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Abstract

To assist nature observation, we take on the challenge of detecting ttiesspé a flying bird using a single
camera. We study the bird flying data and find that a bird body axis is amianvalimension during flight. We
then develop a model-based detection approach that verifies the bisdinfmxmation with the known bird flying
dynamics. As a commonly used method, an extended Kalman filter (Eifat be directly applied because the EKF
would not converge due to the high measurement error introduced dyeisegmentation and the limited observation
data due to the high flying speed of the bird. To cope with the problem, welafea novel Probable Observation
Data Set (PODS)-based EKF method. First, we prove that the EKF ig@s/@hen there is no measurement error,
and the new PODS-EKF searches the measurement error rangk foolzable observation data that ensures the
convergence of the corresponding EKF. The detection is based othevhthe set PODS is non-empty and the
corresponding velocity is within the known bird flying velocity profile. Theagithm has been extensively tested
using both simulated inputs and physical experiments. The results arfyisgtiand have shown the bird detector
has less than 7% false negative rate Atk area under the receiver operating characteristic (ROC) curve.

Index Terms

monocular vision, autonomous observatory, nature observationdbtettion

|. INTRODUCTION

Observing nature in harsh and inhospitable environmemta fong period of time has been a major challenge for
natural scientists. Our group focuses on developing amoos robotic observatories to address this problem. As a
recent development, a camera was installed in the middlefafest to assist ornithologists to search and document
bird activities as illustrated in Fig. 1. Due to power and commication constraints, it is often prohibitive to install
multiple cameras at the same location. The challengingl@nolis how to automatically detect and identify the
bird species using the monocular vision system under th&yrimckground and varying lighting conditions of the

nature environment.
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Fig. 1. An example of a video sequence of a flying bird that iswapl in Bayou DeView in eastern Arkansas. This sequencerngrgted

by superimposing the segmented bird images from consecutie® frames on the top of the background frame.

As illustrated in Fig. 1, the input of the problem is a segradninotion sequence of an object from consecutive
video frames. The output of the problem is to determine wdrethe motion sequence is caused by a targeted
bird species. To address the problem, we study the bird flgistg and find that a bird body axis is an invariant
dimension during flying. We also notice that the bird bodysaisi often parallel to that of the tangent line of the
bird flying trajectory. Based on the observations, we dgveldird body axis filter that extracts the length and the
orientation of the bird body axis.

We then develop a model-based detection approach thategetliie body axis information with the known
bird flying dynamics. As a commonly used method, an extendalinin filter (EKF) cannot be directly applied
because the EKF would not converge due to the high measutemen introduced by image segmentation and the
limited observation data due to the high flying speed of thd.ihe sample bird sequence in Fig. 1 only contains
seven data points. To cope with this problem, we develop balrle observation data set (PODS)-based EKF and
an approximate computation scheme. Based on the fact thaEkt converges when there is no measurement
error, the new PODS-EKF searches the measurement erroe fangll probable observation data that ensures
the convergence of the corresponding EKF. The detectioraged on whether the PODS is non-empty and the
corresponding velocity is within the known bird flying veitycprofile. We show that the PODS-EKF theoretically
ensures a zero false negative rate. We have evaluated auetio bird filtering algorithm using the simulated data
set and field test data. In physical experiments, we repost txar algorithm has been applied for the detection
of rock pigeons on Texas A&M campus and for the search of tbeyibilled woodpeckers in eastern Arkansas.
The physical experiment results shown a promising resud0df% area under the receiver operating characteristic
(ROC) curve.

The rest of the paper is organized as follows. Section llewgsithe related works. The definition of the bird

filtering problem and necessary assumptions are presemt8ddtion Ill. In Section IV and V, we model the bird
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filtering problem and propose the PODS-EKF method. The sitiml on random input data and the experiments

on real data are presented in Section VII before we concladgection VIII.

II. RELATED WORK

Using vision to detect a flying bird relates to fields of remogdure cameras, vision-based motion detection, and
Kalman filter-based visual tracking and recognition.

Remote electronic nature camera systems have existed 58%¥s. Gysel and Davis [1] build an early video
camera based on remote wildlife observation system to stodignts. Cameras have been deployed by biologists to
observe feeding behavior, species presence, and poputsiameters [2]-[7]. Commercial remote camera systems
such as Trialmaster [2] and DeerCam have been developed &®®6 and have been widely used in wildlife
observation and hunting sports. The Internet enables welsyatems that allow the general public to access live
robotic cameras. Thousands of webcams have been instaedcathe world, for example, to observe elephants
[8], tigers [9], bugs [10], birds/squirrels [11], [12], arsdvans [13]. Many other examples can be found in [14].
However, existing remote cameras do not have the abilityutoremously recognize animal species and are just
a mere recording/observation device. Our objective is weld@ intelligent remote robotic observatories that are
capable of automatically classifying and documentingvéts with respect to the targeted animal species.

Recent development in vision-based motion detection heetigradvanced the robustness of the motion detection
in noisy environments. Motion detection segments movingaib from their background in a video sequence. To
address the background noise, researchers propose madisyicstdbased background models such as temporal
average [15], median absolute deviation (MAD) [16], adapiGaussian estimation [17], mixed Gaussian model,
parameter estimation [18], non-parameter estimation, [A8f Kalman filter compensation [20]. Our work builds
on the nonparametric background subtraction algorithnpgsed in ?] to segment the moving foreground objects.
Moreover, our algorithm advances the mere motion-detectio bird species detection by utilizing the motion
information across multiple frames and the known bird flydygnamics.

The fundamental technique we used in the bird detectioneéseittended Kalman filer. Kalman filter, extended
Kalman filter, and their variations can be viewed as modskbadetection methods and are powerful in object
recognition involving the motion of the camera or the objgaserved [21]. The Kalman filter-based methods verify
the detected motion information from video frames with th@mpknown dynamic models. Since the methods
utilize the information across consecutive video framésgjrtrobustness to errors make them ideal methods for
poor illumination conditions and outdoor environments][{22ence, the Kalman-filter has seen a wide range of
applications in object recognition and tracking [23] sushvahicles [24], pedestrians [25], human faces [26], and
even human eyes [27]. However, there is no existing workroigg how to detect a flying bird. Most existing work
assumes rigid objects such as vehicles or land markers [ftphjects with regular and known shapes. Also, the
existing work does not need to worry about the convergendéatrihan filter or its variations because an ample
amount of observation data is available. Unfortunatelgséhconditions do not hold for the detection of a flying

bird. Since a flying bird is a non-rigid, deformable, irregiland highly dynamic object, our approach has to take
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on those challenges to develop a new class of filtering dlguos.

Our group has developed systems and algorithms [28], [28]n&iworked robotic cameras for a variety of
applications such as construction monitoring [30], distatearning [31], panorama construction [32], and nature
observation [33]. Our previous work [34] details how to dudn autonomous nature observation system using
motion detection. We learn that mere motion detection caeaee the biologists from the herculean task of image

sorting, which inspires this work.

Ill. PROBLEM DESCRIPTION
A. Problem Context

Our system is a monocular vision system. To observe birdgl&tance, the camera is equipped with a telephoto
lens, which has a narrow field of view (FOV). For example, tlenera used in our experiments has oy
horizontal and15° vertical FOVs, respectively. The position of objects widspect to the camera is based on a
camera coordinate system. The camera coordinate syste®) (8@ right hand, 3D Cartesian coordinate system
with its origin at the camera center, itsaxis along the optical axis, and itsy plane parallel to the imaging
plane. Ther-axis andy-axis of the CCS are parallel to theaxis and thev-axis of the image coordinate system,
respectively.

From the knowledge provided by ornithologists, we know thdlying bird is usually an adult bird. A bird does
not change its size once reaching its adulthood. Birds oftiree species share a similar size and flying velocity

range. This biological information allows us to distinduihe targeted specie from other moving objects.

B. Assumptions
To establish the bird detection problem, we also have tHevigig assumptions,

« A fixed and pre-calibrated camera is used. Hence we know theraie perspective projection matrix.

« In the captured image, the foreground motion zone has bagnesded using the method in [34] prior to the
bird filtering process. Although the motion could be causgaty objects, it must have a size 2if x 25 pixels
or larger in area. The assumption is proposed by ornithstediecause they believe this is the requirement for
a human to read an image to positively identify a bird. We nameotion zone satisfying this size requirement
as a salient motion zone.

o There is only one salient motion zone in each frame becausenlyedetect the specie of a singulated bird at
this stage.

o The motion segmentation process has a segmentation erromuels as half a pixel when computing the
boundary of the moving object.

o We assume that the bird is flying along a straight line with astant velocity when captured by the camera.
Considering that the camera only has a narrow FOV and thedditlee bird on the image has to be large

enough to satisfy the salient motion constraint, the leraftthe motion sequence is usually short given the
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Fig. 2.  Segmented bird flying poses. The white pixels in theulyirmap indicate the segmented salient motion zone. Bird bodg are

overlaid on top of the segment image.

fast flying speed of the bird. In fact, the duration for a bodly across the camera FOV is around 1-2 seconds

for most cases. Since the duration is short, the assumpsoally holds.

C. Inputs and Output

The input of the problem is a sequencerofimages, I, Fs, ..., F},, which contain a moving object of any
type. The frames are obtained by a motion detection procasshe salient motion zone on each frame has been
segmented as detailed in [34]. Each frame is time-stampaskedBon the information provided by ornithologists, we
also know the body length, and the absolute flying velocity rand&= [v,in, Vmaz] Of the targeted bird species.
The output of the problem is to determine whether the moteguence is caused by the targeted bird species or

not.

IV. MODELING A FLYING BIRD

To develop a bird filter, the key is to extract the bird flyindomnmation from the segmented bird motion sequence
and associate the information with the known flying models #ne prior information regarding the targeted specie.

Let us first observe the motion sequence of the flying bird vestigate how to extract the bird flying information.

A. Bird Body Axis Filter

As detailed in [34], we segment the moving object from itskgaound and obtain a set of motion sequence.
Fig. 2 illustrates different flying poses of a pigeon. At figdance, it is unclear how to utilize this information
because bird poses are not a simple discrete set of stateswifily configurations of the bird vary dramatically

from frame to frame. The shape of the bird changes significast well.
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As we scrutinize the collected flying pose data, we find thair@ toes not bend or extend its body during the
flight as illustrated in Fig. 2. Hence, we have,

Conjecture 1 (Invariant Body Length)A flying bird maintains a fixed body length during flight.

The conjecture has been confirmed by ornithologists and ata. d'his is an important finding because it provides
an entry point to attack the bird detection problem. The tholdgists also utilize the bird body length as an
important index to classify birds because adult birds from same species share the same body length with little
variance. Hence the problem becomes how to extract the badydentation and length of a flying bird from the
segmented motion sequence.

It is nontrivial to extract the bird body axis and length frdhre isolated poses in Fig. 2 because a bird is a
non-rigid and deformable object. However, if we superingothe segmented bird flying pose data to the background
image as illustrated in Fig. 1, a new finding appears:

Conjecture 2 (Body Axis Orientation)fhe orientation of the body axis of a flying bird is always €ds the
tangent line of its flying trajectory.

To validate our conjecture, we analyze 61 bird motion segeenvith a total of 341 segmented birds that we have
collected in past years. The result confirms the conjeciiiie.mean orientation difference (s3° and the standard
deviation iso;, = 8.3°. This means that the body axis orientation of a flying birdssally very close to the tangent
line of the flying trajectory, which inspires us to developiedtbody axis filter (BBAF) to extract bird body axes
from the segmented motion zone.

Let us define the bird body line segment in the image frame as
zZ = [uh,vh,ut,vt]T, (1)
where(u", v") is the head position an@d:?, v*) is the tail position. Fronz, we can compute the body axis orientation
6 = atanZu” — ut,v" — v?),

and the body axis length

l= \/(uh —ut)2 + (vh — vt)2.
Note that! is different froml,. [ is the projection of;, on the image plane and is in units of pixels.

We know that the slope of the tangent line of the trajectony loa extracted easily based on the position of the
salient motion zone on the background image. The red lineign Fis the approximate trajectory generated by
linking the geometric center of each motion zone. The tahfee of the approximate trajectory can serve as an
initial solution for the bird body axis orientation. Howeysince variance, # 0, some refinements are required.

Define B as the boundary pixel set of the motion zone (i.e the boungassl set of the white pixels in each
block in Fig. 2). Defined as the orientation of the corresponding tangent line of tiedltrajectory. We set the

search range for the orientation #-{ o4, 6 + 03]. Hence the solution to following optimization
z=arg max l (2)
0€(0—0op,0+0p];(ul,v)EB;(ut,vt)EB

gives us the bird body axis orientation and length.
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Fig. 3. An illustration of bird detection. When a bird flies @ss the camera FOV, the corresponding motion sequence caretbe¢cusxtract
a set of moving line segments that correspond to the body axibeobird. The line segments are then verified using an EKF besetthe
known profile from the targeted specie. The segmentatiorr efrthe end of body axis are uniformed distributed in the image plane and

can be represented as an inverse pyramid when the error ratgek-projected from the camera center to the 3D space.

B. Bird Flying Dynamics
To determine whether the motion information is caused bytdingeted specie, we need to establish a bird flying

model in the image frame. Lat = [z, y, 2|7 denote the head position of the bird body axis ane- [, 7, 2|7

denote its velocity in the CCS. Since the bird flies along aigltt line with a constant velocity, we have

. v
s=| P | = [5.9,£0007 = , @3)
v 0
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where the state variable = P € R describes the position and velocity of the bird head. Dedinip,; =

v
[zt 4!, 2*]T as the position of the bird tail, and we have

x— il /v
Xtait = | y—gl/|Iv]l |- (4)
z =2y /|v]|

As illustrated in Fig. 3, the relationship between the meament dataz defined in (1) and the corresponding

statex can be described using the pin-hole camera model,

. fy/z _ {yﬂ/j | +w=hx)+w, ®)
fat /2 e
fyt/t IENER

where f is the focal length of the camera divided by the side lengtl sfjuare pixel on the CCD sensor awd

represents the measurement noise.

V. PROBABLE OBSERVATION DATA SET-BASED EKF METHOD
A. Extended Kalman Filter

Eq. (2) provides the bird flying information extracted fromages. The nonlinear dynamic system described
by (5) captures the prior known information regarding theggééed specie. If the motion is caused by the targeted
specie, then the bird body axis information provided by (®)udd follow the nonlinear dynamic system described
by (5), which can be validated using an EKF to track the stafabe moving object.

Egs. (3) and (5) can be re-written in a discrete-time form,
x(k+1)= Ak + Dx(k) + q(k), (6a)
a(k) = h(x(k)) +w(k), (6b)

whereq(k) € R® andw(k) € R* represent the white Gaussian transition and measuremégsnat timek with

covariance matrixQ (k) € R*6 and W (k) € R**4, respectively,
q(k) ~ N(0,Q(k)),
w(k) ~ N(0, W(k)),
and A(k + 1) is the state transition matrix at tinie+ 1,
Isxs AT(k+ 1|k)Isxs3

Alk+1) = 7
0353 I3x3

where AT (k + 1|k) is the time interval between time and timek + 1.
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We defineP € R5%6 as the covariance matrix for the state variakleThe EKF for the system in (6) can be
implemented as a state prediction stefk|k — 1), P(k|k — 1) and measurement correction stefk|k), P(k|k)

recursively as follows,

%(k|k — 1) = A(k)&(k — 1]k — 1), (7a)

P(k|k —1) = A(k)P(k — 1|k — 1) AT (k) + Q(k), (7b)

(k) — P(klk — 1)H (k) 70
H(k)P(klk — )HT (k) + W (k)

X(k|k) = %(k|k — 1) + K (k)(z(k) — h(%(k[k — 1)), (7d)

P(k|k) = (Toxo — K (k) H (k) P(k[k — 1), (7e)

where K (k) € R4 is the “Kalman gain” at time: and H (k) € R**S is the Jacobian matrix of the functidr(-)

in (5) with respect tax.

p(k[k)

Recall thatx(k|k) = . For then-image motion sequence, the predictegh|n) contains the bird
V(k[k)
velocity ¥(n|n). The decision of accepting or rejecting the moving objecaasember of the targeted specie is

defined as the following indicator function,
I(len) —

1 (accept) if ||[¥(n|n)|| € V and EKF converges
(8)

0 (reject) otherwise
whereZ'™ = {z(1),z(2), ...,z(n)} is the set of body axes acrossrames.Z'" is also referred to as the observed
data. Eqg. (8) basically states that the moving object is a lbeeraf the targeted specie if the EKF converges to the

desired absolute velocity rangé

B. EKF Convergence

As indicated in (8), automatically determining whether B~ converges or not is necessary. Define the estimated
state set aX!'”™ = {%(1]1),%(2/2),...,%(n|n)}. Since velocity convergence implies position convergenee

determine the convergency of the EKF by inspecting the Wglaomponent ofX !,
e(X") =" w(k)|[¥(klk) — ¥(k — 1k - 1)]], (9)
k=2

where w(k) > 0 is the weighting factor at time:. w(k) is a monotonically-increasing function d@f, which
gives more weight to later states(k) is usually pre-generated using simulated random inputssacthe entire
possible parameter range without measurement errorii(@:) = 044). SettingWW (k) = 044 iS to ensure EKF
convergency, which will be explained later in the paper. \&geat the EKF with randomized inputs for ov’
times to observe the quantity df(k|k) — ¥(k — 1|k — 1)||. Then the weighting factor is,

1
k) = SRR = Tk D)°

(10)
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where functions, (-) computes the stand deviation of the variable over the tatallated trials. When the EKF
convergesg, (||[v(k|k) — v(k — 1|k — 1)||) appears as a decreasing functionkofHencew(k) is an increasing
function of k.

Thereforew(k) is a function ofk but not a function of the current absolute velocity diffevetjv(k|k) — v (k —
1|k —1)| in (9). If [|[¥(k|k) —¥(k — 1|k —1)|| — 0, thene(X'™) is smaller than that of the cag& (k|k) — ¥ (k —
1|k — 1)|| -» 0. To determine the EKF convergence, we employ a threshabth £(X!") and introduce a new

indicate variable,

1 (converge) if £(X'") <,
IEKF(Xl:n) = (11)
0 otherwise

Then the decision-making in (8) is re-written as,
I(len) —

1 (accept) if [[¥(n|n)|| € V and I (X'™) =1,
12)
0 (reject) otherwise

The underlying condition for (12) to be an effective birdet#ton mechanism is that if observatidd™” is caused
by the targeted bird species then the convergence of the El§Rd1be guaranteed. Unfortunately, the condition
usually does not hold due to two reasonsis small and the measurement noigék) is too big.n is the number
of images that contain the moving object. Due to the fact thatbird flies very fast, the bird can only stay in the
camera FQOV for less than 1 second for most of the time. Actualk 11 for most cases in our experiments. The
measurement noise covariance mafiX k) is directly determined by the image segmentation error.nEat.5
pixel level, its relative range i8% for a bird body length of 10 pixels. For the nonlinear deteristic discrete time
system in (6), the larg&/ (k) means the EKF either fails to converge or converges verylglaacording to [35].
The bird detection mechanism would have a close to 100% fadgative rate if the simple EKF implementation

is used, which makes it useless.

C. Probable Observation Data Set-based EKF Method

Since simply applying EKF cannot address the bird detegiroblem, a new approach is required. Let us assume
there is no measurement noise (i&(k) = 04x4) @and no state transition noisg(k) = 0gxs. At each timek,
the EKF in (7) is a system of equations with four inputs, whiglthe dimensionality o&, and six outputs, which
is the dimensionality ok. We also know that matrixd introduces two constraints: the constant velocity and the
linear trajectory. Therefore, the equation system can bedawithin one step. The convergence of the EKF is not
a problem when there is no noise provided that the bird doedlyw@ a degenerated trajectory (i.e. flying along
the optical axis of the camera).

Although Q(k) # Ogxe for most cases, the state transition noigé) is often very small, which leads to the
following lemma,

Lemma 1:The EKF described in (7) converges wWhBA(k) = 04x4.
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Proof: We skip the proof because our system in (6) is a linear timariant discrete time system with a
nonlinear observer. The convergence of its EKF can be proyedirectly applying the results in [35]. [ ]
This is also confirmed in our experiments in which the EKF @vges nicely under 7 periods (i.e.< 7).

At first glance, this result is useless because we cannotidebfrthe measurement noise. However, this
result opens the door to a new approach. Define the obsewvdtita without measurement error A$™* =
[z*(1),2%(2),...,2z"(n)]T. Although we do not hav&!'"*, we know it is within the segmentation error range of

Z'". For thek-th image, the measurement data is

Define the error-free measurement data at threes
2" (k) = [u"™ (k), o™ (k) u®™ (), o™ (k)]
Recall that the segmentation error is within 0.5 pixels. Defi
S1(k) = [u(k) £0.5], Sy(k) = [v™ (k) £ 0.5],
Ss(k) = [u'(k) £ 0.5], Sy(k) = [v'(k) £0.5],
and the segmentation error range at tilmasS(k). Hence,
z* (k) € S1(k) x Sa(k) x Ss(k) x Si(k) = S(k). (13)

We partition the entire segmentation error range{§4k),k = 1,2, ...,n} according to the convergence of the
EKF using (11). Define the probable observation data set@®dD" as the set of observation da# " that

satisfies the condition for the EKF convergence,
Z8" = {ZV"|2(k) € S(k), k = 1,...,n, ande(X"™) < ). (14)
HenceZ!""* ¢ Z'". EachZ'™ in the PODS is likely to b&'"* and hence it is named as the probable observation

data. For a given PODSB':", there is a corresponding estimated stateX8ét, which contains a set of all possible

estimated velocities at time, which is defined a¥,
V = {||¥(n|n)| such thatx*" ¢ X*"}.
Then the decision making for our PODS-based EKF (PODS-EK&thod can be written as,

1 (accept) if VNV #0 andzZ™™ # (),
I(zl:'n,) _ (15)
0 (reject) otherwise

Hence we have the following lemma,
Lemma 2:1f the non-degenerated observation d&&" is triggered by a bird of the targeted specie, then
I(ZY™) = 1.
Proof: SinceZ'™ is triggered by the targeted specie, its corresponditig* ensures the convergence of the

EKF according to Lemma 1.
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Define X!'"* as the corresponding estimated statesZbi*. Hence
E(le*) < 5 — Zl:n 7& (Z),

becauseZ!"* € Z'".

Following our naming conventior;* (n|n) is the velocity component ok *(n|n) € X1*. Since the observation
data is not degenerateffiy*(n|n)| € V. We also know|¥v*(n|n)|| € V by definition,V NV # ) holds. Since both
conditions are satisfied,(Z!") = 1. [ ]
Lemma 2 ensures that the PODS-EKF method theoretically heery@ false negative rate in the bird detection,

which is a very desirable property.

D. Approximate Computation for PODS-EKF

Computing the PODZ.'" is nontrivial. It is possible to use conventional searchingthods such as a binary
search. However, this would be very time consuming. Noté weaactually do not nee'” because all we need
to know is whether the conditiorié NV # () andZ'™ # § hold or not. This allows an approximation method. For

a given observatioZ”, we define the following optimization problem,

Zl:n _ . Xl y
argz(k)es(%}gzl,...,ng( >7 ( )

where Z" is the optimal solution to the minimization problem abovectually, (16) is a typical nonlinear
optimization problem with the error rang€k) € S(k);k = 1,...,n and the EKF in (7) as constraints. There are
many numerical methods from nonlinear programming thatlmmnised here [36].We apply a sequential quadratic
programming (SQP) method [37]. Defige!" = {x(1]),%(2]2), ...,x(n|n)} as the estimated states corresponding
to Z'. We have the following lemma,

Lemma 3:¢(X1") > § «— Zl" = ).

Proof: Since (16) is a minimization problerﬂzlin yields the minimak(X!"), namely,

g(X1™) > § = g(X'") > §,¥XE" e X (17)
— Z'" =. (18)
| ]

It is worth mentioning that this method is an approximationcomputation because the nonlinear programming
solver often falls in a local minimum instead of a global migim.

Now we want to determine wheth& NV # (). If we view the EKF output(n|n) as a function ofZ*", it is
continuous and differentiable with respect to each entrgiit. SinceZ!'" is actually very small, the variance of
the velocity in the set is very small. Instead of comparing to V, we select a value iV to check if it is in
V. Definev(n|n) as the velocity component 6f(n|n) € X The chosen value is thév(n|n)| because it is

readily available. Therefore, the approximation is

[V(nln)| € V <= VNV #0.
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Due to the approximation, the zero false negative rate dabequaranteed. However, the false negative rate is

still very low under the approximation as shown in the experital results.

VI. ALGORITHM

We summarize our PODS-EKF based bird detection algorithimmban Algorithm 1. Note that the approximate
computation of the PODS-EKF is used here.

Algorithm 1: PODS-EKF based Bird Detection Algorithm
input : F; with segmented salient motion blockis= 1,2, ..., n.

output: TRUE or FALSE for the targeted specie.
for eachF, do

L calculate the geometric center poifit of the bird;

ConnectC;, ¢ = 1,2,...,n to generate a piecewise linear trajectory;
Obtaind from the trajectory;
for eachF; do

L Obtainz(i) using the BBAF in (2);

solve the constrained nonlinear optimization problem i@);(1
if |¥(n|n)|| € V AND (X1™) < § then

‘ return TRUE;
else

L return FALSE;

VIl. EXPERIMENTS

We have implemented the PODS-EKF algorithm and tested tfwitim on both the simulated data and the real
data from field experiments. The computer used in the testliesktop PC with Intel Core 2 Duo 2.13GHz CPU and
2GB RAM. The PC runs Microsoft Windows XP. The BBAF has beeplamented using Microsoft Visual C++.
The PODS-EKF filter has been implemented using Matlab v7.6.cWWbse Arecont Vision 3100 high resolution
networked video cameras as the imaging devices. The camesaat 11 frames per second with a resolution of 3
Mega-pixel per frame. The lens for the camera is a Tamron gistvari-focus lens with a focal length range of
10-40 mm. We have adjusted the lens to ensureah2@izontal FOV.

A. Bird Body Axis Filter Test

The first thing we want to verify is whether the BBAF is capableextracting the bird body axis from the noisy

data. We compare the output of BBAF with a ground truth cas@&biird motion sequences with a total of 341
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TABLE |

TWO SPECIES USED IN THE EXPERIMENTS

Species lp (cm) | V (km/h)
Rock pigeon 34 [25,55]
IBWO 48 [30, 60]

segmented birds. The ground truth case is a human’s choibedrbody axes. The difference between the BBAF
output and the ground truth has a mean of (a8d a standard deviation of 3.7The statistics test shows that the

two populations come from the same distribution with statisignificance, which is satisfying.

B. Simulation

The second test we have conducted is to test the performdnoer PODS-EKF using the simulated inputs.
The simulated inputs allow us to test the bird detectiongrerdnce under a full range of possible changes in the
parameter settings, which is usually unavailable in a maysxperiment setting.

1) Generating a random inputLet us introduce how we generate a random infgtt*. First, four random
numbers are generated as the coordinates of two randomspoirthe image plane. These two image points
determine a straight line in the image. The straight line #nmedcamera center determine a motion plane in which
the motion sequence will be generated. We know that the @@V is a pyramid with its top vertex at the
camera center. The plane intersects with two faces of thenpigk The fifth random binary number is generated
to choose one of the two faces as the initial face through lwthie bird enters the camera FOV. The chosen face
intersects with the motion plane and yields a line segmestg@herate the sixth random number as a point on this
line segment. This point is used as the initial position & Hird. This line segment’'s corresponding line divides
the motion plane into two halves. We are interested in thé imaltion plane that intersects with the pyramid.
The seventh random number in the rangd®fr) is generated as the pitch angle of the bird heading on the half
motion plane. Finally, the eighth random number is used toege the velocity of the bird. Hence, 8 random
numbers determine a complete trajectory of a flying bird. Byjgrting the trajectory back to the image plane with
predefined time stamps and the preset bird body length, waérohtrandom inpuZ ¥

2) EKF Convergence without measurement errém immediate step in simulation is to verify if the EKF
converges without measurement noise. Although Lemma 1lresidhe convergence in theory, it is unclear how
many steps it would take. We simulate two types of birds intés¢ rock pigeons and the ivory-billed woodpeckers
(IBWO). The former is a common bird that is easy to be found @xak and the later is a rare bird which our
system is used to search for. As indicated in Table |, a rogleg is a relatively small bird and an IBWO is a
large bird. The two species represent a pretty good coveshddferent bird species.

For each species, we generdtf different sets of random inputs to test the EKF. We record vhleies of
[V (k|k) —V(k -1k —1)||, k = 2,3,...,n for the first 11 steps. We choose= 11 because that is the typical

number in our physical experiments. The average valuggrok|k) — v(k — 1|k — 1)|| over the10° trials are as
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Fig. 5. oy (|[¥(k|k) — ¥(k — 1|k — 1)])) vs. timek.

shown in Fig. 4. It is clear that the EKF converges within sesteps. Recaly, (||v(k|k) —V(k — 1|k —1)||) is the
standard deviation ofv(k|k) — v(k — 1|k — 1)]|. Its inversew(k) is the weighting factor in (11). Fig. 5 illustrates
how o, (||¥(k|k) — v (k — 1|k — 1)||) decreases ak increases.

3) Performance of PODS-EKF under simulated inpuldow we are ready to evaluate the performance of the
PODS-EKF bird detection algorithm. The targeted speciésIBWO. We generate the set of random inputs to
mimic the IBWO that have a similar size and a similar flyingogty. We set a velocity range of 20 km/h to 70
km/h with an incremental step of 5 km/h and a bird size rangsf40 cm to 60 cm with an incremental step of 2
cm. We also observe how the algorithm performs under diifelKF convergence thresholdsFor each setting of

the input data, 20 trials are carried out. Fig. 6 demongratev the rates of false positive (FP) and false negative
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Fig. 6. False positive and false negative rates with diffete

TABLE I

EXPERIMENTAL RESULTS FROM THE ROCK PIGEON DETECTION EXPERIENT.

pigeon | not pigeon

predicted pigeon 27 24

predicted not pigeon 2 66

(FN) change according t@. As shown in the figure, the algorithm is not sensitive to thleaion of the threshold

§ after§ > 1.25 x 10!, which is desirable. The false negative rate can be reasooahtrolled to less than 5%,
which again confirms that the approximation in Section V-Deasonable. The false positive rate is aroGat,
which is a little high. However, considering the fact that are comparing the bird with objects similar in size and
velocity, this result is not surprising. In fact, the algbm should behave better in real tests where the noise from
moving objects has a much larger range in both size and wgld@n the other hand, the monocular system has

its problem in detecting objects close to its optical axikjol also contributes to the high false positive rate.

C. Physical Experiments

We have conducted two field experiments: detecting flyinds mmgeons and assisting the search of the legendary
ivory-billed woodpecker.

1) Detecting a flying pigeontn this experiment, the targeted specie is rock pigeondh Witamera setup in room
311B of H.R. Bright Bldg. from May 2005 to October 2005 and thieo camera setup in Bayou DeViewm AR from
Oct. 2006 to Oct. 2007, we have collected 119 events with 7 for each motion sequence. 29 of the sequences
are rock pigeons while the other 90 are not pigeons, whichiraege sequences of typical environment noises
such as vibrating trees, falling leaves, flying insects, atieér bird species. The PODS-EKF filtering algorithm is
applied to the data set with the threshélek 1.25 x 10%. The outcome of the algorithm is summarized in Table II.

Table Il indicates that our filtering algorithm can achieverw low false negative2(/29 = 6.9%). This is
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Fig. 7. The ROC curves using the data from both the simulati@hthe rock pigeon experiments. The correspondimgnge for the simulation
data is[6.51 x 10%,9.64 x 10'1] and the corresponding range for the rock pigeon experiment[is32 x 10%,9.03 x 108].

very important for the purpose of finding birds of targeteéaps. The false positive rate #6.7%. The overall
performance is actually better than that of the simulatesults. This is due to the fact that it is much easier for
the algorithm to distinguish the targeted specie from reomech as flying insects and falling leaves. As illustrated
in Fig. 7, we also draw ROC curves using the data from both ithelation and physical experiments with the rock
pigeon. The area under the ROC curve of the simulation da?d.®% under the simulation and the area under
the ROC curve from the rock pigeon experimen®is0%, which again shows that the algorithm performs much
better in physical experiments.

2) Assisting the search of the legendary ivory-billed wamther in Arkansas:Since October 2006, our team
began to assist the search for the thought-to-be-extincy-killed woodpecker (IBWO). The IBWO is the largest
woodpecker in North America and was last seen over 60 yearsSmpradic sightings have been reported in past
decades but no definite evidences such as a clear picturee dfitth have been available. In October 2006, we
installed a camera system in Bayou DeView wildlife refugédikansas, where sightings of the bird were reported
in 2004, in order to capture any possible activities of th&V/iB. Due to the low false negative rate, our PODS-
EKF algorithm is very desirable for this type of applicatidfig. 8 illustrates the setup. The system monitored the
sky from Oct. 2006 to Oct. 2007. Although we have detecte@rsd\species of similar size, no IBWO has been

captured.

VIII. CONCLUSION AND FUTURE WORK

We reported our development of a bird detection algorithm.eXtract the invariant information from a flying
bird, a BBAF that reports the bird body length and orientatizas developed. We then developed a model-based
detection approach that verifies the body axis informatidth whe known bird flying dynamics. We show that an

extended Kalman filter (EKF) cannot be directly applied bseathe EKF would not converge due to the high
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Fig. 8. Assisting the search of the IBWO.

measurement error introduced by image segmentation andrtiied observation data due to the high flying speed
of the bird. Instead, we developed a novel Probable ObservBata Set (PODS)-based EKF method. The detection
is based on whether the PODS is non-empty and the corresppueliocity is within the known bird flying velocity
profile. The algorithm has been extensively tested using biohulated inputs and physical experiments. The results
were satisfying and the PODS-EKF bird detector has less Thaifialse negative rate arid% area under the ROC
curve in physical experiments.

In the future, an immediate extension is to consider the watb®ut the linear flying trajectory and/or the constant
velocity. We will consider the simultaneous detection ofckl of birds using a single camera or multiple cameras.
It is also interesting to consider the use of a robotic camereombine tracking with detection. A pan-tilt-zoom
robotic camera can give a closer view of a flying bird, whictiuges the measurement error at a price of increasing
the state transition error and the nonlinearity of the systé/e will investigate how to achieve the best tradeoff.

We plan to utilize multiple cameras or moving cameras in tetction.
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