
1

Monte Carlo Simultaneous Localization of Multiple Unknown Tr ansient
Radio Sources Using a Mobile Robot with a Directional Antenna

Dezhen Song, Chang-Young Kim, and Jingang Yi

Abstract— We report our system and algorithm developments
that enable a single mobile robot equipped with a directional
antenna to simultaneously localize multiple unknown transient
radio sources. Due to signal source anonymity, short transmis-
sion durations, and dynamic transmission patterns, the robot
cannot treat the radio sources as continuous radio beacons.
To deal with challenging localization problem, we model the
radio source behaviors using a novel spatiotemporal probability
occupancy grid (SPOG) that captures transient characteristics
of radio transmissions and tracks the spatiotemporal posterior
probability distribution of the radio transmissions. As a Monte
Carlo method, we propose a ridge walking motion planning
algorithm that enables the robot to efficiently traverse the
high probability regions to accelerate the convergence of the
posterior probability distribution. We have implemented the
algorithms and extensively tested them in comparison to a
random walk and a fixed-route patrol mechanism. Our algo-
rithms have shown consistently superior performance over their
competitors.

I. I NTRODUCTION

We report our system and algorithm developments that
enable a single mobile robot equipped with a directional an-
tenna to simultaneously localize multiple unknown transient
radio sources. We intend to provide a countermeasure for
the potential misuse of the fast-developing sensor network
technology. A sensor network is usually composed of a
large number of miniature wireless sensor nodes with self-
configurablead hocnetworking capabilities. It may be used
as a new espionage tool that threatens our security and
privacy. This paper reports the first step of the study where
we assume that there is only one robot available as illustrated
in Figure 1. Since the robot is equipped with a directional
antenna and on-board positional sensors, the robot can detect
radio signal strengths (RSS) as it travels in the field of
radio sources. When the radio sources and communication
protocols are unknown, the robot cannot treat the radio
sources as continuous radio beacons. More specifically,

• The number of radio sources is unknown.
• The periods of radio transmission are short.
• The signal source cannot be identified.
• Radio sources may not be active at all times and awaken

intermittently.
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Fig. 1. Schematics of deploying a single mobile robot to localize unknown
transient radio sources. The radio sources with dashed circles indicate that
they are sending radio signals.

To deal with this challenging localization problem, we
model the radio source behaviors using a novel spatiotempo-
ral probability occupancy grid (SPOG) that captures transient
characteristics of radio transmissions and tracks their pos-
terior probability distributions. We then propose an SPOG
update algorithm that incrementally updates the SPOG as
radio transmissions are intercepted. We also propose a Monte
Carlo ridge walking motion planning algorithm that enables
the robot to efficiently traverse high probability regions
to accelerate the convergence of the posterior probability
distributions of radio sources. We have implemented the
algorithms and extensively tested them in comparison to a
random walk and a fixed-route patrol mechanism. In ex-
periments, our algorithms have shown consistently superior
performance over its the two heuristics.

II. RELATED WORK

Localization of unknown transient radio sources relates
to a variety of research fields including radio frequency-
based localization, Simultaneous Localization and Mapping
(SLAM), and occupancy grid methods.

The recent development of radio frequency-based local-
ization can be viewed as the localization of “friendly” radio
sources because researchers either assume that an individual
radio source that continuously transmits radio signals (similar
to a lighthouse) [1]–[5] or assume that the robot/receiver
is a part of the network which understands the detailed
packet information [6]–[12]. However, such information is
not always available in an unknown network. In a recent
work [2], Letchner et al. use a network of wireless access
points to localize a mobile unit. This can be viewed as
a dual version of our problem. They use multiple static
listeners to localize a mobile transmitter, while we try to
localize multiple static transmitters using a mobile listener.
As another closely related work [9], Sichitiu and Ramadurai



try to localize sensor network nodes with a mobile beacon.
Again, the mobile beacon and the sensor network nodes share
the network information.

In robotics research, SLAM is defined as the process of
mapping the environment and localizing robot position at the
same time [13]–[17]. Although both SLAM and our approach
are Bayesian approaches, SLAM assumes that the environ-
ment is static or close to static. Directly applying SLAM
methods to our problem is not appropriate because networked
radio sources create a highly dynamic environment where the
signal transmission patterns change very quickly. Although
recent advance in SLAM allows tracking of moving objects
[18] while perform SLAM task, the environment largely
remains static.

Since Elfes and Moravec [19], [20] introduce occupancy
grid maps as a probabilistic sensor model, the occupancy grid
has been proved to be an elegant representation of the sensor
coverage for mobile robot applications such as localization
and mapping [21]. Thrun and his colleagues [22], [23]
further improve occupancy grid maps to incorporate multi-
sensor fusion, an inverse sensor model, and a forward sensor
model. Occupancy grid-based methods have recently been
adapted to a variety of applications including gas/odor source
localization [24]. The existing occupancy grid-based methods
focus on using the spatial probabilistic representation to
describe sensing uncertainty and are not capable of dealing
with time-variant environments. In this work, we extend
the occupancy grid methods into the temporal dimension to
deal with the dynamic characteristics of the transient radio
transmissions.

In our previous work, we use a single mobile robot
equipped with a Log-Periodic Dipole Array antenna to local-
ized unknown networked sensor nodes [25]. Using a particle
filter approach, we assume that the carrier sensing multiple
access (CSMA)-based protocol is used among the networked
radio sources. In this paper, we relax the assumption and
develop a protocol-independent localization scheme. We also
notice the scalability issue of the particle filter method inthe
previous work and hence develop the SPOG to address the
new localization problem.

III. SYSTEM DESIGN

Fig. 2(a) illustrates the hybrid system architecture. From
the robot perspective, the input is the RSS readings from the
directional antenna with the corresponding robot positions
and antenna orientations. The output of the system is the
planned trajectory for the robot to execute in the following
period. The entire system is built around the SPOG, which
tracks each cell’s probability of containing a radio source
and its transmission rate.

On the one hand, the system updates the SPOG whenever
a radio transmission is detected by the antenna. The antenna
model outputs the posterior probability distribution of the
signal source as the inputs to the SPOG. This update process
is described by a continuous time system. As a convention
in this paper, we uset to denote the continuous time.

On the other hand, the robot plans its motion periodically.
We define the period length asτ0, which is carefully chosen
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Fig. 2. An illustration of system diagram and timing.

to ensure the robot has enough time to execute the planned
trajectory. At the beginning of each period, the robot plansits
trajectory based on the current SPOG. This decision-making
process is a discrete time system. We definek ∈ N as the
discrete time index variable.

Fig. 2(b) illustrates the relationship between the continu-
ous time system and the discrete time system. Lettk ∈ R be
the exact continuous time at the moment of the discrete time
k. We define thek-th period as the time interval between
tk−1 and tk. Hencetk − tk−1 = τ0 for k > 1. We also
define tkj ∈ R as the exact continuous time when thej-th
radio transmission occurs in thek-th period:tk−1 ≤ tkj < tk.
The index variablej is set to zero at the beginning of each
period.

IV. PROBLEM DEFINITION

A. Problem Setup

To formulate the localization problem, we make the fol-
lowing assumptions to setup the problem scenario,

1) Both the robot and radio sources are located in a free
2D Euclidean space.

2) The network traffic is light and each transmission is
short. This is the typical characteristic of a low power
sensor network.

3) The directional antenna on the robot has high sensitiv-
ity and can listen to all traffic. The robot can carry a
large and highly sensitive antenna/amplifier.

4) The radio sources are static nodes.
5) Each radio transmission is transmitted at the same

power level. This assumption can be relaxed if the
robot is equipped with an orthogonal antenna pair,
which can provide directional information regardless
of the transmission power.

6) The radiation pattern of the radio sources is circular
because most miniature wireless sensors are equipped
with omni-directional antennas.

Due to the transient transmission and the fact that the robot
cannot associate a signal with its source, the robot cannot
simply triangulate the signal source. Since only one robot
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is considered, the single perspective makes it more difficult
than cases with multiple robots or receivers.

B. Spatiotemporal Probability Occupancy Grid

We introduce SPOG to track the posterior spatiotemporal
distributions of radio sources. To define the SPOG, we
partition the entire field into equally-sized square cells using
a grid. Let us define cell index setI := {1, ..., n}, where
n is the total number of cells. Definei ∈ I as a cell index
variable. The size of each cell is determined by the RSS
resolution of the antenna. Inside each cell, we approximate
radio source locations using cell center locations. DefineCi

as the event that celli contains at least one radio source
and P (Ci) as the probability that eventCi occurs. Hence
∑

i∈I P (Ci) equals the number of cells that contain radio
sources ifP (Ci) converges to a correct value in the Monte
Carlo localization.

At time tkj , a transmission occurs. We defineC1
i as the

event that celli is the active radio source at timetkj . Define
C0

i as the event that celli is inactive at timetkj . Hence

P (C0
i ) + P (C1

i ) = 1 and
∑

i∈I

P (C1
i ) = 1 (1)

because there is only one active transmission when the
transmission is detected. We ignore the collision case because
we take an RSS measurement as soon as the transmission
is initiated. The probability of two or more transmissions
that are initiated at the exact same moment is negligible
in a light traffic network.C1

i is determined by the relative
radio transmission rate and is the temporal part of the SPOG.
Unlike a regular occupancy grid, the SPOG is unique because
each cell is described by two types of correlated random
events: the spatial eventCi and the temporal eventsC0

i and
C1

i .

C. Problem Formulation

Fig. 2(a) suggests that the overall localization problem
can be divided into two sub problems: a sensing problem
and a motion planning problem. Let random variableZk

j ∈
[1, 255] ∩ N be the corresponding RSS reading at timetkj .
Note that the RSS readings are from a receiver with a
resolution of eight bits. DefineZ(Zk

j ) as the set of all
RSS values sensed from the beginning of the localization
process to the moment whenZk

j is sensed. We also define
setZ−(Zk

j ) := Z(Zk
j ) − {Zk

j }, which is the set of all RSS
readings from the beginning of the localization process to
the moment right beforeZk

j is sensed. DefineP (Ci|Z(Zk
j ))

as the conditional probability that celli contains at least
one radio source given the RSS setZ(Zk

j ). Following the
same convention, we define the conditional probabilities
P (Ci|Z

−(Zk
j )), P (C1

i |Z(Zk
j )), and P (C1

i |Z
−(Zk

j )). The
sensing problem updates the SPOG when a new transmission
is detected,

Problem 1 (Sensing Problem):Given the current sensed
RSS Zk

j , previous RSS setZ−(Zk
j ), P (Ci|Z

−(Zk
j )),

P (C1
i |Z

−(Zk
j )), and the corresponding robot configurations,

computeP (Ci|Z(Zk
j )) andP (C1

i |Z(Zk
j )) for each celli.

At the beginning of each periodk, we plan the robot
trajectory for the period. Let us define the robot position
and orientation asr(t) = [x(t), y(t), θ(t)]T ∈ R

2×S, where
S = (−π, π] is the orientation angle set. Since the antenna
is fixed on the robot and points to the robot forwarding
direction, θ(t) is also the antenna orientation. Definejmax

as the index for the last transmission sensed in periodk.
Therefore, we can define the Monte Carlo motion planning
problem for timek (or tk) as,

Problem 2 (Radio Source Localization Motion Planning):
Given the current SPOG, which are sets
{P (Ci|Z(Zk

jmax
))|i ∈ I} and {P (C1

i |Z(Zk
jmax

))|i ∈ I},
plan robot trajectory{r(t)|tk ≤ t < tk+1} that enables the
robot to quickly localize radio sources.

V. M ODELING

A. Sensing Problem

We address the sensing problem first. The sensing problem
actually has two components: an antenna model and an
SPOG update process.

(a) Antenna photo
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Fig. 3. HyperGain HG2415G parabolic directional antenna properties.

1) Antenna Model: The antenna model describes the
property of the directional antenna. As illustrated in Figure 3,
we use an HyperGain HG2415G parabolic antenna in our
system. Bearing and distance are the two most important
variables in an antenna model [26]. Let(xk

j , yk
j , θk

j ) be the
robot configuration when thej-th radio transmission in the
k-th period is sensed. Let(xi, yi) be the cell center location.
Define dk

ij as the distance from robot to the center of the
cell,

dk
ij =

√

(xk
j − xi)2 + (yk

j − yi)2. (2)

Let φk
ij be the bearing of the cell with respect to the robot,

φk
ij = atan2(xk

j − xi, y
k
j − yi) − θk

j . (3)

Assume the active radio source is located in celli, the
expected RSSsi of the directional antenna is given as,

si = C · (dk
ij)

−βs(φk
ij), (4)

whereC is a constant depending on radio transmission power
and (dk

ij)
−β is the signal decay function. The directivity of

the antenna is captured by the terms(φk
ij), which describes

the radiation pattern of the antenna. We setC = 1.77 and the
decay factorβ = 2.65 for our antenna, which are obtained
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from our antenna calibration process. Ourβ values conforms
to the widely-accepted notion that the decay factor is between
2 and 4 [27].

Since our receiver uses dBm as RSS unit, we have to take
a 10 log 10 with respect to (4),

z0 = 10
(

log10 C − β log10 dk
ij + log10 s(φk

ij)
)

, (5)

where z0 is the expected RSS in units of dBm. From the
antenna theory and the results from antenna calibration, we
perform curve-fitting to obtain the radiation pattern function
as illustrated Fig. 3(b),

s(φk
ij) =

{

cos2 (4φk
ij) if − 20◦ ≤ φk

ij ≤ 20◦,
cos2 (80◦) otherwise.

(6)

Note that the peak at the zero bearing in Fig. 3(b) is about 15
dBm higher than the average of non-peak regions. Although
the data in Fig. 3(b) is obtained from the antenna calibration,
the result conforms to antenna specifications well.

Eqs. (5) and (6) describe the expected RSS given that
the radio transmission is from celli. However, the sensed
RSS is not a constant but a random variable due to the
uncertainties in radio transmissions. DefineZk

j as the sensed
RSS. Therefore, the mean value ofZk

j is z0. From the
antenna calibration, we know thatZk

j conforms to the
truncated normal distribution with a density function of

g(z) =
1
σ
f( z−z0

σ
)

F ( zmax−z0

σ
) − F ( zmin−z0

σ
)
, (7)

where the value ofσ is 3.3 that is obtained from the
antenna calibration,z is the sensed RSS value,f(·) is the
probability density function (PDF) of a normal distribution
with zero mean and unit variance,F (·) is the cumulative
distribution function (CDF) off(·), and zmin and zmax are
the minimum and the maximum RSS that the antenna can
sense, respectively. Let

G(z) =

∫ z

zmin

g(z)dz (8)

be the CDF of the truncated normal distribution.
DefineP (Zk

j = z|C1
i ) as the conditional probability that

the sensed signal strength is an integerz given celli contains
at least an active radio source.P (Zk

j = z|C1
i ) actually is the

overall antenna model. SinceZk
j can only take integer values,

we have

P (Zk
j = z|C1

i ) = G(z + 0.5) − G(z − 0.5). (9)

2) Updating Probability Occupancy Grid:When a radio
transmission with an RSS level ofz is sensed, we are inter-
ested inP (Ci|Z

k
j = z), which is the conditional probability

that celli contains at least one radio source given the sensed
RSS isz. According to (1), we have

P (Ci|Z
k
j = z) = P (Ci, C

1
i |Z

k
j = z) + P (Ci, C

0
i |Z

k
j = z).

Since eventC1
i implies eventCi, the joint event(Ci, C

1
i ) is

the same asC1
i . Hence,

P (Ci|Z
k
j = z) = P (C1

i |Z
k
j = z) + P (Ci, C

0
i |Z

k
j = z).

(10)

According to Bayes’ theorem,

P (C1
i |Z

k
j = z) =

P (Zk
j = z|C1

i )P (C1
i )

∑

i∈I P (Zk
j = z|C1

i )P (C1
i )

. (11)
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Fig. 4. The distribution ofP (C1

i |Z
k
j = z) over a50 × 50 grid for the

directional antenna given thatP (C1

i ) is the same across all cells.

Eq. (11) describes the posterior conditional distribution
of the active radio source given the sensed signal strength
is z. If we assume that the radio transmission is equally
likely to be initiated by any cell in the grid, which means
that P (C1

i ) is the same across all cells, then the posterior
condition distribution is very similar to the radiation pattern
as illustrated in Fig. 4.

The second termP (Ci, C
0
i |Z

k
j = z) in (10) is the joint

conditional probability that there is at least one radio source
in cell i and none of the radio sources in celli transmits
given the sensed RSS isz. Joint event(Ci, C

0
i ) implies the

following information:

• Since cell i is not transmitting, conditionZk
j = z

cannot provide additional information for eventCi,
which impliesP (Ci|Z

k
j = z) = P (Ci).

• There must be one active cells, s ∈ I ands 6= i.
• Joint conditional event(Ci, C

0
i |Z

k
j = z) is equivalent

to the union of the collection of events{(Ci, C
1
s |Z

k
j =

z), s 6= i, s ∈ I} because of no collision.
• EventsCi andC1

s are independent.

Therefore, we can obtain,

P (Ci, C
0
i |Z

k
j = z) = P (Ci)

∑

s 6=i,s∈I

P (C1
s |Z

k
j = z) (12)

Note that P (C1
s |Z

k
j = z) can be computed using (11).

Plugging (11) and (12) into (10), we get,

P (Ci|Z
k
j = z) =

(

P (Zk
j = z|C1

i )P (C1
i )+

P (Ci)
∑

s 6=i,s∈I P (Zk
j = z|C1

s )P (C1
s )

)

∑

i∈I P (Zk
j = z|C1

i )P (C1
i )

(13)

Unfortunately, (11) and (13) cannot be directly used in
the system becauseP (Ci) andP (C1

i ) are not available. We
have to rely on the conditional versions ofP (Ci) andP (C1

i )
that build on the observationZ−(Zk

j ). We can derive the
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following from (11) by addingZ−(Zk
j ) as the condition,

P (C1
i |{Z

k
j = z} ∪ Z

−(Zk
j )) =

P (Zk
j = z|C1

i ,Z−(Zk
j ))P (C1

i |Z
−(Zk

j ))
∑

i∈I P (Zk
j = z|C1

i ,Z−(Zk
j ))P (C1

i |Z
−(Zk

j ))
. (14)

Since the conditional eventZk
j = z is independent of the

previous RSS valuesZ−(Zk
j ) given C1

i , we knowP (Zk
j =

z|C1
i ,Z−(Zk

j )) = P (Zk
j = z|C1

i ). According to the def-
inition, {Zk

j = z} ∪ Z
−(Zk

j ) = Z(Zk
j ). Eq. (14) can be

rewritten as,

P (C1
i |Z(Zk

j )) =
P (Zk

j = z|C1
i )P (C1

i |Z
−(Zk

j ))
∑

i∈I P (Zk
j = z|C1

i )P (C1
i |Z

−(Zk
j ))

.

(15)
Similarly, from (13), we can derive the following,

P (Ci|Z(Zk
j )) =





P (Zk
j = z|C1

i )P (C1
i |Z

−(Zk
j ))+

P (Ci|Z
−(Zk

j ))×
∑

s 6=i,s∈I P (Zk
j = z|C1

s )P (C1
s |Z

−(Zk
j ))





∑

i∈I P (Zk
j = z|C1

i )P (C1
i |Z

−(Zk
j ))

(16)

Eqs. (15) and (16) provide a recursive formulation for
updating SPOG when a new radio transmission is sensed.

If we have unlimited resources and place a robot in
each cell, thenP (Ci|Z(Zk

j )) → 1 for cells that contains
radio sources andP (Ci|Z(Zk

j )) → 0 for other cells as
k → ∞. This can be formally proved by introducing
radio transmission arrival process model. However, this clear
binary distribution cannot be achieved due to limited robot
perspectives. Since we thresholdP (Ci|Z(Zk

j )) to determine
if cell i contains at least a radio source, the convergence rate
of the SPOG determines localization speed and accuracy.
If we take a close look at (15) and (16), it is clear that
the update of the SPOG largely depends the antenna model
P (Zk

j = z|C1
i ), which actually is a function of robot

configurations. Hence, the convergence of the SPOG and the
corresponding convergence speed really depend on the robot
motion planning.

B. Robot Motion Planner

The intuition is to accelerate the rate thatP (Ci|Z(Zk
j )) →

1 for cells that contains radio sources with high probabilities
through effective robot motions. Take a close look at (16),
the update process contains two parts:

P (Ci|Z(Zk
j )) = P (C1

i |Z(Zk
j )) + P (Ci, C

0
i |Z(Zk

j )),

where

P (Ci, C
0
i |Z(Zk

j )) =

P (Ci|Z
−(Zk

j ))
∑

s 6=i,s∈I P (Zk
j = z|C1

s )P (C1
s |Z

−(Zk
j ))

∑

i∈I P (Zk
j = z|C1

i )P (C1
i |Z

−(Zk
j ))

.

(17)

Since joint event(Ci, C
0
i ) offers no more information re-

gardingCi, we ignore this part. Therefore, to increase the

value of P (Ci|Z(Zk
j )), we want to increaseP (C1

i |Z(Zk
j ))

as much as possible. According to (15), this means

max
P (Zk

j = z|C1
i )P (C1

i |Z
−(Zk

j ))
∑

s∈I P (Zk
j = z|C1

s )P (C1
s |Z

−(Zk
j ))

. (18)

SinceP (C1
i |Z

−(Zk
j ))s are constants at the time, the quantity

above achieves its maximum whenP (Zk
j = z|C1

i ) achieves
its maximum by adjustingz value,

max
z

P (C1
i |Z

−(Zk
j )). (19)

We omit the process of deriving the optimal solution for (18)
and (19) for brevity. Eq. (19) achieves its maximum whenz
is at its maximum. This means that the robot has to place its
antenna’s most sensitive region over the cell that has a high
probability of containing radio sources.

Eqs. (5), (4), and (6) suggest that the most sensitive region
is located at zero bearing angle and at the nearest distance.
Combining this, it is clear that the principle of the motion
planning is to place the robot into the cells with the high
P (Ci|Z(Zk

j )) values and force the robot to face these cells
as much as possible. This principle inspires us to develop
a Ridge Walking Algorithm (RWA) for the robot motion
planning.
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Fig. 5. (a) An example ofP (Ci|Z(Zk
j )) distribution, (b) Radio source

locations, a sample level setL(0.3), and ridges over a50 × 50 grid
for the case. The radio source locations are shown in black dots. Level
set is bounded inside the blue solid lines. The red dashed lines are the
corresponding ridges for the level set components.

Fig. 5(a) illustrates an example of the distribution of
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P (Ci|Z(Zk
j )) over a50 × 50 grid. The actual radio source

positions are shown as black dots in Fig. 5(b).P (Ci|Z(Zk
j ))

value is much larger in the area adjacent to radio sources
than that of other areas. To study the spatial distribution of
P (Ci|Z(Zk

j )), we introduce level setL(p), p ∈ (0, 1] as
follows,

L(p) = {i|P (Ci|Z(Zk
j )) ≥ p, i ∈ I}. (20)

Let us envision that a plane parallel to the ground plane inter-
sects the mountain-likeP (Ci|Z(Zk

j )) distribution at heightp
in Fig. 5(a). The intersection generatesL(p) which contains
all cells with P (Ci|Z(Zk

j )) above the plane. Fig. 5(b)
illustrates the level setL(0.3) for the example in Fig. 5(a).

Fig. 5(b) also shows thatL(p) usually consists of several
disconnected components. Definelmax as the total number of
the disconnected components andLl as thel-th component,
l = 1, ..., lmax. Therefore,L(p) = L1 ∪L2 ∪ ...∪Llmax

, and
Ll ∩ Lm = ∅, wherem 6= l and m = 1, 2, .., lmax. For the
l-th component, we define its ridgeRl as the line segment
defined by points(x′, y′) and (x′′, y′′) on Ll,

Rl = {(x, y)|x = (1 − α)x′ + αx′′,

y = (1 − α)y′ + αy′′, α ∈ [0, 1]}, (21)

where points(x′, y′) and (x′′, y′′) are the two points onLl

such that the distance between(x′, y′) and (x′′, y′′) is the
maximum.

If the robot walks on the ridge, the probability that the
robot is close to a potential radio source is very high. Due to
the walking direction, the antenna is always pointed along the
ridge, which ensures the most sensitive reception region of
the antenna to overlap with thel-th component. In the RWA
algorithm, there are two types of robot motion: on-ridge
movements and off-ridge movements. Since the on-ridge
movement is the effective movement for the localization
purpose, it is desirable for the robot to allocate its time
to on-ridge movements as much as possible. The off-ridge
movement refers to the travel in-between ridges for the robot.
Since we have a fixed time period, we set the robot to
travel at its fastest speed along the shortest path for off-ridge
movements to save time for on-ridge movements.

Since each ridge is usually short, we can approximate
each ridge as a vertex. We define edges as the line segments
connecting different vertices on the 2D plane. With a vertex
set V , an edge setE and a graphG(V,E), to find the
shortest path for the off-ridge movement is an instance of
the traveling salesman problem (TSP) problem. Although
the decision version of the planar TSP problem is NP-
complete, we can use the 3-opt heuristics to solve it [28].
If a better approximation result is needed, we can use other
approximation algorithms [29]. Those algorithms give us a
close to the shortest off-ridge movement trajectory. Define
vmax as the maximum velocity that the robot can travel. The
time available for on-ridge movementstON is,

tON = τ0 − dOFF/vmax, (22)

wheredOFF is the total length of off-ridge edges. We allocate
tON to each ridge proportional to the probability that the corre-

sponding component contains a radio source. For component
l, we define the time the robot spend on the ridgeRl asτl.
Therefore,

τl =

∑

i∈Ll
P (Ci|Z(Zk

j ))
∑

i∈L(p) P (Ci|Z(Zk
j ))

tON. (23)

With τl and the length of each ridge, it is trivial to find the
robot velocity for the ridge.

VI. A LGORITHMS

To summarize our analysis, we present two algorithms
including an SPOG update algorithm and the RWA. Corre-
sponding to the sensing problem in Section IV-C, the SPOG
update algorithm runs when a radio signal is detected. Define
set C

∗ as the set of cells that contain radio sources with
initial value C

∗ = ∅. Definept as the probability threshold
for finding the radio source. The robot reports the cells
that satisfyP (Ci|Z(Zk

j )) > pt as the cells that contain at
least one radio source. Recall thatn is the total number

Algorithm 1 : SPOG Update Algorithm

input : the received RF signal strengthZk
j = z

output: P (Ci|Z(Zk
j )), P (C1

i |Z(Zk
j )), i ∈ I, andC

∗

for i ∈ I do O(n)
Compute distancedk

ij using (2); O(1)
Compute bearingφk

ij using (3); O(1)
Compute radiation patterns(φk

ij) using (6); O(1)
Computez0 using (5); O(1)
Computeg(z) using (7); O(1)
ComputeG(z) using (8); O(1)
ComputeP (Zk

j = z|C1
i ) using (9); O(1)

for i ∈ I do O(n)
ComputeP (C1

i |Z(Zk
j )) using (15); O(n)

ComputeP (Ci|Z(Zk
j )) using (16); O(n)

if P (Ci|Z(Zk
j )) > pt and i /∈ C

∗ then
C

∗ = C
∗ ∪ {i}; O(1)

of cells. It is clear that the SPOG update algorithm runs
O(n2). The initial value settings areP (Ci|Z(Z0

0 )) = 0 and
P (C1

i |Z(Z0
0 )) = 1/n.

The RWA algorithm runs everyτ0 time. As illustrated in
Algorithm 2, the robot performs random walking until set
L(p) 6= ∅ at the initialization stage. Then the robot switches
into the normal ridge walking mode. The robot stops when no
additional radio source has been found inkmax consecutive
periods wherekmax is a preset iteration number. Algorithm 2
uses exhaustive search to find the exact TSP tour. The overall
complexity isO(n+(lmax−1)!). Although the 3-opt heuristic
can accelerate the computation of the TSP, it cannot change
the worst case complexity.

VII. E XPERIMENTS

We have implemented the algorithms and the simula-
tion platform using Microsoft Visual C++ .NET 2005 with
OpenGL on a PC Desktop with an Intel 2.13GHz Core 2 Duo
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Algorithm 2 : Ridge Walking Algorithm

input : P (Ci|Z(Zk
j )), P (C1

i |Z(Zk
j )), i ∈ I

output: Robot motion{r(t)|tk ≤ t < tk+1} andC
∗

ComputeL(p); O(n)
if L(p) = ∅ then

{r(t)|tk ≤ t < tk+1} = random walk; O(1)

else
Find all disconnected components inL(p); O(n)
ComputeRl for eachLl; O(n)
Construct graphG and solve TSP; O((lmax − 1)!)
ComputedOFF; O(lmax)
ComputetON using (22); O(1)
Computeτl for each ridge using (23); O(1)
Output robot motion{r(t)|tk ≤ t < tk+1}; O(1)

CPU and 2GB RAM. The machine runs Microsoft Windows
XP. The algorithms are tested in the simulation. The antenna
on the robot is HyperGainT Model HG2415G which is a
2.4 GHz 15 dBi Reflector Grid Antenna. The radio sources
are Zigbee nodes which are XBeeT with ZigBeeT/802.15.4
OEM radio frequency Modules by MaxStream, Inc. The an-
tenna is calibrated first with the radio sources. The calibration
is conducted at 328 configurations and 6560 readings have
been collected. The calibrated antenna model is represented
as the coefficients in (5) andσ in (7). We use the data from
the real hardware to drive the simulation experiments below.

The grid is a square with50 × 50 cells. Each grid cell
has a size of5.08 × 5.08 cm2. Each radio source generates
radio transmission signals according to an independently
and identically distributed Poisson process with a rate of
λ = 0.012 packets per second. The thresholdpt = 0.8
and the level set parameterp = 6

n

∑

i P (Ci|Z(Zk
j )), where

the constant 6 is determined by many experimental trials.
During each trial of the simulation, we randomly generate
radio source locations in the50 × 50 grid.

The first experiment we conducted is to study how fast
an RWA can localize all radio sources under differentτ0

settings. This determines how often we should run the RWA
algorithm. Fig. 6 summarizes the test results. We change the
radio source number from 2 to 10 during the simulation. Each
point in Fig. 6 is an average of 10 trials. It is interesting that
the RWA is at its best performance whenτ0 = 800 seconds
regardless of the radio source number. This means that the
robot need to listen to each radio for an expected value of
800λ = 9.6 times before repeating the algorithm.

Fig. 7 illustrates howP (Ci|Z(Zk
j )) converges at the radio

source for a trial with six radio sources. The location of
the six radio sources is shown in Fig. 5(b). It is clear that
P (Ci|Z(Zk

j )) grows monotonically toward 1. This is what
we expect to see:P (Ci|Z(Zk

j )) → 1 for cells contains radio
sources.

We also compare our algorithms to two intuitive heuris-
tics, namely, a random walk and a fixed-route patrol. The
random walk is chosen because it is considered as the most
conservative approach. Over a long run, a random walk can
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Fig. 6. RWA performance vs.τ0.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (sec.)

P
(C

i
|Z

(Z
k j
))

Fig. 7. Convergence ofP (Ci|Z(Zk
j )) at radio source locations for a

six-radio source case.

cover the entire field. Hence it does not have a blind spot.
The fixed-route patrol traverses the field using a pre-defined
route. It is considered as energy efficient but might not treat
each cell equally due to the route selection. We increase the
radio source number from 2 to 10 to observe the performance
of each method. For each trial, we test all three methods.
We repeat for 10 trials for each radio source number and
compute the average time required for localizing all radio
sources. Fig. 8 illustrates comparison results. It is clearthat
the RWA significantly outperforms the two heuristics. It is
also surprising that the fixed route patrol is no much better
than the random walk. However, the result can be explained
that the robot motion for the two heuristics does not consider
sensor location distribution and hence cannot achieve good
performance.

VIII. C ONCLUSIONS ANDFUTURE WORK

We report our system and algorithm developments that
enable a mobile robot equipped with a directional antenna
to localize unknown transient radio sources. Employing a
Monte Carlo approach, we modeled the radio transmission
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Fig. 8. Localization performance comparison among the RWA, therandom
walk, and the fixed-route patrol.

activities using an SPOG and proposed an SPOG update
algorithm and an RWA algorithm for robot motion planning.
For an-cell grid, the SPOG update algorithm runs inO(n2)
time and the RWA runs inO(n+(lmax−1)!) time. We tested
the algorithm using simulation with the data from the real
hardware. In the experiment, we compared our algorithms
with a random walk and a fixed-route patrol heuristics. Our
algorithms showed a consistently superior performance over
the two heuristics. We are currently testing our algorithm
using physical experiments. Results will be reported in
subsequent revisions. We are also interested in designing
a multiple-robot localization scheme and will consider an
approach to localize moving radio sources.
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