assume that sensor lifespan only depends on energy. A
sensor dies only if its batter dies.

3.1.1 Energy models

As mentioned in [1], a sensor consumes energy in two ways: the energy used to
run circuitry and the energy used to send radio transmission. The energy used
to run circuity is proportional to the number of bits in the message. Say that the
message length is k bit, define Eelec be the energy per bit. Then the energy used
to run circuitry is Eeleck. This energy is the same for receiver and transmitter.
The energy for transmitter to send k bits over distance d is εampkd2, where εamp

is the energy constant for the radio transmission. Therefore, the total energy
for a receiver to handle a k-bit message is,

ERx(k) = Eeleck. (1)

The total energy for a transmitter to send a k-bit message over distance d is,

ETx(k, d) = Eeleck + εampkd2. (2)

We name this energy model as H-model because it was proposed by Heinzelman
et al. We will follow this energy model in our modelling. As we will show later,
our modelling methods can be applied to different variations of energy models.

3.1.2 Sensor network settings

Figure 1: 100 sensors are uniformly randomly distributed in a r × r square.
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As shown in figure 1, sensors are uniformly distributed in a r × r square.
All sensors are identical and constrained with same amount of energy. There
are 100 sensors in total in the sensor network. The access point/base station is
located far from the network.

3.2 Problem formulation

We formulate our problem as: given the energy model, sensor network settings,
and routing mechanism, find the sensor lifespan. Since sensor lifespan is related
to battery capacity, we are more interested in study long run rate of energy
consumption of a given sensor, which fully depends on our inputs. If there are
random factors in the routing mechanism, then we use expected rate of energy
consumption instead. Therefore, the alternative problem definition is,

Inputs Energy model, sensor network settings, and routing mechanism, The
sensor location (Sometimes the sensor is referred as our sensor in the rest
of the paper.)

Output Quantitative model of (Expected) rate of energy consumption of the
sensor.

Since we have more than one type of routing mechanisms, we deal with them
individually in next section. In direct transmissions, minimum-transmission-
energy, and static clustering model, we assume that we know the exact position
of the 100 sensors. In the dynamic clustering model, we will assume that we
only know our sensor’s location and other sensors are randomly distributed over
the squared region.

4 Energy consumption quantitative models

In this section, we establish quantitative models for different routing mechanism.
We start from the direct transmission, which is the simplest model.

4.1 Modelling direct transmission

Direct transmission means that each sensor directly send its own message to the
base station. Let’s define,

• db be the distance between the sensor and the access point,

• t be a fixed time interval,

• k be number of bits send over the fixed period t.

Plug those variables into equation 2, we know that the energy consumption rate
γ is,

γ =
Eeleck + εampkd2

b

t
. (3)
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4.2 Modelling minimum-transmission-energy

Recall that the energy used to transmit k-bit message over distance d is εampkd2.
Minimum transmission energy select a route that minimize energy on radio
transmission. In other words, the energy spent on running the circuitry is
ignored. Figure 1 compares the direct transmission and minimum transmission

Figure 2: Comparison between direct transmission and minimum transmission
energy hopping.

energy hopping using a case that there are only 4 collinear sensors and one
base station. In figure 2(a), the radio transmission energy used to transmit
message from the leftmost sensor to the base station is εampk(3d1 + d2)2. In
figure 2(b), the radio transmission energy used to transmit message from the
leftmost sensor to the base station is εampk(3d2

1 + d2
2), which is a lot less than

the direct transmission.
Figure 2 uses a very simple settings. To apply minimum transmission hop-

ping method to sensor network shown in figure 1 is not as straightforward. There
are two problems. One is how to find a minimum transmission energy hoping
route and the other is how to keep track of energy speed on transmitting and
routing. Let’s define,

• nr be number of messages routing through the sensor,

• dr be distance between the sensor and the next neighboring sensor in
route, which receives the messages from our sensor. We will show how to
find it shortly.
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Plug them into the energy model, we know that the energy consumption rate
for the sensor is,

γ =
(2nr + 1)Eeleck + (nr + 1)εampkd2

r

t
. (4)

The reason for 2nr + 1 is that for each routed message, we need to receive and
transmit. The circuitry is fired up twice. There are nr messages to route through
the sensor and the sensor has its own message. The remaining problem is how
to compute nr and dr for a given set of sensor allocations. We can construct
a graph G(V, E), where V the set of vertices and E is the set of edges. Set V
consists of all sensors and the access point/base station. There are 101 vertices
in our case. We number the access point as v0 and sensors as vi, 1 ≤ i ≤ 100.
An edge eij is the squared Euclidean distance between vertex i and j. Set E
is the collection of edges. If we set v0 as the destination and solve the shortest
path problem using Dijkstra’s algorithm. The result will give us the minimum
transmission energy hopping routing results, which include nr and dr.

Define (xi, yi) be coordinate of the vertex vi. If we modify the edge length
in G(V, E) to be eij = 2Eeleck + εampk(((xi − xj)2 + (yi − yj)2), then the
minimum transmission energy hopping becomes real minimum energy hopping.
This modification can give results for this new routing mechanism.

4.3 Modelling static clustering

In static clustering routing mechanism, some sensors act as cluster heads and
others act as cluster members. Each cluster member chooses the nearest cluster
head as its cluster head. During the transmission, only cluster heads talk to
the access point. Cluster members send their messages to cluster heads and the
cluster heads route their messages to the access point. Therefore, for the given
sensor, they are two cases: cluster member or cluster head.

4.3.1 Cluster member

As a cluster member, all the sensor needs to do is to send its message to its
cluster head. Define dc be the distance between the sensor and its cluster head,
then the energy consumption rate is,

γ =
Eeleck + εampkd2

c

t
. (5)

4.3.2 Cluster head

As cluster head, the sensor needs to route all member messages and send its
own message to the access point. Define,

• nc be number of cluster members,

• da be the distance between the sensor and the access point.
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then the energy consumption rate for the sensor is,

γ =
(2nc + 1)Eeleck + (nc + 1)εampkd2

a

t
. (6)

The remaining problem is how to obtain dc and nc. This can be computed using
algorithm for Voronoi Diagram based on squared Euclidean distance.

4.4 Modelling dynamic clustering (LEACH)

As reviewed in related work section, we know that LEACH is a dynamic cluster-
ing based routing mechanism. Due the the random facts, we can not compute
the sensor energy consumption rate exactly. However, we can compute the ex-
pected energy consumption rate E(γ). Let’s begin with the review of some
stochastic processes.

4.4.1 Renewal reward process

A counting process N(t) counts number of events up to time t. A renewal
process is a counting process such that its inter-arrival time are identically
independent distributed (iid) random variables. A renewal reward process is
a renewal process such that there exists iid reward for each inter-arrival time.
Let’s define,

• Xi be inter-arrival time, Xi, i = 0, 1, 2...,

• Ri be reward for the inter-arrival time Xi,

• R(t) =
∑N(t)

i=1 Ri be total reward earned up to time t.

According to renewal reward theorem, we know that,

lim
t→∞

R(t)
t

=
E(R)
E(X)

. (7)

This means that the long run rate of reward is equal to the ratio between the
expected reward and the expect inter-arrival time in a single interval. Proof of
the theorem is based on Strong Law of Large Numbers, which is beyond the
scope of the report. In stochastic process, the interval time is called cycle.

The power of the renewal reward process lies on the fact that it does not
depend on any distribution. We can apply the renewal reward theorem to our
problem. If we treat the energy consumed by the sensor as the reward, then the
long run rate of reward is essentially the long run rate of energy consumption,
which is what we are looking for. The difficult problem is how to define cycle
such that the reward and the cycle are both iid random variables. We define
a cycle be the number of intervals between two consecutive moments that the
sensor becomes cluster head. The cycle/inter-arrival time is an integer number
indicating number of intervals. Recall that the interval is a period that clusters
and cluster heads are regenerated. Now our problem becomes how to compute
E(R) and E(X).
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4.4.2 Computing E(X)

At the beginning of each time interval td, clusters and cluster heads are regen-
erated. At first, each sensor i, 1 ≤ i ≤ 100 generates a random number between
0 and 1 and compares it to a predefined threshold T (i). If the random number
is less than T (i), the sensor becomes cluster head. Otherwise, the sensor acts
as a cluster member. Define

• P be the desired percentage of cluster heads,

• n = 1/P ,

• m be the current round in terms of intervals,

• G be set of sensors that have not been cluster-heads in the last n rounds.

According to [1], the threshold for sensor i is,

T (i) =

{
P

1−P (m mod n) if sensor i ∈ G,

0 otherwise

After look into this cluster head generation method further, we find that it
embeds a Markov chain if we define state variable S be number of intervals that
the sensor has not been a cluster head yet. The state S = 0 means the the
sensor is currently a cluster head. We can draw the transition diagram of this
Markov chain as the following,

Figure 3: A Markov chain model of sensor states.

All states in this Markov chain communicate with each other. We can com-
pute the limiting probabilities for each state, which is also the long run proba-
bility the chain stays in the state. Define π0 be limiting probability for the chain
stays in state 0. Note that this is also the probability that the sensor becomes
a cluster head. Therefore, the expected cycle length has to be,

E(X) =
1
π0

(8)
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4.4.3 Computing E(R)

During a cycle, the sensor consumes energy differently when its role in the
cluster is different. Define,

• M be the amount of energy consumed in a single interval as a cluster
member,

• H be the amount of energy consumed in a single interval as a cluster head.

A cycle consists of X intervals. Among them, the sensor is a cluster member for
X − 1 intervals and a cluster head for 1 interval. Therefore, the amount energy
consumed in a single cycle is,

E(R) = (E(X)− 1)E(M) + E(H). (9)

The remaining problem is E(M) and E(H). We start with E(M). We can
use the result from static clustering routing mechanism, we know that if the
distance between the sensor the nearest cluster head is Dc, then according to
equation 5, we have the conditional expectation,

E(M |Dc) = Eeleck + εampkD2
c (10)

Define f(a) be the distribution function of Dc. The unconditional expectation
depends on f(a),

E(M) =
∫ ∞

0

E(M |Dc = a)f(a)da = Eeleck + εampk

∫ ∞

0

a2f(a)da (11)

Define P{Dc > a} be the probability that the distance between the sensor and
the nearest cluster head is greater than a. Then we know,

f(a) = 1− d

da
P{Dc > a}. (12)

Define Nc be number of clusters. We know that P{Dc > a} depends on Nc.
Given there are Nc cluster heads, P{Dc > a|Nc} is equivalent to the probability
that the distance between the sensor and any cluster head is greater than a.
Define D1 the distance between the sensor and one of the cluster head. Then
we have,

P{Dc > a|Nc} = (P{D1 > a})Nc . (13)

Since each sensor can become cluster head with probability π0, Nc has to be a
binomially distributed random variable,

P{Nc = n} =
( 99

n

)
πn

0 (1− π0)99−n (14)

Therefore,

P{Dc > a} =
99∑

n=1

P{Dc > a|Nc = n}P{Nc = n} (15)

=
99∑

n=1

(P{D1 > a})n
( 99

n

)
πn

0 (1− π0)99−n (16)
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Then the remain the problem left for computing E(M) is how to obtain P{D1 >
a}. The meaning of P{D1 > a} is the probability that the distance between
the sensor and a cluster head is greater than a. Since a cluster head is a sensor,
which is uniformly randomly distributed in the space. If we pick up a point
which is uniformly randomly distributed in the squared region, P{D1 > a} is
the probability that the distance between the point and the sensor is greater
than a. Figure 5 illustrates how to compute the P{D1 > a},

Figure 4: P{D1 > a} illustration

P{D1 > a} = 1− Area(Circle ∩ Square)
Area(Square)

(17)

Using equation 10 ∼ 17, we can compute E(M). Now we concentrate on
how to compute E(H). Since the cluster head aggregates the sensor data and
compresses them before send them to the access point, the actually message
length sent by the cluster head is less than the summation of all messages.
Define γ the the compression ratio. Given there are Nm cluster members, the
energy for the cluster head should be,

E(H|Nm) = (2Nm + 1)kEelec + (Nm + 1)εampkγd2
a. (18)

The the conditional expectation should be,

E(H) =
99∑

i=0

E(H|Nm = i)P{Nm = i}. (19)

To get the unconditional expectation of H, we need to know the probability
distribution of Nm, which is related to another random variables, number of
clusters Nc other than the sensor. As shown in equation 14, the number of
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clusters should be a binomial variable. We condition on number of clusters
P{Nm = i|Nc}. If we can compute P{Nm = i|Nc}, then it follows

P{Nm = i} =
99∑
0

P{Nm = i|Nc = n}P{Nc = n}. (20)

Knowing there are n clusters other than our sensor is a very helpful information.
A randomly located sensor enters the system and try to find the closest cluster
head. In order to be the closest cluster, our sensor has to win the distance
contest over all other n cluster heads. This can be viewed as n independent
contests. They are independent because the probability of winning the contest
depends on the locations of other cluster heads, which are independent. In fact,
n contests are independent and symmetric. Define event A be case that our
sensor win the contest over cluster head B when a member sensor enters the
system. If we condition on the location of cluster head B is (xB , yB), then we
can compute the probability event A happens: P{A|(xB , yB)}. Let us draw a

Figure 5: P{A|(xB , yB)} illustration

line segment between sensor B and the sensor. We can find the middle point of
the line segment and draw a line perpendicular to the line segment. The line
divides the square into two regions. The region contains our sensor is the grayed
region. It is clear that any sensor located in grayed region chooses the sensor as
their cluster head, which means,

P{A|(xB , yB)} =
Area(Grayed Region)

Area(Square)
(21)

The unconditional probability can be computed,

P{A} =
∫∫

square

Area(Grayed Region)
Area(Square)

1
r2

dxdy (22)

=
∫∫

square

Area(Grayed Region)
r4

dxdy (23)
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With P{A}, we are now ready to compute the conditional probability P{Nm =
i|Nc = n}, which is the probability that our cluster has i member sensors given
that there are n other cluster heads. If there are n other cluster heads, there
are 99 − n member sensors. When each member cluster enters the system, it
will choose our cluster head as its closest cluster head with probability (P{A})n

since our cluster head has to win n independent vicinity contests. Therefore,
the probability that our cluster has i members under those settings should be,

P{Nm = i|Nc = n} =
( 99− n

i

)
((P{A})n)i(1− P{A})n)99−n−i (24)

Combine equation 18 ∼ 24, we can compute the E(H). Hence, we can get E(R)
using equation 9.

5 Conclusion and future work

Quantitative assessment of sensor lifespan in a sensor network can help us to
improve the routing mechanism. The modelling process can point out what
affect the sensor life and what is the weak point of the routing protocol, which
could be difficult if using simulation-based approach.

In the future, we will provide numerical results for the four routing mech-
anism and compare them to simulation results. One interesting problem is to
design or modifying existing routing strategies to synchronize the sensor lifespan
in a sensor network. This involves two efforts including how to make expected
sensor lifespan to be the same and how to reduce the variance of the sensor lifes-
pan. The synchronization of lifespan will significantly reduce the maintenance
cost of a sensor network.
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