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Abstract—A new class of low-cost teleoperated pan-tilt-zoom
robotic video cameras can provide high resolution panoramic
displays of remote sites for disaster response, environmental A
monitoring, and security applications. While the camera is tele- G__m Tilt F]
operated, the resulting video is transmitted back and inserted . '
into an evolving panoramic display. Since small errors in camera
position can produce large registration errors in the panoramic

Panorama

display, we address the image alignment problem. To quantify Frame scquence Pan
alignment error, we introduce a new metric based on motor error @ ()
and image overlap. We use this metric to develop a fast minimal

variance image alignment algorithm. We have implemented the Tilt

s '
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algorithm and describe experiments demonstrating panoramic
quality and that optimal alignment can be computed as fast as
the camera can be tele-operated.
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Index Terms—tele-operation, telerobotics, networked robot,
panoramic display, pan-tilt-zoom camera.
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I. INTRODUCTION
Fig. 1. A tele-operated robotic camera provides an evolving high-resolution

There are many applications where it is desirable to visuagnoramic display of the remote environment. () Camera and spherical field
. h of view, (b) Current video image in context of planar panoramic display, (c)
monitor remote environments, for example to observe rescHge
operations after a natural disaster, to monitor an endangered
animal habitat, or to monitor a dangerous zone for security pur-
POSEs. Recent devglopments |n.v.v|reless telecommunlcau%rﬂ?mg the foveal images together into a coherent panoramic
facilitate low-bandwidth connectivity to remote sites and aisplay
new class of low-cost teleoperated pan-tilt-zoom robotic video S iII.ustrated in Fiqure 1. the camera has a spherical field
cameras allows fast deployment of systems that can provide . gure %, P :
view. As the camera is moved by a remote tele-operator, it

high resolution images from a wide field of view in the remotg ;

environment. transmitsframe sequencesver the network back to the tele-

. . I : o§erator. (Control of a single camera by multiple tele-operators
Driven largely by security applications, several companie

have recently introduced low-cost networked tele-operat'esdaddressed in [19], [21]). To provide operator context and

o . rchival record, these frame sequences must be inserted into
cameras for remote monitoring. One example is the Panasofig q

WV-CW864A camera. With 22x zoom motorized optical Iensa,ln evolving panoramic display.

360° pan range, and 90tilt range, this robotic camera can Minor errors in camera position can produce large regis-
provide resolution up to 500 million pixels per steradiarffation errors in the panoramic image. For example, accurate
two orders of magnitude higher than the best available fix&ggistration of a640 x 480 image at zoom = 10x into a
position omnidirectional camera, at a fraction of the codp@norama requires angular position accuracy withdo625°,
Tele-operated cameras provide relatively small “foveal” videh?C times more than the accuracy currently available in
sequences that require far less bandwidth than high resolutfginmercial robotic cameras.
video of the entire field of view. A major challenge is com- We assume that motor parameters are approximate and
develop an algorithm to optimally insert frame sequences into
This work was supported in part by the National Science Foundthe evolving panoramic display. The key to our algorithm is

tion under 11S-0113147, by Intel Corporation, by Panasonic, and by U§ variance based method for identifying a Weighted subset
Berkeley’s Center for Information Technology Research in the Interest of

Society (CITRIS). For more information please contact dzsong@cs.tamu. urecent_overlapping frame Sequen_ces' We have implgmented
or goldberg@ieor.berkeley.edu. the algorithm and report on experiments demonstrating that

sequence of video images and evolving panoramic display.



image alignment can be computed as fast as the camera siae to reduce image registration time and meet the live video

be tele-operated. requirement.
The idea of dynamic panorama also inspires work on
Il. RELATED WORK developing panorama video streaming protocol. Kim et al [10]

1) Multiple-Camera System and Wide Angle System:develop a panorama video streaming protocol for a pan-tilt
When low/variable image resolution is acceptable, an evolviggmera system. They capture live video using a fixed lens
panoramic display can be maintained with a single wide-angtemera and assume camera pan and tilt readings are accurate
camera using a fish eye lens or parabolic mirror [1], [15gnough to register frames. They expand MPEG algorithm by
[27], [6]. When sufficient bandwidth is available, an evolvinglicing camera horizonal field of view into vertical strips and
high-resolution panorama can be maintained with multipyopose inter-strip and intra-strip compression ideas. Their
fixed cameras. Swaminathan and Nayar [22] use four witork do not propose a solution to deal with the problem of
angle cameras to monitor3s0° field of view. Similarly, Tan, image registration error accumulation and can not make good
Hua, and Ahuja [23] combine multiple cameras with a mirroase of camera zooming capability to provide high resolution
pyramid to create a single-perspective and high resolutié#edback.
panoramic video. Liu, Kimber, and Foote [11] combine four 5) Our Previous Related Work and Contributiom previ-
fixed cameras with a robotic camera that can selectively zogusly reported work, we developed camera control interfaces
in on details. Our approach could be combined with one &r multiple simultaneous tele-operators [19], [21]. In [20], we
more fixed cameras, but since bandwidth is limited, we focg€scribe a system for remote monitoring of construction sites
on using only one robotic camera to monitor the environmerier dangerous environments such as Irag. The present paper

2) Image Mosaicing Technique§&enerating a single wide- develops the theory behind a new algorithm that maintains an
field panoramic image from a set of overlapping images @&volving panorama minimizing image alignment error.
sometimes referred to as “image mosaicing” [18], [2]. Given a
set of overlapping images, the objective is to find the best set of [1l. PROBLEM DESCRIPTION
transform parameters fpr each image.. Three approaches hﬁ\‘yqnputs and Assumptions
been proposed. The direct method directly matches pixel in- L .
tensity information using standard least square method or bruté"), Def_|n|t|on of Frame Sequencewhen .the camera IS
force method and requires extensive computation. The secdR@Ving: images are blurred and must be discarded. Once the
method is frequency domain registration, which uses the f&g4Mera has stopped, we defintame sequencas a sequence
Fourier transform to maximize alignment in the frequency d& ¢@mera frames from some fixed pan-tilt-zoom setting,
main [3], [41, [12]_, [17]. This method i§ highly effectiv_e when F = {C(tvegin tend), D, t, 2, X, v}, (1)
there is substantial overlap between images. The third method
is “feature based”, using features extracted from the imag#hereC' stands for the frame content data $gtgin and tend
such as Harris corner points[7], [25], [29], [31], Moravec'@'e the beginning time and ending time of the frame sequence
interest operator[8], contour edge[13], convex hull formekgspectively,(p,t,z) are the approximate pan, tilt, and zoom
from scattered feature points[28], moment invariants[5], arf@lues obtained from the camerg,is a set of unknown image
Scale Invariant Feature Transform (SIFT)[14]. alignment parameters, ands a scalar that indicates how well

3) Constructing a 3D Scene from Video FrameSpn- the frame sequence is aligned with respect to its neighbors as
structing a 3D scene from either calibrated or un-calibratéiscussed below.
video frames is a very popular problem in both robotics Since the camera does not move for the duration of a frame
and computer vision [16], [24]. The similarity between thi§equence, we compute the alignment parameters using the first
problem and our problem is that both use overlapping framiéage of each frame sequence and use the same alignment
to establish transformation matrices. The difference is that 3/@rameters to transform the last image of the sequence to
modeling requires frames captured from different perspectivégdate the panorama. Below, we refer to the “frame” as the
whereas panorama construction prefers frames from a sinfifét image from a frame sequence.
perspective. For two given frames, a 3D model can only be2) Definition of PanoramaThe evolving panorama at time
constructed for intersection region of the two frames wherehdncludes all previous frame sequences,

a panorama generated from our problem covers union region P(t) = { Fltbegin < t}
of the two frames.

4) Dynamic Panorama:A dynamic panorama refers to ainserted in temporal order.
updateable panorama built from a pre-recorded sequence dtach panorama has a reference frame. The positional pa-
consecutive video images [9], [26], [30]. Current methodameters X of other frame sequences are computed with
do not take the image registration error into consideratiorespected to the reference frame. The reference frame is also
Therefore, it either has limited number of frames or relies dhe first frame of the panorama. Starting with reference frame,
extensive frame matching computation which can not proceb® panorama is initialized by commanding the camera to
live video data. Hence, the dynamic panorama has to be pvésit a sequence of preset coordinates that cover the field of
computed off-line before streaming. Our work complementgew as we will show in Section V-A. Actually, the panorama
existing work by utilizing camera pan-tilt-zoom values, trackgeneration and maintenance need the same incremental frame
ing registration error, and controlling image matching problemalignment algorithm that will be introduced in Section IlI-B.



3) Known Camera Intrinsic Parameter€Constructing the IV. ALGORITHMS

anorama requires projection and positional parameters. The,, , . .
P .0 . quires p QJ 0 . dp . P € %eve assumed that error &f is a random vector with zero
projection parameters include image resolution, camera focus

lenath. and CCD sensor size. all of which are known a €an. Therefore, the magnitude of error variance determines
ength, . - . N quality of alignment. To analyze the error variance, we
fixed. We use these to project all images onto a fixed Spherl(ﬁ?.It

. . propose a quality metric to measure how sensitive an
surface. The set of positional parametéfsfrom Equation 1 image alignment method is to errors. We study how error
are unknown and must be computed.

) A . c Pan. Tilt. 7 Positicihe tel variance gets accumulated and propagated in the alignment
) Approximate Camera Pan, Tilt, Zoom Positiofhe tele- process using a simple 1D example. Based on the analysis, we

operator periodically sends a motion command to the Cameﬁ%pose a minimum variance approach to select an optimal set

specified as a desired pan, tilt, and zo_oim t,z) target. of existing frames to register a newly arrived frame. We begin
After the camera motors servo toward this target, they SR definition of the quality metric

and the camera sends back an estimate of its resulting pan,
tilt, and zoom position. As noted above, these estimates are
inherently approximate. We use the approximate position f8r Quality Metric for Image Alignment

an initial estimate of how many pixels overlap between a pairWe propose the following quality metrie to quantify
of frames. Once the alignment parameféris computed by 5i0nment error. The scalan measures average pixel-wise

the algorithm, we use it to refine the number of overlappegiynment variance and will be defined for each frame se-

pixels. o ] _guence. Since image alignment is not perfect due to round off
5) Random Pair-wise Alignment Error'When computing

the relative offset between two frames, the matching problem
is a nonlinear minimization problem. Introduced by numerical
methods for nonlinear optimization like Gaussian-Newton
method, Simulated Annealing, or Genetic Algorithms, the
error between true optimal and actual solution depends on  |rame: -
initial point and truncation error. A good algorithm chooses ° M P M x

its initial point randomly, which defines the alignment error to “ @ " ®

be a random vector. We assume the alignment error randgm _ _ . .

. . . Fig. 2. An illustration of Metricv using a panorama composed by two
vector has zero mean and Va”an@é which usua”y IS a equally sized frames with equal number of pixels. Frame 1 is the reference
function of truncation error and image characteristics and withage in the alignment.
be discussed in Section IV-A.

6) Errors in Pair-wise Alignment:We assume that the errors and image characteristics, the displacement between the
Average Matching Error (AME)A of each pixel (or feature actual coordinateX; of the i" pixel and its ideal coordinate
point if using feature-based matching) can be approximatég® is a random vectoD; = X; — X. Let n, be the number
by a quadratic function in the vicinity of its optimal matchingpf pixels in panoramaP. For P, metric v is,
location. For the™ pixel in a new frame with its locatiof;,

this is described by, v(P) = 1 > Var(D;) 3)
A(Xi) = al| Xi = X[ |3 +0, 2

Frame 2

o« . - o e o oo
rame 1
o e o e e

Metric v is defined for a frame sequence as the average

where X is optimal alignment location is a scaling factor, alignment variance of all pixels in its first frame.
andb is the residual caused by noise. We assume dhatd Figure 2 illustrates how to compute using a panorama
b are the same across all matching pixels. with two equally sized frames. The displacement between
the two frames is caused by camera pan motion so that the
only alignment parameter is the horizontal displacemen,
between the two frames. Frame 1 enters the system first, then

The incremental Frame Alignment problemgséven a set of Frame 2 is captured. Frame 2 will be put on the top of frame 1.
n existing frame sequences, fitlfor a newly arrived frame Definezj, as the optimal displacement. Random displacement
sequence. error isdi2 = x12 —x7,. Since frame 1 is the reference frame,

We solve it in two steps. The first step is to identify all its pixels have zero variance. Alignment variance of each
subset of past frame sequences and decompose the alignmixa@ in frame 2 iso?. Figure 2(b) uses arrows to indicate
problem into multiple pair-wise alignment problems and giveariance amplitude. Let:, m < n,, be number of pixels in
each an appropriate weight. In the second step, the pair-wisech frame andei2, 0 < mq2 < m, be number of overlapping
alignment problems are solved by applying standard imapéels. Metricv of the panorama can be computed as

B. Incremental Frame Alignment Problem

mosaicing methods from Section 1I-.2. We use the direct 1 m

matching method throughout the rest of the paper. v=—((m—mia) x 0+mo?) = —a?, (4)
We focus on step one: identify a subset of past frames " "y

sequences that provide an optimal tradeoff between qualtyhere frame 1 contributes: — mq, pixels to the panorama

of the panorama and computation time. and frame 2 contributes: pixels to the panorama.



B. Analyzing Alignment Errors different constant factok,;, as summarized as the following

In this section we use statistical metric to compare h€orem. o o _ .
the quality of image alignment methods. We begin with the Theorem 1:Using AME approximation of image matching
simplest pair-wise alignment operation. function in the vicinity of the optimal solution, the variance

1) Error Variance in Pair-wise AlignmentDefineO as the ©°f @lignment displacement error is

set of the overlapped pixels. According to the assumption in 5 72 €
Section 1lI-A.6, the Total Matching Error (TMEY" over O 7 = kOl (10)
becomes, wherek,; > 1 andd is the problem dimensionality. The exact
T = Z(aHXi — X713 +b) (5) value ofk; depends om and the joint probability distribution
i€O function of the solution distribution over the ball defined by
= |Olallx; = X7 |3 + [O]b. (6) Equation 7.
Proof. Define the joint probability density function as

The image alignment is an optimization problem, flxy, wa, ..., 24), We have

. . .
are {X{I,lz‘lélO} ’ / f(z1, 22, ..., zq)dr1dTo. dTg = 1. (11
—r —r
d

subject to image integrity constraint, which actually reduces
the unknown se{X;,i € O} to the single vectotX defined

in Equation 1. We must finK such that Without loss of generality, we assumel, = o°. We
computeag%l in the rest of the proof. Becausg has zero
T(X) <|O[b+e, mean, we know
wheree is the truncation error from the minimization problem. gg_l = E(2?) — E*(z1) = E(2?).
Inserting it into Equation 5, all possible solutions must be i
inside the ball, We define,
HX _X*HQ S L, (7) fl(LUl) :/_ /_ f(.”L'hl‘g,...,{Ed)dmg...dl'd, (12)
|Ola N
where X* is the optimal solution. Recall that AME is an ot
approximation of real matching function in the vicinity ofand y
the optimal. AME is unknown during the problem solving Fi(y) = fi(z1)dxq, (13)
process. Therefore, we can not directly u¥¢ deducted -

from AME as the solution. Any point in the ball with radiusas the marginal probability density function and the cumulative

r = ﬁ is a possible solution. To solve the matchin@robability2function forz; respectively. Now we are ready to
problem is just to sample a point from the ball with a unknowfC™PUtes™,
location. Any point in the ball is likely to be a solution if the Ty
matching algorithm chooses its initial point randomly. The? ~ /_T 1 fi(@1)des
dimensionality of the ball depends on the dimensionality of T
X. = / w1dFy (21)

For the simple 1D case in Figure 2, the ball degrades - .
to a line segment. If we assume the solution is uniformly = 2R (x)|", _/ 21 Fy (z1)dxy
distributed, then its variance is . -

s (2?2 e g = 72 —/ 231 Fy (x1)dxy
T 12 3 3|0l ® o -

Inserting Equation 8 into Equation 4 and defining = = 7"2*/ 201 Fy (21)dy */ 2x1 Fy (21)dzy

m12/m, we obtain the Metrie for pair-wise image alignment: o o
. © - 7"2—1—/7‘(—2961)171(961)6&1 —/0 221 Fy (1) dxy

Inpac

For the generati—dimension caseX = {xi,z2,...,2q}, Applying the Second Mean Value Theorem for Integrals, we
we have variances of the marginal distributions along eakhow 3¢ € [—r,0],3¢ € [0, 7] such that,

dimension{oZ .02 ,...,02,}. We define o o
0 = max{o?,, 02, 0%} [ (renFitendn = £ [ (-2n)de = Fi(or®,

Interestingly, though the distribution of the solution poin@nd
in the ball is unknown, thel—dimension case has a similar " " 5
format with the 1-dimensional case in Equation 8 with a /0 (221)F1(21)dzy = F1(C)/0 (221)dzy = F1(Q)r.

4



Therefore,
o® = (14 Fi(§) — Fi(O)r?,

and
kqa=1/(1+ Fi(§) — F1(Q))

is the constant.

Therefore, we can get the variance of displacement for each
pixel in frame 3,

52
(1+). (15)

Var(xzi3) = 3ma

Now, we can compute metri¢for this case. Figure 3 also tells
us that frame 1 contributgd —a)m — (1—08)m = (B—a)m

As summarized in Theorem 1 the quality of the solution igixels to the panorama, frame 2 contributés— 5)m to the
determined by how many pixels are involved in the matchinganorama, and frame 3 contributespixels to the panorama.

|O|, and the image characteristias

2) Insertion Without Updating Panoramic Display naive
approach is to insert new frames using one panoramic image vV = *(m
that is never updated. We can use use metrio analyze the

resulting performance.

Consider inserting a new frame 3 with the same size into
the panorama in Figure 2. Defin@ss, 0 < mo3z < m, as

Plug them in to Equation 3,

1 € 32 €
np 3ma(1+z>+(176)m3ama)
_ € g2 15
B 3npa(1 R ) (16)

Comparing tov from Equation 9, the result in Equation

number of overlapping pixels between frame 2 and frame 86 may grow; the panoramic display deteriorates over time
To simplify the notation, we also definé = “22. Hence due to deterioration of the matching function, which decreases

mez = Bm as lllustrated in Figure 3.

A

y

(I-pym

0 —>
X

X3 Xy

the subsequent alignment accuracy. This can also be seen in
the increase of the residual in Equation 14, which indicates
a decrease in the signal/noise ratio. Since the panorama is
not updated, the deteriorating trend continues as new frames
are inserted. To address this, we must update the panorama
as frames are inserted. However, as shown in next section,
this may suffer from error propagation if it is not designed
properly.
3) Insertion With Updating Panoramic Displaynstead of

aligning frame 3 with respect to a fixed panorama, we can
align it with respect to the existing frames including either

Fig. 3. Insertion of a new frame into the panorama generated by frame figme 1 or frame 2 or both. The choice depends on a tradeoff

and frame 2 in Figure 2.

Define z;3 as the offset of frame 3 andj; as the corre-
sponding optimal offset. Recall that, is the offset of frame
2. Because frame 2 carries displacement ef{or= z12—x7,,

the TME in Equation 5 becomes,

T = (1-pB)m(a(zs —z}3)° +b))

—+ ﬂm(a(xlg — LL’TS —+ d12)2 —+ b))

This equation can be simplified as,

T = ma(xlg — xfg + ﬂd12)2
+ m(adiy (8~ 5%) +b).

It is not surprising that its residuak (ad?,(8 — 5%) +b) gets
bigger because of the displacement error in frame 2. Usirm
the result from Equation 7, the radius of the ball that covers
possible solution is /= . The variance of the solution for a

givend;s is,
€

V(ZT(LE13|d12) = 3ma.

between reducing

« variance, and
o computation time.

We use the example in Figure 3 to illustrate different
outcomes for different approaches. As shown in the figure,
there are three unknown variablesy, x5, andzs3z. The last
variablezsys is defined as the offset between frame 2 and frame
3. We know thatx,3 + x23 = x12 under ideal settings. Due
to this relationship, we only need two out of three variables.
Since x5 is known when the third frame enters the system,
we first match frame 2 with frame 3.

Since there are3m pixels overlapped between the two
images, the TME functiofl” is,

T = Bmal|zes — a:§3||§ + Smb.

e corresponding variance is
€
38ma’

However, we need to knowar(z13), because frame 1 is
the reference coordinate. We know thafs; and z,3 are

Var(zes) =

Equation 14 also tells us the expected solution for a gign independent random variables. Therefore,

IS,
E(z13|d12) = 275 — Bdia.

From knowledge of conditional variance, we know that

Var(zi3) = E(Var(zis|di2)) + Var(E(x13|d12)).

e 1 1
(a + B) (17)

The variance fronx;, propagates ta;3; and can grow with
each new insertion unless we choose the right images to align
with as follows.

Var(zi3) = Var(xi2) + Var(xss) = 3ma



1/m12 1/m13

1/m17 . . . .
‘ o © Since we are looking for the absolution locatiafy = X; +
®\®/C'D = ’ X, we change the equation above to,
1/m s Lmas G Vmzs Umig) T = Z (amy| X; — X; — X]*l||§ + bmj).
(@) (b) ©

leM;

Fig. 4. Graphical representation of alternate methods. Each node represeﬁ%gply the same approach we did for Equation 14, we get

a camera frame. Each edge represents an overlap between two frames. With (X X*
edge length proportion to the inverse of the number of overlapping pixels, E(X'HXZ le M}) — ZleMa‘ (mﬂ< 1+ Jl)) (19)
selective pair-wise matching finds the shortest path from node 3 to node 1 J ’ J ZleM- mji
(the reference node). ’
and .

Var(X;|{Xi,l € Mj}) = ;.

C. Image Alignment Methods a0 Y ien; Mt
1) Selective Pair-wise Matching (SPMAn alternative is Therefore,
lign frame 3 with frame 1. Defi < <

to alig ame 3 wit ame efine3, 0 < mqi3 < m, as VaT(Xj) _ VCL?“(E(XjHXl,lEMj}))

number of pixels between frame 1 and frame 3. To simplify

the notation, we defineg = my3/m. Following a similar + E(Var(X;[{X,l € M;}))

derivation, we obtain e, My Var(X))
- )2
Var(zi3) = €. (18) (ZlEMJ mj1)
3mary " €
Although Equation 18 does not contain variance from frame kaa ZzeMj mji
2, Var(zy3) is not necessarily smaller than that of Equatiop,, .\ Theorem 1. we know thatar(X)) = ~—uy, where
) - kda )

17. If we limit ourselves to pair-wise matching, the choice o&}l has been computed when tHeimage entered the system.

matching depends on which pair yields smaller variance, Inserting them intoV’ar(X,), we get

€ 11 1
14 = in{=, — 4+ = 2
ar(ma) = gogmin{Z 5+ 5 Var(X;) = < (e Zote UL o)
B imin{ 1 1 1 kaa ZzeMj m;i (ZzeMj m;i)?
3a miz’ mig Moz Matching over all overlapping frames may not provide us

Figure 4 uses a graph to illustrate the selective pair-wigédth the smallest variance. What we want is an optimal set
matching process. With each node represents a frame and ezfcbverlapping frames. If thé™ image is not used in the
edge represents the overlapping relationship between franmasfching, we can simply set; = 0 in Equation 20 to get
the choice of the least variance matching is to find the shortéis¢ new variance. This defines a minimization problem. Define

path from the new node to the reference node. I1,l € M; as the image choice variable, we get the following
2) Minimum Variance Matching (MVM)in Figure 3, an- optimization problem,

other possible method is to simultaneously align the third 1 ) 12,

frame with both frame 1 and frame 2. This is different from min F({I;,1 € M;}) = 7+ leM; lj_ 5 (1)

the result in Equation 15, because more pixels are involved Zlele l (ZzeMJ 1)

in the matching process. In Equation 15, part of frame 1 hagbject to

been covered by frame 2 in the fixed panorama and hence can Z I < my, (22)

not participate the alignment process. Equation 10 shows that I,

variance declines as more pixels are involved in the matching.
However, it also could increase the chance of error propagation Iy = {0,mu}, Vi € M; (23)
and increase the variance. The minimum variance matchia@ere /m; is the maximum limit for number of pixels in-
approach is to find the best set of matching images so that {iifved in the matching problem. The constraint in Equation
variance of matching is the smallest. 22 controls the size of the subsequent matching problem to
Let us consider a general case. Assume thatjthérame jimit computation time. We solve this optimization problem
enters the system, it intersects with a set of existing framgsderive the optimal set of matching images.
M;. For the!™ frame in M;, we also know that the number 3) Minimum Variance Matching Algorithm (MVMAJThe
of pixels in frame; intersecting with framé is m;;. Define optimal solution of Equation 21 yields the minimum variance.
X, and X; as the vectors that describe the location of imageHowever, this is a nonlinear combinatorial problem, which
and imagel with respect to the reference image respectivelgould be very computationally expensive. Though the number
Define X; and X7, as the relative offset and the optimabf overlapping images = |M;| is usually a small number,
relative offset between framg and framel. Then the TME solving it exhaustively requires time exponentialkin
formulation of the matching between franjieand all images  Looking closer, we observe that when the constraint in
in setM; is, Equation 22 is binding,

T = Z (amszij*X;lH%ermjl). Z I, = m;,
leM; le M,



the objective function in Equation 21 becomes

1 ZzeMj Ifwy

V. EXPERIMENTS AND RESULTS
We have installed a Canon VCC3 Pan-Tilt-Zoom camera

F{L,le M;})=—+ — at the UC Berkeley campus. The camera has a pan range of
mj (115) 180° and a tilt range 065°. It features an 1/4-inch CCD sensor
Then the minimization problem is simplified as, with a maximum resolution of68 x 576. Its horizontal field
of view ranges fromd° to 46°. Our processor is a 2.53Ghz
F = {Ir?ehl\l/[ , > Ifw (24) Intel Pentium 4 PC with 1GB RAM and an 80GB hard drive.
s J

lEM; We have conducted two phases of tests including construction

subject to the constraint in Equation 23. TH& candidate phase and update phase.

matching image takes;;-pixel space in totatn; pixels and )

contributesm?w; to variance if it is selected. The variance: Construction Phase

per pixel iSmflwz/mﬂ = mj,w;. Define candidate solution In construction.p.hase, we construc_:t a panorama by directing
set asM; C M;, sum of pixels inM; ass; = Y iesr, Mty the camera to visit a set of predefined coordinates, each of
and partial variance sum as — EleM] I2w;. We propose an which defines a composing frame of the panorama. We have

approach that is based on the order of the variance density SN 21320 x 240-pixel frames. During the construction
solves the problem for the case that the constraint in EquatiBrr?CGSS’ we combine our MVM Algorithm with Breadth First

22 is binding. This algorithm takes the images that contribur€arch (BFS) to generate a panorama. The BFS starts with

less variance first and gradually expands the set until it reaclf@ne€ra home position frame, which also our reference frame.
the constraint It is node O in Figure 5. The BFS incrementally covers all
MVM Algorithm 21 points represented by the 21 nodes in the graph illustrated

in Figure 5. The pair-wise matching algorithm is a feature-

if s1 + myj < my,
s1 =81+ mj, So = s2 + m?lwl, M; = M; U{l}

M;=0,51=0,5=0 0o(1) based algorithm. The overall computation time to generate
Computem ,wy, | € Mj, O(k) such a panorama is 9.7 seconds, which is even less than the
Sort{m;,w;,! € M;} in ascending order, O(klogk) camera travel time. The VCC3 camera can only travel with
For each in the ascending sequenceraf;w;, O(k) a maximum speed of0° per second. To cover all 21 points,

it takes about 30 seconds because of frequent stops. Since
our algorithm generates the panorama incrementally, it can

else compute the panorama as the camera travels around. It outputs
Break for loop the full panorama 331 milliseconds after the camera completes
end if its travel.
End for
F(ML;) = & + % o(1) ()
OutputM; and F'(M;) O(1)

IR
BRI

O Reference node

The algorithm above does not directly offer a solution when
>_ienm, Myt < mj. This is not a problem, because we can treat
m; as a variable to perform a search over it. Recall Hie
defined in Equation 24, this new optimization problem is,

(O normal nodes <«—  Matching edge

-- Edge that is not
yad used for matching

1
min — + — (25)

s
J Fig. 5. Resulting matching sequence from MVM-BFS using the 21 frames.

. . . ._Each node represents a frame and node numbers are corresponding to BFS
which can be solved straightforwardly by keeping trackingame capturing order. The distribution of matching edges is determined by

of F' value in the for loop of the MVM algorithm. Insteadimage alignment mechanisms. The alignment edges are directional: node a
of using the finaIF(J\Z/-) we output the smallest’ and its node b means frame a is captured later and uses the existing frame b for
) g . . e [ t.
corresponding set of frames. With this modification, we have "
Theorem 2:The MVM algorithm finds the optimal set of
overlapping frames inD(klogk) time for a image withk

overlapping frames.

m; mJ

B. Update Phase

We next test how long it takes to update an existing
panoramic display. Based on results of 1000 test runs, the
algorithm required an average of 331 milliseconds to update

As stated in Section IlI-B, with an optimal set of existinghe panorama. The parameter; in Equation 22 determines
frames, the resulting pair-wise alignment sub problems can the trade-off between panorama quality and computation time.
solved using any image mosaicing methods in Section II-[h our settings,m; = 90000 offers the best trade-off. The
Equation 19 also tells us that the optimal alignment parametapdate operation is activated when the camera leaves for a new
X, is a weighted average of the pair-wise matching resulpgn-tilt-zoom setting. Since camera travel and stabilization
using the number of overlapping pixels as the weight. time usually requires more than 331 milliseconds, image

D. Pair-wise Matching



alignment can be computed as fast as the camera can be tg8-H. Hu, L. Yu, P. W. Tsui, and Q. Zhou. Internet-based robotic systems

ted.
operate ]

VI. CONCLUSIONS ANDFUTURE WORK 0]

We present algorithms for maintaining a high resolution
panoramic display for disaster response, environmental mo[?il—]
toring, and security applications using a tele-operated robofic
camera. Since the robotic camera can cover a large region of
interest by adjusting its pan-tilt-zoom parameters, it is difficui#?!
to keep track of where and when the camera has visited. e,
construct a updated spherical panoramic display from the time

for teleoperation Assemby Automatior21(2):143-151, May 2001.

M. Irani, P. Anandan, J. Bergen, R. Kumar, and S. Hsu. Mosaic
representations of video sequences and their applicatioSsgnal
Processing: Image Communicatio8(4):327-351, May 1996.

B. Y. Kim, K. H. Jang, and S. K. Jung. Adaptive strip compression
for panorama video streaming. K@omputer Graphics International
(CGI'04), Crete, GreeceJune 2004.

D. Kimber, Q. Liu, J. Foote, and L. Wilcox. Capturing and presenting
shared multi-resolution video. I8PIE ITCOM 2002. Proceeding of
SPIE, Bostonvolume 4862, pages 261-271, Jul. 2002.

C. Kuglin and D. Hines. The phase correlation image alignment method.
In IEEE International Conference on Cybernet Society, New,YX9K5.

H. Li, B.S. Manjunath, and S.K. Mitra. A contour-based approach
to multisensor image registrationlEEE Trans on Image Processing

David G. Lowe. Object recognition from local scale-invariant features.

stamped frame sequences. Whenever the camera changeslét§(3)i320—334y March 1995.

pan-tilt-zoom settings, we update the panorama by insertin
new frame sequence.

We propose a variance-based quality metric to analyze h&!
errors get accumulated and use it to show that arbitrar't%]
selecting a set of existing frames to register new frames
can cause registration errors to grow out of control. We
then propose a minimum variance alignment algorithm. Our
algorithm can register a new frame ®(klog k) time for a
panorama witht overlapping frames.

. : 18]

In the future, we will develop new data structures for |mag[e
alignment and storage. We know that after a new frame is
inserted into the system, it may provide a better alignmek!
choice for existing frames. Adjustment of existing frames to
improve the quality of the panorama is an interesting problem.
The new data structure and its corresponding algorithms dafl
also help us to efficiently move old frames to hard disk storage.
We are also developing methods that allow queries into the
time history of panoramas. (21]
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