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Abstract— We report our system and algorithm developments N
that enable a single mobile robot equipped with a directional o
antenna to simultaneously localize multiple unknown transient

radio sources. Due to signal source anonymity, short transmis-

sion durations, and dynamic transmission patterns, the robot * °

cannot treat the radio sources as continuous radio beacons.

To deal with challenging localization problem, we model the Radio source ficld

radio source behaviors using a novel spatiotemporal probability ® Undiscovered radio sources O Localized radio sources s S
occupancy grid (SPOG) that captures transient characteristics (2) Schematics. (b) The robot.

of radio transmissions and tracks the spatiotemporal posterior

probability distribution of the radio transmissions. As a Monte  Fig. 1. Schematics of deploying a single mobile robot to I@eatinknown
Carlo method, we propose a ridge walking motion planning transient radio sources. The radio sources with dashetéinedicate that
algorithm that enables the robot to efficiently traverse the they are sending radio signals.

high probability regions to accelerate the convergence of the

posterior probability distribution. We have implemented the

algorithms and extensively tested them in comparison to a  To deal with this challenging localization problem, we
random walk and a fixed-route patrol mechanism. Our algo-  yqqg the radio source behaviors using a novel spatiotempo-
rithms have shown consistently superior performance over their - - .
competitors. ral probability occupancy grid (SPOG) that captures treamtsi
characteristics of radio transmissions and tracks the#- po
terior probability distributions. We then propose an SPOG
. INTRODUCTION update algorithm that incrementally updates the SPOG as

. radio transmissions are intercepted. We also propose aeMont
We report our system and algorithm developments that, i, rigge walking motion planning algorithm that enables

enable a smgle mobile robot ngpped with a d'reCt'Onal_the robot to efficiently traverse high probability regions

tenna to simultaneously localize multiple unknown transie ¢, 5ccelerate the convergence of the posterior probability
radio sources. We intend to provide a countermeasure ffqyinytions of radio sources. We have implemented the
the potential misuse of the fast-developing sensor netwotlyithms and extensively tested them in comparison to a
technology. A sensor network is usually composed of g,qom walk and a fixed-route patrol mechanism. In ex-

Iargg number of miniature _ereless Sensor nodes with S‘e%eriments, our algorithms have shown consistently superio
configurablead hocnetworking capabilities. It may be used performance over its the two heuristics.

as a new espionage tool that threatens our security and
privacy. This paper reports the first step of the study where
we assume that there is only one robot available as illestrat o ) )
in Figure 1. Since the robot is equipped with a directional Localization of unknown transient radio sources relates
antenna and on-board positional sensors, the robot cactdef®@ @ variety of research fields including radio frequency-
radio signal strengths (RSS) as it travels in the field dpased localization, S|multaneous Localization and Magppin

radio sources. When the radio sources and communicatiéi-AM), and occupancy grid methods.

protocols are unknown, the robot cannot treat the radio 1he recent development of radio frequency-based local-

sources as continuous radio beacons. More specifically, 12ation can be viewed as the localization of *friendly” radi
sources because researchers either assume that an iatlividu

. . - radio source that continuously transmits radio signatai(ar
o The periods of radio transmission are short. . .
. ; - to a lighthouse) [1]-[5] or assume that the robot/receiver
« The signal source cannot be identified. . : :
Radio sources may not be active at all times and awakep, & part of the network which understands the detailed
* ; y packet information [6]-[12]. However, such information is
intermittently. : .
not always available in an unknown network. In a recent
. . . , , work [2], Letchner et al. use a network of wireless access
This work was supported in part by the National Science Fatiod . | l bil it Thi b . d
under 11S-0534848 and 11S-0643298, and in part by MicroSitporation. points to O?a ize a mobile unit. IS can be \_”ewe 6'15
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Il. RELATED WORK

« The number of radio sources is unknown.



Antenna readings and robot configurations

try to localize sensor network nodes with a mobile beacon.
Again, the mobile beacon and the sensor network nodes share S {ﬁ
the network information. A4 y 3

In robotics research, SLAM is defined as the process of| Antenna | | Spatiotemporal Probability | | Motion

mapping the environment and localizing robot position at th |~ Occupancy Grid Planner

same time [13]—-[17]. Although both SLAM and our approach () System diagram

are Bayesian approaches, SLAM assumes that the environ- Continuous
ment is static or close to static. Directly applying SLAM N o tF time ¢
methods to our problem is not appropriate because networked | |

radio sources create a highly dynamic environment where the k_lk Jk Discrete

signal transmission patterns change very quickly. Althoug %o time k
recent advance in SLAM allows tracking of moving objects
[18] while perform SLAM task, the environment largely
remains static.

Since Elfes and Moravec [19], [20] introduce occupancy
grid maps as a probabilistic sensor model, the occupandy gifig- 2. Anillustration of system diagram and timing.
has been proved to be an elegant representation of the sensor
coverage for mobile robot applications such as localiratio .
and mapping [21]. Thrun and his colleagues [22], [23Io ensure the robot hasf enough time Fo execute the .planned
further improve occupancy grid maps to incorporate multir@jectory. At the beginning of each period, the robot piéms
sensor fusion, an inverse sensor model, and a forward sen§&i€ctory based on the current SPOG. This decision-making
model. Occupancy grid-based methods have recently beBfPCess is a discrete time system. We define N as the
adapted to a variety of applications including gas/odoremu discrete time index variable. _ .
localization [24]. The existing occupancy grid-based rodth F|g. 2(b) illustrates the r_elat|ons_h|p between the continu
focus on using the spatial probabilistic representation tBus time system and the discrete time system.t’ﬁa:ﬁRbe _
describe sensing uncertainty and are not capable of dealifftff €xact continuous time at the moment of the discrete time
with time-variant environments. In this work, we extend®: We define thek-th period as the time interval between
the occupancy grid methods into the temporal dimension o . and t*. Hencet® — ¥~ = 7, for k > 1. We also

deal with the dynamic characteristics of the transientaadidefinetj € R as the exact continuous time when tjiéh
transmissions. radio transmission occurs in theth period:t* ! < ¢k < ¢*.

equipped with a Log-Periodic Dipole Array antenna to localPeriod.

ized unknown networked sensor nodes [25]. Using a particle

filter approach, we assume that the carrier sensing multiple IV. PROBLEM DEFINITION
access (CSMA)-based protocol is used among the networkgd
radio sources. In this paper, we relax the assumption and o
develop a protocol-independent localization scheme. e al 10 formulate the localization problem, we make the fol-
notice the scalability issue of the particle filter methodtia ~ OWiNg assumptions to setup the problem scenario,
previous work and hence develop the SPOG to address thel) Both the robot and radio sources are located in a free

X : The moment when a wireless transmission occurs.
(b) System timing

Problem Setup

new localization problem. 2D Euclidean space.
2) The network traffic is light and each transmission is
I1l. SYSTEM DESIGN short. This is the typical characteristic of a low power

Fig. 2(a) illustrates the hybrid system architecture. From  S€nsor network.
the robot perspective, the input is the RSS readings from the3) The directional antenna on the robot has high sensitiv-
directional antenna with the corresponding robot position ity and can listen to all traffic. The robot can carry a
and antenna orientations. The output of the system is the large and highly sensitive antenna/amplifier.
planned trajectory for the robot to execute in the following 4) The radio sources are static nodes.
period. The entire system is built around the SPOG, which 5) Each radio transmission is transmitted at the same
tracks each cell's probability of containing a radio source ~ Power level. This assumption can be relaxed if the
and its transmission rate. robot is equipped with an orthogonal antenna pair,
On the one hand, the system updates the SPOG whenever which can prOVide directional information regardless
a radio transmission is detected by the antenna. The antenna ©f the transmission power.
model outputs the posterior probability distribution obth ~6) The radiation pattern of the radio sources is circular
signal source as the inputs to the SPOG. This update process because most miniature wireless sensors are equipped
is described by a continuous time system. As a convention ~ With omni-directional antennas.
in this paper, we usé to denote the continuous time. Due to the transient transmission and the fact that the robot
On the other hand, the robot plans its motion periodicallycannot associate a signal with its source, the robot cannot
We define the period length &g, which is carefully chosen simply triangulate the signal source. Since only one robot



is considered, the single perspective makes it more difficul At the beginning of each period, we plan the robot

than cases with multiple robots or receivers. trajectory for the period. Let us define the robot position
and orientation as(t) = [z(¢),y(t), 0(t)]T € R?x S, where
B. Spatiotemporal Probability Occupancy Grid S = (—m, ] is the orientation angle set. Since the antenna

We introduce SPOG to track the posterior spatiotempord f1xed on the robot and points to the robot forwarding
distributions of radio sources. To define the SPOG, wdIrection.d() is also the antenna orientation. Defifgax
partition the entire field into equally-sized square ceig 25 the index for the last transmission sensed in pekiod

a grid. Let us define cell index sdt:= {1,...,n}, where Therefore, we can define the Monte Carlo motion planning

n is the total number of cells. Definee I as a cell index problem for timek _(or t*) as, o . .
variable. The size of each cell is determined by the RSS'Problem 2 (Radio Source Localization .Mot|on Planning):
resolution of the antenna. Inside each cell, we approxima ven thke gurrent SPOG, L Wh'kCh .are sets
radio source locations using cell center locations. Define P(Ci\Z(ijx.))h € I} and {P(C, |Z(ijx))|Z € Iy,

as the event that cell contains at least one radio source?lan robot trajectory{r(¢)|t* < ¢ < t**!} that enables the
and P(C;) as the probability that ever®; occurs. Hence 'OPOt to quickly localize radio sources.

> icr P(C;) equals the number of cells that contain radio

sources ifP(C;) converges to a correct value in the Monte V. MODELING

Carlo localization. A. Sensing Problem

At time ¢}, a transmission occurs. We defid§ as the e address the sensing problem first. The sensing problem

event that cell is the active radio source at tlmt? Define actua”y has two components: an antenna model and an
C? as the event that cellis inactive at timetf. Hence SPOG update process.

P(C))+P(C})=1and Y P(C})=1 1)

i€l
because there is only one active transmission when th !
transmission is detected. We ignore the collision caseuseca 'E -
we take an RSS measurement as soon as the transmiss e o €
is initiated. The probability of two or more transmissions % Wﬁt 2
that are initiated at the exact same moment is negligible D 7
in a light traffic network.C} is determined by the relative .

radio transmission rate and is the temporal part of the SPOC = —
Unlike a regular occupancy grid, the SPOG is unique becausc o
each cell is described by two types of correlated random (2) Antenna photo (b) Calibrated radiation pattern
events: the spatial event; and the temporal events? and Fig. 3.
C}
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HyperGain HG2415G parabolic directional antennapprties.

1) Antenna Model: The antenna model describes the
C. Problem Formulation property of the directional antenna. As illustrated in Feg8,

Fig. 2(a) suggests that the overall localization problere use an HyperGain HG2415G parabolic antenna in our
can be divided into two sub problems: a sensing problegystem. Bearing and distance are the two most important
and a motion planning problem. Let random variale ¢~ variables in an antenna model [26]. Lety, v, 07) be the
[]_’255] N N be the corresponding RSS reading at titéje robot Conflguratlon when th@'-th radio transmission in the
Note that the RSS readings are from a receiver with &th period is sensed. L€t:;,y;) be the cell center location.
resolution of eight bits. Deﬁng(gjk) as the set of all Define dfj as the distance from robot to the center of the
RSS values sensed from the beginning of the localizatio®¢ll,
process to the moment whef® is sensed. We also define dfj = \/(xf —x;)% + (y§C — ;). @)
setZ~(zF) := Z(Z}) — {Z}}, which is the set of all RSS . _ _
readings from the ‘beginning of the localization process th€t ¢i; be the bearing of the cell with respect to the robot,
the moment right beforéj’-C is sensed. Definé’(C,»|Z(Zf))
as the conditional probability that cell contains at least
one radio source given the RSS ﬂa(tZJ’?). Following the Assume the active radio source is located in dglithe
same convention, we define the conditional probabilitieexpected RSS; of the directional antenna is given as,
P(Ci|Z7(Z})), P(C}|Z(z})), and P(C}|Z~(Z))). The s; = C - (%) Ps(¢k) (4)
sensing problem updates the SPOG when a new transmission ! * W
is detected, where(C is a constant depending on radio transmission power

Problem 1 (Sensing Problem)siven the current sensed and (dfj)—ﬁ is the signal decay function. The directivity of
RSS ZF, previous RSS setZ™(ZF), P(Ci|Z~(Z})), the antenna is captured by the tes®;;), which describes
P(C}\Z*(ZJ’?)), and the corresponding robot configurationsthe radiation pattern of the antenna. We&et 1.77 and the
computeP(Ci|Z(Z]’-“)) and P(C}|Z(Z]’?)) for each celli. decay factorg@ = 2.65 for our antenna, which are obtained

i‘cj = ataan;? - 9%34? —Yi) — 9?- )



from our antenna calibration process. @values conforms According to Bayes’ theorem,

to the widely-accepted notion that the decay factor is betwe P(ZF = z|cHP(CY)

2 and 4 [27]. P(Ci1|ZJ’? =2z)= J - - —.
Since our receiver uses dBm as RSS unit, we have to take 2ier P(Z5 = 2|0 P(C))

a 101log 10 with respect to (4),

20 = 10(log,, C — Blogyg dfj + logy 5(¢fj))a (%)

where z is the expected RSS in units of dBm. From the
antenna theory and the results from antenna calibration, v
perform curve-fitting to obtain the radiation pattern fuoit
as illustrated Fig. 3(b),

o(65) :{ cos? (d6f,) 1 —20° <y <20°, o
g cos? (80°)  otherwise.

Note that the peak at the zero bearing in Fig. 3(b) is about 1
dBm higher than the average of non-peak regions. Althoug
the data in Fig. 3(b) is obtained from the antenna calibnatio
the result conforms to antenna specifications well.

Eqs_ (5) and (6) describe the expected RSS given thag 4. The distribution OfP(C‘}lZ]lC = z) over a50 x 50 grid for the
the radio transmission is from cell However, the sensed directional antenna given th:H(Cil) is the same across all cells.
RSS is not a constant but a random variable due to the
uncertainties in radio transmissions. Defifig as the sensed ~ Eq. (11) describes the posterior conditional distribution
RSS. Therefore, the mean value gg is zo. From the of the active radio source given the sensed signal strength
antenna calibration, we know thaZ® conforms to the is z. If we assume that the radio transmission is equally

truncated normal distribution with a density function of  likely to be initiated by any cell in the grid, which means
1 p(2=m0) that P(C}) is the same across all cells, then the posterior

9(z) = 7 ) condition distribution is very similar to the radiation teh
F(fmax=20) — p(Zmn=20) as illustrated in Fig. 4.

where the value ofs is 3.3 that is obtained from the The second ternP(C;, CP|Zf = z) in (10) is the joint

antenna calibration; is the sensed RSS valug(-) is the conditional probability that there is at least one radiorseu

probability density function (PDF) of a normal distributio N cell i and none of the radio sources "2) ceéltransmits

with zero mean and unit variancé(-) is the cumulative 9iven the sensed RSS is Joint event(C;, C7') implies the

distribution function (CDF) off(-), and z,, and zy.x are following information:

11)

the minimum and the maximum RSS that the antenna cane Since celli is not transmitting, conditionz} = =
sense, respectively. Let cannot provide additional information for eveqdt;,
. which implies P(Cy| ZF = z) = P(C}).
G(z) = / g(z)dz (8) « There must be one active cell s € I ands # 1.
Zmin « Joint conditional eventC;, C7|ZF = z) is equivalent
be the CDF of the truncated normal distribution. to the union of the collection of even{sC;, C(‘}|ZJ’.C =
Define P(Zj’? = 2|C}) as the conditional probability that z),s #i,s € I} because of no collision.

the sensed signal strength is an integeiven celli contains « EventsC; andC! are independent.
at least an active radio sourdé(Z]f€ = z|C}) actually is the Therefore, we can obtain,

overall antenna model. Sin¢g’ can only take integer values,
we have “ P(C;,CP|1ZF =2)=P(Ci) Y. P(CHZ}=2) (12

s#i,s€l

k 1
P2} =2I0i) = Gz +0.5) = Gz = 0.5). () Note that P(C!|ZF = z) can be computed using (11).
2) Updating Probability Occupancy GridWhen a radio Plugging (11) and (12) into (10), we get,
transmission with an RSS level ofis sensed, we are inter- %
ested inP(C;| 2% = =), which is the conditional probability ~ ©(CilZ; = 2) =
that celli contains at least one radio source given the sensed < P(Z} = z|CHP(CH)+ )
RSS isz. According to (1), we have P(Ci) Y gsiser P(Z] = 2|C3)P(Cy)

P(Ci| 2% = 2) = P(C;, C}| 2% = 2) + P(Cy, CP|ZE = 2). Yier PZJ = 2ICHP(CH)

(13)

Unfortunately, (11) and (13) cannot be directly used in
the system because(C;) and P(C}) are not available. We
P(Ci|Z} = 2) = P(C}|ZF = 2) + P(C;, CY| ZF = ). have to rely on the conditional versions BfC;) and P(C})

(10) that build on the observatioZ‘(ZJ’?). We can derive the

Since event’} implies eventC;, the joint event(C;, C}) is
the same a€’}. Hence,



following from (11) by addingZ~(Z}) as the condition,  value of P(C;|Z(Z})), we want to increasé(C}|Z(Z}))
T ok as much as possible. According to (15), this means
P(CiHZj:Z}UZ (Zj)): P(Z* — Al CNP(CY|Z— (7
P(ZF = 2|C}, 27 (25)) P(CL |2~ (24)) ax s ZACDOPIC 2 (Z7))
2 T 7=k Ti7=( 7k >ser P(Zf = 2|CHP(CHZ~(Z}))
Zie[ P(Zj = Z|Ci VA (Zj ))P(Ci |Z (Zj ) s€l 7 s 8 J

m

(18)

(14)

SinceP(C}|Z~(Z}))s are constants at the time, the quantity
above achieves its maximum Whe.*,‘?(Zj’-c = z|C}) achieves
its maximum by adjusting value,

Since the conditional everﬁij’? = z is independent of the
previous RSS valueZ~(Z}) given C}, we know P(Z} =
z2|C},Z7(Z))) = P(Z} = 2|C}). According to the def-
inition, {ZF = 2} UZ~(Z}) = Z(Z}). Eq. (14) can be max P(C}|Z™(Z})). (19)
rewritten as, ?

We omit the process of deriving the optimal solution for (18
P(ZE = 2|C})P(ClZ~(24)) P O e o -

P(CHZ(ZF)) = J _ and (19) for brevity. Eq. (19) achieves its maximum when
' ! Yoicr P(ZF = 2|CHP(CHZ~(Z})) is at its maximum. This means that the robot has to place its
15) antenna’s most sensitive region over the cell that has a high
Similarly, from (13), we can derive the following, probability of containing radio sources.
P(CZ—|Z(Z]’?)) _ Egs. (5), (4), and (6) suggest that the most sensitive region

i L Lyt ok is located at zero bearing angle and at the nearest distance.
P(Z} = 2|C; )P(kCi 127 (25)+ Combining this, it is clear that the principle of the motion
P(Ci|Z™(Z7))x planning is to place the robot into the cells with the high
D stisel P(Z] = 2|C5)P(CS|Z7(Z])) P(Ci|Z(Z})) values and force the robot to face these cells
Y ier P(ZJ"C = z\C})P(CﬂZ—(ZJ’?)) as much as possible. This principle inspires us to develop
(16) a Ridge Walking Algorithm (RWA) for the robot motion

Egs. (15) and (16) provide a recursive formulation fmplannlng.
updating SPOG when a new radio transmission is sensed.
If we have unlimited resources and place a robot in
each cell, thenP(Ci|Z(Zj’?)) — 1 for cells that contains
radio sources an(P(Ci|Z(Zj’?)) — 0 for other cells as
k — oo. This can be formally proved by introducing
radio transmission arrival process model. However, thearcl
binary distribution cannot be achieved due to limited robot
perspectives. Since we threshdl’chAZ(Zf)) to determine
if cell 7 contains at least a radio source, the convergence ral
of the SPOG determines localization speed and accurac
If we take a close look at (15) and (16), it is clear that
the update of the SPOG largely depends the antenna mod
P(ZJ’." = 2|C}), which actually is a function of robot
configurations. Hence, the convergence of the SPOG and the

P(Ci|Z(2F))

corresponding convergence speed really depend on the robot i
motion planning. ol
35

B. Robot Motion Planner 3o}

The intuition is to accelerate the rate tﬂatC,»|Z(Z]’?)) — 25}
1 for cells that contains radio sources with high probaleiiti 20}
through effective robot motions. Take a close look at (16), al >
the update process contains two parts: ol ‘ .

P(Gi|Z(Z])) = P(C}|Z(Z])) + P(Ci, C7|Z(Z))), 5t ' . %Q

where % 5 10 15 20 25 30 3 40 45

b
P(C,C0Z(2})) = ®

N7—(7k , E _ 1 gz —(7k Fig. 5. (a) An example ofP(C;|Z(Z%)) distribution, (b) Radio source
P(Ci|Z (Zy ) Zs;ﬁz,sé] P(ZJ 2G5 P(C|Z (ZJ )) locations, a sample level sdt(0.3), and ridges over &0 x 50 grid
Dicr P(ZJI}C = Z|C})P(C}\Z*(ZJ’?)) for the case. The radio source locations are shown in bla¢k. devel

(17) set is bounded inside the blue solid lines. The red dashed lare the
corresponding ridges for the level set components.

Since joint event(C;, C?) offers no more information re-
garding C;, we ignore this part. Therefore, to increase the Fig. 5(a) illustrates an example of the distribution of




P(Ci|Z(Z})) over a50 x 50 grid. The actual radio source sponding component contains a radio source. For component
positions are shown as black dots in Fig. 5@B)C;|Z(Z})) [, we define the time the robot spend on the ridgeas 7.
value is much larger in the area adjacent to radio sourcdderefore,

than that of other areas. To study the spatial distributibn o , k

. >ier, P(CIZ(Z5))
P(Ci|Z(Z})), we introduce level sefL(p), p € (0,1] as T = L T ton- (23)
follows, ZiEL(p) P(Ci‘z(zj))

. ) With 7, and the length of each ridge, it is trivial to find the
L(p) = {i|P(C;|Z(Z%)) > I}. 20 ¢ and gth 9¢,

(p) = {ilP(Cil2(Z) = pi € T} (20) robot velocity for the ridge.
Let us envision that a plane parallel to the ground plane-inte

sects the mountain—likE’(Ci|Z(Z]’?)) distribution at heighp VI. ALGORITHMS

in Fig. 5(a). The intersection generategy) which contains 19 symmarize our analysis, we present two algorithms
all cells with P(C;|Z(Z})) above the plane. Fig. 5(b) including an SPOG update algorithm and the RWA. Corre-
illustrates the level sek(0.3) for the example in Fig. 5(a). sponding to the sensing problem in Section IV-C, the SPOG
Fig. 5(b) also shows thalt(p) usually consists of several ypdate algorithm runs when a radio signal is detected. Define
disconnected components. Defig,. as the total number of set C* as the set of cells that contain radio sources with
the disconnected components abdas thel-th component, initial value C* = (). Definep, as the probability threshold
I =1,...,lmax- Therefore,L(p) = Ly ULy U...UL;, . ,and for finding the radio source. The robot reports the cells
Li N Ly, = 0, wherem # [ andm = 1,2, ., Imax. For the that satisfy P(C;|Z(Z%)) > p, as the cells that contain at
I-th component, we define its ridge; as the line segment |east one radio source. Recall thatis the total number
defined by pointgz’,y) and (z”,y") on L;,

Algorithm 1: SPOG Update Algorithm
1) input : the received RF signal streng#f = »
i Iy "o . output: P(CZ|Z(Z‘;C))| P(CHZ(ZJIC)), 1€ I, andC*
where points(z’,y’) and (z”,y") are the two points ori; for i € I do

Rl = {(Qf,y)hﬁ = (1 - a)xl + Oél'/l7
y=1-a)y +ay’,ael0,1]},

O(n)
such that the distance betweér(,y’) and (z”,y") is the Compute distancdfj using (2); 0(1)
maximum. Compute bearing; using (3); 0(1)
If the robot walks on the ridge, the probability that the Compute radiation pauergw?;j) using (6); O(1)
robot is close to a potential radio source is very high. Due to Computez, using (5); o(1)
the walking direction, the antenna is always pointed aldweg t Computeg(z) using (7); o(1)
ridge, which ensures the most sensitive reception region of | ComputeG(z) using (8); o(1)
the antenna to overlap with teh component. In the RWA ComputeP(Z]’? = 2|C}) using (9); O(1)
algorithm, there are two types of robot motion: on-ridge . .
. : =~ forieldo O(n)
movements and off-ridge movements. Since the on-ridge 1 & . _
. 4 - ComputeP(C}|Z(Z7)) using (15); O(n)
movement is the effective movement for the localization c tep Cl 7 Z’g ing (16)- 0
purpose, it is desirable for the robot to allocate its time | ompute <ki| (Z7)) using (* )r" (n)
to on-ridge movements as much as possible. The off-ridge | ' P(EJAZ(%)) > Pt and i ¢ C* then
movement refers to the travel in-between ridges for thettobo | L Cr=Crulih; O(1)

Since we have a fixed time period, we set the robot te
travel at its fastest speed along the shortest path forigger
movements to save time for on-ridge movements. of cells. It is clear that the SPOG update algorithm runs

Since each ridge is usually short, we can approximat@(n?). The initial value settings ar&(C;|Z(Z3)) = 0 and
each ridge as a vertex. We define edges as the line segmeRt€} |Z(Z0)) = 1/n.
connecting different vertices on the 2D plane. With a vertex The RWA algorithm runs every, time. As illustrated in
set V, an edge set? and a graphG(V, E), to find the Algorithm 2, the robot performs random walking until set
shortest path for the off-ridge movement is an instance df(p) # () at the initialization stage. Then the robot switches
the traveling salesman problem (TSP) problem. Althoughnto the normal ridge walking mode. The robot stops when no
the decision version of the planar TSP problem is NpPadditional radio source has been foundkip.. consecutive
complete, we can use the 3-opt heuristics to solve it [28periods wheré,,,., is a preset iteration number. Algorithm 2
If a better approximation result is needed, we can use othgges exhaustive search to find the exact TSP tour. The overall
approximation algorithms [29]. Those algorithms give us gomplexity isO(n+(Imax—1)!). Although the 3-opt heuristic
close to the shortest off-ridge movement trajectory. Definéan accelerate the computation of the TSP, it cannot change
Umax @S the maximum velocity that the robot can travel. Théhe worst case complexity.
time available for on-ridge movements, is,

VII. EXPERIMENTS

fon = 70 = dore/Vmax; (22) We have implemented the algorithms and the simula-
whered, is the total length of off-ridge edges. We allocatetion platform using Microsoft Visual C++ .NET 2005 with
ton to each ridge proportional to the probability that the cerreOpenGL on a PC Desktop with an Intel 2.13GHz Core 2 Duo



Algorithm 2: Ridge Walking Algorithm w00 ‘ ‘ ‘ ‘ | |
input : P(C;|Z(2})), P(CHZ(Z})), i € 1 i S
output: Robot motion{r(¢)[t* <t < t**1} andC* 7o Redosowees |
ComputeL(p); O(n) —— 10 Radio Sources
if L(p) =0 then

| {r(®)|tF <t <"1} = random walk; O(1)

else

Find all disconnected components irfp);  O(
ComputeR,; for eachL;; O(
Construct graplG and solve TSP; O((lmax — 1)!
Computedo; O(lmax
Computet,, using (22); o(1
Computer; for each ridge using (23); o1
Output robot motion{r(¢)[t* < ¢ < tkT1};  O(1
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Fig. 6. RWA performance vsr.
CPU and 2GB RAM. The machine runs Microsoft Windows

XP. The algorithms are tested in the simulation. The antenna
on the robot is HyperGainT Model HG2415G which is a

2.4 GHz 15 dBi Reflector Grid Antenna. The radio sources oor
are Zigbee nodes which are XBeeT with ZigBeeT/802.15.4 08f
OEM radio frequency Modules by MaxStream, Inc. The an- ~07F
tenna is calibrated first with the radio sources. The cdiiia N

is conducted at 328 configurations and 6560 readings have Ngs!

been collected. The calibrated antenna model is reprakente 2,1

as the coefficients in (5) and in (7). We use the data from

the real hardware to drive the simulation experiments below
The grid is a square witlh0 x 50 cells. Each grid cell

has a size 06.08 x 5.08 cm?. Each radio source generates st

radio transmission signals according to an independently % 50 1000 150 Tzigql% (zssg% )3060 300 4000 4500

and identically distributed Poisson process with a rate of '

A = 0.012 packets per second. The threshgid = 0.8 Fig. 7. Convergence oP(C;|Z(ZF)) at radio source locations for a

and the level set parametgr= %Zi P(C’,;|Z(ZJ’?)), where  six-radio source case. !

the constant 6 is determined by many experimental trials.

During each trial of the simulation, we randomly generate

radio source locations in th&) x 50 grid. cover the entire field. Hence it does not have a blind spot.
The first experiment we conducted is to study how fasthe fixed-route patrol traverses the field using a pre-defined

an RWA can localize all radio sources under differept route. It is considered as energy efficient but might notttrea

settings. This determines how often we should run the Rw&ach cell equally due to the route selection. We increase the

algorithm. Fig. 6 summarizes the test results. We change tfdio source number from 2 to 10 to observe the performance

radio source number from 2 to 10 during the simulation. Eac®f €ach method. For each trial, we test all three methods.

point in Fig. 6 is an average of 10 trials. It is interestingtth \We repeat for 10 trials for each radio source number and

the RWA is at its best performance when= 800 seconds Ccompute the average time required for localizing all radio

regardless of the radio source number. This means that thuUrces. Fig. 8 illustrates comparison results. It is cleat

robot need to listen to each radio for an expected value Hpe RWA significantly outperforms the two heuristics. It is
800X = 9.6 times before repeating the algorithm. also surprising that the fixed route patrol is no much better

Fig. 7 illustrates hO\AP(Oi|Z(Z]’?)) converges at the radio than the random yvalk. However, the .re'sult can be explai'ned
source for a trial with six radio sources. The location ofhat the robot motion for the two heuristics does not conside
the six radio sources is shown in Fig. 5(b). It is clear tha®€nSor location distribution and hence cannot achieve good
P(C;|Z(ZF)) grows monotonically toward 1. This is what performance.
we expect to seeP(Ci|Z(Zj’?)) — 1 for cells contains radio
sources. VIIl. CONCLUSIONS ANDFUTURE WORK

We also compare our algorithms to two intuitive heuris- We report our system and algorithm developments that
tics, namely, a random walk and a fixed-route patrol. Thenable a mobile robot equipped with a directional antenna
random walk is chosen because it is considered as the méstlocalize unknown transient radio sources. Employing a
conservative approach. Over a long run, a random walk cafionte Carlo approach, we modeled the radio transmission
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: [13]
walk, and the fixed-route patrol.

[14]

activities using an SPOG and proposed an SPOG update
algorithm and an RWA algorithm for robot motion planning.
For an-cell grid, the SPOG update algorithm runsin?)
time and the RWA runs i@ (n+ (lmax —1)!) time. We tested
the algorithm using simulation with the data from the real
hardware. In the experiment, we compared our algorithni&®!
with a random walk and a fixed-route patrol heuristics. Ou7)
algorithms showed a consistently superior performance ove
the two heuristics. We are currently testing our algorithm
using physical experiments. Results will be reported img
subsequent revisions. We are also interested in designing
a multiple-robot localization scheme and will consider an
approach to localize moving radio sources. [19]

[15]
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