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Abstract— A new class of low-cost teleoperated pan-tilt-zoom
robotic video cameras can provide high resolution panoramic
displays of remote sites for disaster response, environmental
monitoring, and security applications. While the camera is tele-
operated, the resulting video is transmitted back and inserted
into an evolving panoramic display. Since small errors in camera
position can produce large registration errors in the panoramic
display, we address the image alignment problem. To quantify
alignment error, we introduce a new metric based on motor error
and image overlap. We use this metric to develop a fast minimal
variance image alignment algorithm. We have implemented the
algorithm and describe experiments demonstrating panoramic
quality and that optimal alignment can be computed as fast as
the camera can be tele-operated.

Index Terms— tele-operation, telerobotics, networked robot,
panoramic display, pan-tilt-zoom camera.

I. I NTRODUCTION

There are many applications where it is desirable to visually
monitor remote environments, for example to observe rescue
operations after a natural disaster, to monitor an endangered
animal habitat, or to monitor a dangerous zone for security pur-
poses. Recent developments in wireless telecommunications
facilitate low-bandwidth connectivity to remote sites and a
new class of low-cost teleoperated pan-tilt-zoom robotic video
cameras allows fast deployment of systems that can provide
high resolution images from a wide field of view in the remote
environment.

Driven largely by security applications, several companies
have recently introduced low-cost networked tele-operated
cameras for remote monitoring. One example is the Panasonic
WV-CW864A camera. With 22x zoom motorized optical lens,
360◦ pan range, and 90◦ tilt range, this robotic camera can
provide resolution up to 500 million pixels per steradian,
two orders of magnitude higher than the best available fixed
position omnidirectional camera, at a fraction of the cost.
Tele-operated cameras provide relatively small “foveal” video
sequences that require far less bandwidth than high resolution
video of the entire field of view. A major challenge is com-
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Fig. 1. A tele-operated robotic camera provides an evolving high-resolution
panoramic display of the remote environment. (a) Camera and spherical field
of view, (b) Current video image in context of planar panoramic display, (c)
Time sequence of video images and evolving panoramic display.

bining the foveal images together into a coherent panoramic
display.

As illustrated in Figure 1, the camera has a spherical field
of view. As the camera is moved by a remote tele-operator, it
transmitsframe sequencesover the network back to the tele-
operator. (Control of a single camera by multiple tele-operators
is addressed in [19], [21]). To provide operator context and
archival record, these frame sequences must be inserted into
an evolving panoramic display.

Minor errors in camera position can produce large regis-
tration errors in the panoramic image. For example, accurate
registration of a640 × 480 image at zoom = 10x into a
panorama requires angular position accuracy within0.00625◦,
100 times more than the accuracy currently available in
commercial robotic cameras.

We assume that motor parameters are approximate and
develop an algorithm to optimally insert frame sequences into
the evolving panoramic display. The key to our algorithm is
a variance based method for identifying a weighted subset
of recent overlapping frame sequences. We have implemented
the algorithm and report on experiments demonstrating that



image alignment can be computed as fast as the camera can
be tele-operated.

II. RELATED WORK

1) Multiple-Camera System and Wide Angle System:
When low/variable image resolution is acceptable, an evolving
panoramic display can be maintained with a single wide-angle
camera using a fish eye lens or parabolic mirror [1], [15],
[27], [6]. When sufficient bandwidth is available, an evolving
high-resolution panorama can be maintained with multiple
fixed cameras. Swaminathan and Nayar [22] use four wide
angle cameras to monitor a360◦ field of view. Similarly, Tan,
Hua, and Ahuja [23] combine multiple cameras with a mirror
pyramid to create a single-perspective and high resolution
panoramic video. Liu, Kimber, and Foote [11] combine four
fixed cameras with a robotic camera that can selectively zoom
in on details. Our approach could be combined with one or
more fixed cameras, but since bandwidth is limited, we focus
on using only one robotic camera to monitor the environment.

2) Image Mosaicing Techniques:Generating a single wide-
field panoramic image from a set of overlapping images is
sometimes referred to as “image mosaicing” [18], [2]. Given a
set of overlapping images, the objective is to find the best set of
transform parameters for each image. Three approaches have
been proposed. The direct method directly matches pixel in-
tensity information using standard least square method or brute
force method and requires extensive computation. The second
method is frequency domain registration, which uses the fast
Fourier transform to maximize alignment in the frequency do-
main [3], [4], [12], [17]. This method is highly effective when
there is substantial overlap between images. The third method
is “feature based”, using features extracted from the image,
such as Harris corner points[7], [25], [29], [31], Moravec’s
interest operator[8], contour edge[13], convex hull formed
from scattered feature points[28], moment invariants[5], and
Scale Invariant Feature Transform (SIFT)[14].

3) Constructing a 3D Scene from Video Frames:Con-
structing a 3D scene from either calibrated or un-calibrated
video frames is a very popular problem in both robotics
and computer vision [16], [24]. The similarity between this
problem and our problem is that both use overlapping frames
to establish transformation matrices. The difference is that 3D
modeling requires frames captured from different perspectives
whereas panorama construction prefers frames from a single
perspective. For two given frames, a 3D model can only be
constructed for intersection region of the two frames whereas
a panorama generated from our problem covers union region
of the two frames.

4) Dynamic Panorama:A dynamic panorama refers to a
updateable panorama built from a pre-recorded sequence of
consecutive video images [9], [26], [30]. Current methods
do not take the image registration error into consideration.
Therefore, it either has limited number of frames or relies on
extensive frame matching computation which can not process
live video data. Hence, the dynamic panorama has to be pre-
computed off-line before streaming. Our work complements
existing work by utilizing camera pan-tilt-zoom values, track-
ing registration error, and controlling image matching problem

size to reduce image registration time and meet the live video
requirement.

The idea of dynamic panorama also inspires work on
developing panorama video streaming protocol. Kim et al [10]
develop a panorama video streaming protocol for a pan-tilt
camera system. They capture live video using a fixed lens
camera and assume camera pan and tilt readings are accurate
enough to register frames. They expand MPEG algorithm by
slicing camera horizonal field of view into vertical strips and
propose inter-strip and intra-strip compression ideas. Their
work do not propose a solution to deal with the problem of
image registration error accumulation and can not make good
use of camera zooming capability to provide high resolution
feedback.

5) Our Previous Related Work and Contribution:In previ-
ously reported work, we developed camera control interfaces
for multiple simultaneous tele-operators [19], [21]. In [20], we
describe a system for remote monitoring of construction sites
for dangerous environments such as Iraq. The present paper
develops the theory behind a new algorithm that maintains an
evolving panorama minimizing image alignment error.

III. PROBLEM DESCRIPTION

A. Inputs and Assumptions

1) Definition of Frame Sequence:When the camera is
moving, images are blurred and must be discarded. Once the
camera has stopped, we define aframe sequenceas a sequence
of camera frames from some fixed pan-tilt-zoom setting,

F = {C(tbegin, tend), p, t, z,X, υ}, (1)

whereC stands for the frame content data set,tbegin and tend

are the beginning time and ending time of the frame sequence
respectively,(p, t, z) are the approximate pan, tilt, and zoom
values obtained from the camera,X is a set of unknown image
alignment parameters, andυ is a scalar that indicates how well
the frame sequence is aligned with respect to its neighbors as
discussed below.

Since the camera does not move for the duration of a frame
sequence, we compute the alignment parameters using the first
image of each frame sequence and use the same alignment
parameters to transform the last image of the sequence to
update the panorama. Below, we refer to the “frame” as the
first image from a frame sequence.

2) Definition of Panorama:The evolving panorama at time
t includes all previous frame sequences,

P (t) = {F |tbegin < t}
inserted in temporal order.

Each panorama has a reference frame. The positional pa-
rametersX of other frame sequences are computed with
respected to the reference frame. The reference frame is also
the first frame of the panorama. Starting with reference frame,
the panorama is initialized by commanding the camera to
visit a sequence of preset coordinates that cover the field of
view as we will show in Section V-A. Actually, the panorama
generation and maintenance need the same incremental frame
alignment algorithm that will be introduced in Section III-B.
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3) Known Camera Intrinsic Parameters:Constructing the
panorama requires projection and positional parameters. The
projection parameters include image resolution, camera focus
length, and CCD sensor size, all of which are known and
fixed. We use these to project all images onto a fixed spherical
surface. The set of positional parametersX from Equation 1
are unknown and must be computed.

4) Approximate Camera Pan, Tilt, Zoom Position:The tele-
operator periodically sends a motion command to the camera,
specified as a desired pan, tilt, and zoom(p, t, z) target.
After the camera motors servo toward this target, they stop
and the camera sends back an estimate of its resulting pan,
tilt, and zoom position. As noted above, these estimates are
inherently approximate. We use the approximate position for
an initial estimate of how many pixels overlap between a pair
of frames. Once the alignment parameterX is computed by
the algorithm, we use it to refine the number of overlapped
pixels.

5) Random Pair-wise Alignment Error:When computing
the relative offset between two frames, the matching problem
is a nonlinear minimization problem. Introduced by numerical
methods for nonlinear optimization like Gaussian-Newton
method, Simulated Annealing, or Genetic Algorithms, the
error between true optimal and actual solution depends on
initial point and truncation error. A good algorithm chooses
its initial point randomly, which defines the alignment error to
be a random vector. We assume the alignment error random
vector has zero mean and varianceσ2, which usually is a
function of truncation error and image characteristics and will
be discussed in Section IV-A.

6) Errors in Pair-wise Alignment:We assume that the
Average Matching Error (AME)A of each pixel (or feature
point if using feature-based matching) can be approximated
by a quadratic function in the vicinity of its optimal matching
location. For theith pixel in a new frame with its locationXi,
this is described by,

A(Xi) = a‖Xi −X∗
i ‖22 + b, (2)

whereX∗
i is optimal alignment location,a is a scaling factor,

and b is the residual caused by noise. We assume thata and
b are the same across all matching pixels.

B. Incremental Frame Alignment Problem

The incremental Frame Alignment problem is:given a set of
n existing frame sequences, findX for a newly arrived frame
sequence.

We solve it in two steps. The first step is to identify a
subset of past frame sequences and decompose the alignment
problem into multiple pair-wise alignment problems and give
each an appropriate weight. In the second step, the pair-wise
alignment problems are solved by applying standard image
mosaicing methods from Section II-.2. We use the direct
matching method throughout the rest of the paper.

We focus on step one: identify a subset of past frames
sequences that provide an optimal tradeoff between quality
of the panorama and computation time.

IV. A LGORITHMS

We’ve assumed that error ofX is a random vector with zero
mean. Therefore, the magnitude of error variance determines
the quality of alignment. To analyze the error variance, we
first propose a quality metric to measure how sensitive an
image alignment method is to errors. We study how error
variance gets accumulated and propagated in the alignment
process using a simple 1D example. Based on the analysis, we
propose a minimum variance approach to select an optimal set
of existing frames to register a newly arrived frame. We begin
with definition of the quality metric.

A. Quality Metric for Image Alignment

We propose the following quality metricυ to quantify
alignment error. The scalarυ measures average pixel-wise
alignment variance and will be defined for each frame se-
quence. Since image alignment is not perfect due to round off
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Fig. 2. An illustration of Metric υ using a panorama composed by two
equally sized frames with equal number of pixels. Frame 1 is the reference
image in the alignment.

errors and image characteristics, the displacement between the
actual coordinateXi of the ith pixel and its ideal coordinate
X∗

i is a random vectorDi = Xi−X∗
i . Let np be the number

of pixels in panoramaP . For P , metric υ is,

υ(P ) =
1
np

np∑

i=1

V ar(Di) (3)

Metric υ is defined for a frame sequence as the average
alignment variance of all pixels in its first frame.

Figure 2 illustrates how to computeυ using a panorama
with two equally sized frames. The displacement between
the two frames is caused by camera pan motion so that the
only alignment parameter is the horizontal displacement,x12,
between the two frames. Frame 1 enters the system first, then
Frame 2 is captured. Frame 2 will be put on the top of frame 1.
Definex∗12 as the optimal displacement. Random displacement
error isd12 = x12−x∗12. Since frame 1 is the reference frame,
all its pixels have zero variance. Alignment variance of each
pixel in frame 2 isσ2. Figure 2(b) uses arrows to indicate
variance amplitude. Letm, m ≤ np, be number of pixels in
each frame andm12, 0 < m12 ≤ m, be number of overlapping
pixels. Metricυ of the panorama can be computed as

υ =
1
np

((m−m12)× 0 + mσ2) =
m

np
σ2, (4)

where frame 1 contributesm − m12 pixels to the panorama
and frame 2 contributesm pixels to the panorama.
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B. Analyzing Alignment Errors

In this section we use statistical metricυ to compare
the quality of image alignment methods. We begin with the
simplest pair-wise alignment operation.

1) Error Variance in Pair-wise Alignment:DefineO as the
set of the overlapped pixels. According to the assumption in
Section III-A.6, the Total Matching Error (TME)T over O
becomes,

T =
∑

i∈O

(a‖Xi −X∗
i ‖22 + b) (5)

= |O|a‖Xi −X∗
i ‖22 + |O|b. (6)

The image alignment is an optimization problem,

arg min
{Xi,i∈O}

T,

subject to image integrity constraint, which actually reduces
the unknown set{Xi, i ∈ O} to the single vectorX defined
in Equation 1. We must findX such that

T (X) ≤ |O|b + ε,

whereε is the truncation error from the minimization problem.
Inserting it into Equation 5, all possible solutions must be
inside the ball,

‖X −X∗‖2 ≤
√

ε

|O|a, (7)

where X∗ is the optimal solution. Recall that AME is an
approximation of real matching function in the vicinity of
the optimal. AME is unknown during the problem solving
process. Therefore, we can not directly useX∗ deducted
from AME as the solution. Any point in the ball with radius
r =

√
ε

|O|a is a possible solution. To solve the matching

problem is just to sample a point from the ball with a unknown
location. Any point in the ball is likely to be a solution if the
matching algorithm chooses its initial point randomly. The
dimensionality of the ball depends on the dimensionality of
X.

For the simple 1D case in Figure 2, the ball degrades
to a line segment. If we assume the solution is uniformly
distributed, then its variance is

σ2 =
(2r)2

12
=

r2

3
=

ε

3|O|a. (8)

Inserting Equation 8 into Equation 4 and definingα =
m12/m, we obtain the Metricυ for pair-wise image alignment:

υ =
ε

3npaα
. (9)

For the generald−dimension caseX = {x1, x2, ..., xd},
we have variances of the marginal distributions along each
dimension,{σ2

x1
, σ2

x2
, ..., σ2

xd
}. We define

σ2 = max{σ2
x1

, σ2
x2

, ..., σ2
xd
}.

Interestingly, though the distribution of the solution point
in the ball is unknown, thed−dimension case has a similar
format with the 1-dimensional case in Equation 8 with a

different constant factorkd, as summarized as the following
theorem.

Theorem 1:Using AME approximation of image matching
function in the vicinity of the optimal solution, the variance
of alignment displacement error is

σ2 =
r2

kd
=

ε

kd|O|a, (10)

wherekd ≥ 1 and d is the problem dimensionality. The exact
value ofkd depends ond and the joint probability distribution
function of the solution distribution over the ball defined by
Equation 7.

Proof: Define the joint probability density function as
f(x1, x2, ..., xd), we have

∫ r

−r

...

∫ r

−r︸ ︷︷ ︸
d

f(x1, x2, ..., xd)dx1dx2...dxd = 1. (11)

Without loss of generality, we assumeσ2
x1

= σ2. We
computeσ2

x1
in the rest of the proof. Becausex1 has zero

mean, we know

σ2
x1

= E(x2
1)− E2(x1) = E(x2

1).

We define,

f1(x1) =
∫ r

−r

...

∫ r

−r︸ ︷︷ ︸
d−1

f(x1, x2, ..., xd)dx2...dxd, (12)

and

F1(y) =
∫ y

−r

f1(x1)dx1, (13)

as the marginal probability density function and the cumulative
probability function forx1 respectively. Now we are ready to
computeσ2,

σ2 =
∫ r

−r

x2
1f1(x1)dx1

=
∫ r

−r

x2
1dF1(x1)

= x2
1F1(x1)|r−r −

∫ r

−r

2x1F1(x1)dx1

= r2 −
∫ r

−r

2x1F1(x1)dx1

= r2 −
∫ 0

−r

2x1F1(x1)dx1 −
∫ r

0

2x1F1(x1)dx1

= r2 +
∫ 0

−r

(−2x1)F1(x1)dx1 −
∫ r

0

2x1F1(x1)dx1

Applying the Second Mean Value Theorem for Integrals, we
know ∃ξ ∈ [−r, 0], ∃ζ ∈ [0, r] such that,
∫ 0

−r

(−2x1)F1(x1)dx1 = F1(ξ)
∫ 0

−r

(−2x1)dx1 = F1(ξ)r2,

and∫ r

0

(2x1)F1(x1)dx1 = F1(ζ)
∫ r

0

(2x1)dx1 = F1(ζ)r2.
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Therefore,

σ2 = (1 + F1(ξ)− F1(ζ))r2,

and

kd = 1/(1 + F1(ξ)− F1(ζ))

is the constant.
As summarized in Theorem 1 the quality of the solution is

determined by how many pixels are involved in the matching,
|O|, and the image characteristicsa.

2) Insertion Without Updating Panoramic Display:A naive
approach is to insert new frames using one panoramic image
that is never updated. We can use use metricυ to analyze the
resulting performance.

Consider inserting a new frame 3 with the same size into
the panorama in Figure 2. Definem23, 0 ≤ m23 ≤ m, as
number of overlapping pixels between frame 2 and frame 3.
To simplify the notation, we also defineβ = m23

m . Hence
m23 = βm as illustrated in Figure 3.

Frame 3 
y 

o 
x 

13x

(1-β)m βm 

23x

12x

(β-α)m (1-β)m 

Fig. 3. Insertion of a new frame into the panorama generated by frame 1
and frame 2 in Figure 2.

Define x13 as the offset of frame 3 andx∗13 as the corre-
sponding optimal offset. Recall thatx12 is the offset of frame
2. Because frame 2 carries displacement errord12 = x12−x∗12,
the TME in Equation 5 becomes,

T = (1− β)m
(
a(x13 − x∗13)

2 + b)
)

+ βm
(
a(x13 − x∗13 + d12)2 + b)

)
.

This equation can be simplified as,

T = ma(x13 − x∗13 + βd12)2

+ m
(
ad2

12(β − β2) + b
)
. (14)

It is not surprising that its residualm
(
ad2

12(β− β2) + b
)

gets
bigger because of the displacement error in frame 2. Using
the result from Equation 7, the radius of the ball that covers
possible solution is

√
ε

ma . The variance of the solution for a
given d12 is,

V ar(x13|d12) =
ε

3ma
.

Equation 14 also tells us the expected solution for a givend12

is,

E(x13|d12) = x∗13 − βd12.

From knowledge of conditional variance, we know that

V ar(x13) = E(V ar(x13|d12)) + V ar(E(x13|d12)).

Therefore, we can get the variance of displacement for each
pixel in frame 3,

V ar(x13) =
ε

3ma
(1 +

β2

α
). (15)

Now, we can compute metricυ for this case. Figure 3 also tells
us that frame 1 contributes(1−α)m− (1−β)m = (β−α)m
pixels to the panorama, frame 2 contributes(1 − β)m to the
panorama, and frame 3 contributesm pixels to the panorama.
Plug them in to Equation 3,

υ =
1
np

(
m

ε

3ma
(1 +

β2

α
) + (1− β)m

ε

3αma

)

=
ε

3npa
(1 +

β2

α
+

1− β

α
). (16)

Comparing toυ from Equation 9, the result in Equation
16 may grow; the panoramic display deteriorates over time
due to deterioration of the matching function, which decreases
the subsequent alignment accuracy. This can also be seen in
the increase of the residual in Equation 14, which indicates
a decrease in the signal/noise ratio. Since the panorama is
not updated, the deteriorating trend continues as new frames
are inserted. To address this, we must update the panorama
as frames are inserted. However, as shown in next section,
this may suffer from error propagation if it is not designed
properly.

3) Insertion With Updating Panoramic Display:Instead of
aligning frame 3 with respect to a fixed panorama, we can
align it with respect to the existing frames including either
frame 1 or frame 2 or both. The choice depends on a tradeoff
between reducing

• variance, and
• computation time.

We use the example in Figure 3 to illustrate different
outcomes for different approaches. As shown in the figure,
there are three unknown variables:x12, x13, andx23. The last
variablex23 is defined as the offset between frame 2 and frame
3. We know thatx13 + x23 = x12 under ideal settings. Due
to this relationship, we only need two out of three variables.
Sincex12 is known when the third frame enters the system,
we first match frame 2 with frame 3.

Since there areβm pixels overlapped between the two
images, the TME functionT is,

T = βma‖x23 − x∗23‖22 + βmb.

The corresponding variance is

V ar(x23) =
ε

3βma
.

However, we need to knowV ar(x13), because frame 1 is
the reference coordinate. We know thatx12 and x23 are
independent random variables. Therefore,

V ar(x13) = V ar(x12) + V ar(x23) =
ε

3ma
(
1
α

+
1
β

). (17)

The variance fromx12 propagates tox13 and can grow with
each new insertion unless we choose the right images to align
with as follows.
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Fig. 4. Graphical representation of alternate methods. Each node represents
a camera frame. Each edge represents an overlap between two frames. With
edge length proportion to the inverse of the number of overlapping pixels,
selective pair-wise matching finds the shortest path from node 3 to node 1
(the reference node).

C. Image Alignment Methods

1) Selective Pair-wise Matching (SPM):An alternative is
to align frame 3 with frame 1. Definem13, 0 ≤ m13 ≤ m, as
number of pixels between frame 1 and frame 3. To simplify
the notation, we defineγ = m13/m. Following a similar
derivation, we obtain

V ar(x13) =
ε

3maγ
. (18)

Although Equation 18 does not contain variance from frame
2, V ar(x13) is not necessarily smaller than that of Equation
17. If we limit ourselves to pair-wise matching, the choice of
matching depends on which pair yields smaller variance,

V ar(x13) =
ε

3ma
min{ 1

γ
,
1
α

+
1
β
}

=
ε

3a
min{ 1

m13
,

1
m12

+
1

m23
}.

Figure 4 uses a graph to illustrate the selective pair-wise
matching process. With each node represents a frame and each
edge represents the overlapping relationship between frames,
the choice of the least variance matching is to find the shortest
path from the new node to the reference node.

2) Minimum Variance Matching (MVM):In Figure 3, an-
other possible method is to simultaneously align the third
frame with both frame 1 and frame 2. This is different from
the result in Equation 15, because more pixels are involved
in the matching process. In Equation 15, part of frame 1 has
been covered by frame 2 in the fixed panorama and hence can
not participate the alignment process. Equation 10 shows that
variance declines as more pixels are involved in the matching.
However, it also could increase the chance of error propagation
and increase the variance. The minimum variance matching
approach is to find the best set of matching images so that the
variance of matching is the smallest.

Let us consider a general case. Assume that thejth frame
enters the system, it intersects with a set of existing frames
Mj . For thelth frame in Mj , we also know that the number
of pixels in framej intersecting with framel is mjl. Define
Xj andXl as the vectors that describe the location of imagej
and imagel with respect to the reference image respectively.

Define Xjl and X∗
jl as the relative offset and the optimal

relative offset between framej and framel. Then the TME
formulation of the matching between framej and all images
in setMj is,

T =
∑

l∈Mj

(
amjl‖Xjl −X∗

jl‖22 + bmjl

)
.

Since we are looking for the absolution locationXj = Xl +
Xjl, we change the equation above to,

T =
∑

l∈Mj

(
amjl‖Xj −Xl −X∗

jl‖22 + bmjl

)
.

Apply the same approach we did for Equation 14, we get

E(Xj |{Xl, l ∈ Mj}) =

∑
l∈Mj

(
mjl(Xl + X∗

jl)
)

∑
l∈Mj

mjl
(19)

and
V ar(Xj |{Xl, l ∈ Mj}) =

ε

kda
∑

l∈Mj
mjl

.

Therefore,

V ar(Xj) = V ar(E(Xj |{Xl, l ∈ Mj}))
+ E(V ar(Xj |{Xl, l ∈ Mj}))

=

∑
l∈Mj

m2
jlV ar(Xl)

(
∑

l∈Mj
mjl)2

+
ε

kda
∑

l∈Mj
mjl

.

From Theorem 1, we know thatV ar(Xl) = ε
kdawl, where

wl has been computed when thelth image entered the system.
Inserting them intoV ar(Xj), we get

V ar(Xj) =
ε

kda

( 1∑
l∈Mj

mjl
+

∑
l∈Mj

m2
jlwl

(
∑

l∈Mj
mjl)2

)
. (20)

Matching over all overlapping frames may not provide us
with the smallest variance. What we want is an optimal set
of overlapping frames. If thelth image is not used in the
matching, we can simply setmjl = 0 in Equation 20 to get
the new variance. This defines a minimization problem. Define
Il, l ∈ Mj as the image choice variable, we get the following
optimization problem,

min F ({Il, l ∈ Mj}) =
1∑

l∈Mj
Il

+

∑
l∈Mj

I2
l wl

(
∑

l∈Mj
Il)2

(21)

subject to ∑

l∈Mj

Il ≤ m̄j , (22)

Il = {0,mjl}, ∀l ∈ Mj (23)

where m̄j is the maximum limit for number of pixels in-
volved in the matching problem. The constraint in Equation
22 controls the size of the subsequent matching problem to
limit computation time. We solve this optimization problem
to derive the optimal set of matching images.

3) Minimum Variance Matching Algorithm (MVMA):The
optimal solution of Equation 21 yields the minimum variance.
However, this is a nonlinear combinatorial problem, which
could be very computationally expensive. Though the number
of overlapping imagesk = |Mj | is usually a small number,
solving it exhaustively requires time exponential ink.

Looking closer, we observe that when the constraint in
Equation 22 is binding,

∑

l∈Mj

Il = m̄j ,
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the objective function in Equation 21 becomes

F ({Il, l ∈ Mj}) =
1

m̄j
+

∑
l∈Mj

I2
l wl

(m̄j)2
.

Then the minimization problem is simplified as,

F ′ = min
{Il,l∈Mj}

∑

l∈Mj

I2
l wl (24)

subject to the constraint in Equation 23. Thelth candidate
matching image takesmjl-pixel space in total̄mj pixels and
contributesm2

jlwl to variance if it is selected. The variance
per pixel ism2

jlwl/mjl = mjlwl. Define candidate solution
set asM̂j ⊆ Mj , sum of pixels inM̂j as s1 =

∑
l∈M̂j

mjl,
and partial variance sum ass2 =

∑
l∈M̂j

I2
l wl. We propose an

approach that is based on the order of the variance density and
solves the problem for the case that the constraint in Equation
22 is binding. This algorithm takes the images that contribute
less variance first and gradually expands the set until it reaches
the constraint.
MVM Algorithm

M̂j = ∅, s1 = 0, s2 = 0 O(1)
Computemjlwl, l ∈ Mj , O(k)
Sort{mjlwl, l ∈ Mj} in ascending order, O(k log k)
For eachl in the ascending sequence ofmjlwl, O(k)

if s1 + mjl ≤ m̄j ,
s1 = s1 + mjl, s2 = s2 + m2

jlwl, M̂j = M̂j ∪ {l}
else

Break for loop
end if

End for
F (M̂j) = 1

s1
+ s2

s2
1

O(1)

OutputM̂j andF (M̂j) O(1)

The algorithm above does not directly offer a solution when∑
l∈Mj

mjl < m̄j . This is not a problem, because we can treat
m̄j as a variable to perform a search over it. Recall theF ′

defined in Equation 24, this new optimization problem is,

min
m̄j

1
m̄j

+
F ′

m̄2
j

, (25)

which can be solved straightforwardly by keeping tracking
of F value in the for loop of the MVM algorithm. Instead
of using the finalF (M̂j), we output the smallestF and its
corresponding set of frames. With this modification, we have

Theorem 2:The MVM algorithm finds the optimal set of
overlapping frames inO(k log k) time for a image withk
overlapping frames.

D. Pair-wise Matching

As stated in Section III-B, with an optimal set of existing
frames, the resulting pair-wise alignment sub problems can be
solved using any image mosaicing methods in Section II-.2.
Equation 19 also tells us that the optimal alignment parameter,
X, is a weighted average of the pair-wise matching results
using the number of overlapping pixels as the weight.

V. EXPERIMENTS AND RESULTS

We have installed a Canon VCC3 Pan-Tilt-Zoom camera
at the UC Berkeley campus. The camera has a pan range of
180◦ and a tilt range of55◦. It features an 1/4-inch CCD sensor
with a maximum resolution of768× 576. Its horizontal field
of view ranges from4◦ to 46◦. Our processor is a 2.53Ghz
Intel Pentium 4 PC with 1GB RAM and an 80GB hard drive.
We have conducted two phases of tests including construction
phase and update phase.

A. Construction Phase

In construction phase, we construct a panorama by directing
the camera to visit a set of predefined coordinates, each of
which defines a composing frame of the panorama. We have
taken 21320 × 240-pixel frames. During the construction
process, we combine our MVM Algorithm with Breadth First
Search (BFS) to generate a panorama. The BFS starts with
camera home position frame, which also our reference frame.
It is node 0 in Figure 5. The BFS incrementally covers all
21 points represented by the 21 nodes in the graph illustrated
in Figure 5. The pair-wise matching algorithm is a feature-
based algorithm. The overall computation time to generate
such a panorama is 9.7 seconds, which is even less than the
camera travel time. The VCC3 camera can only travel with
a maximum speed of70◦ per second. To cover all 21 points,
it takes about 30 seconds because of frequent stops. Since
our algorithm generates the panorama incrementally, it can
compute the panorama as the camera travels around. It outputs
the full panorama 331 milliseconds after the camera completes
its travel.

0 1 4 9 14 8 3 

2 5 10 15 17 12 6 

7 11 16 19 20 18 13 

Reference node   normal nodes Matching edge Edge that is not  
used for matching 

Fig. 5. Resulting matching sequence from MVM-BFS using the 21 frames.
Each node represents a frame and node numbers are corresponding to BFS
frame capturing order. The distribution of matching edges is determined by
image alignment mechanisms. The alignment edges are directional: node a
→ node b means frame a is captured later and uses the existing frame b for
alignment.

B. Update Phase

We next test how long it takes to update an existing
panoramic display. Based on results of 1000 test runs, the
algorithm required an average of 331 milliseconds to update
the panorama. The parameterm̄j in Equation 22 determines
the trade-off between panorama quality and computation time.
In our settings,m̄j = 90000 offers the best trade-off. The
update operation is activated when the camera leaves for a new
pan-tilt-zoom setting. Since camera travel and stabilization
time usually requires more than 331 milliseconds, image
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alignment can be computed as fast as the camera can be tele-
operated.

VI. CONCLUSIONS ANDFUTURE WORK

We present algorithms for maintaining a high resolution
panoramic display for disaster response, environmental moni-
toring, and security applications using a tele-operated robotic
camera. Since the robotic camera can cover a large region of
interest by adjusting its pan-tilt-zoom parameters, it is difficult
to keep track of where and when the camera has visited. We
construct a updated spherical panoramic display from the time
stamped frame sequences. Whenever the camera changes its
pan-tilt-zoom settings, we update the panorama by inserting a
new frame sequence.

We propose a variance-based quality metric to analyze how
errors get accumulated and use it to show that arbitrarily
selecting a set of existing frames to register new frames
can cause registration errors to grow out of control. We
then propose a minimum variance alignment algorithm. Our
algorithm can register a new frame inO(k log k) time for a
panorama withk overlapping frames.

In the future, we will develop new data structures for image
alignment and storage. We know that after a new frame is
inserted into the system, it may provide a better alignment
choice for existing frames. Adjustment of existing frames to
improve the quality of the panorama is an interesting problem.
The new data structure and its corresponding algorithms can
also help us to efficiently move old frames to hard disk storage.
We are also developing methods that allow queries into the
time history of panoramas.
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