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Monocular Vision-based Detection of a Flying

Bird
Dezhen Song and Yiliang Xu

Abstract

To assist nature observation, we take on the challenge of detecting the species of a flying bird using a single

camera. We study the bird flying data and find that a bird body axis is an invariant dimension during flight. We

then develop a model-based detection approach that verifies the body axis information with the known bird flying

dynamics. As a commonly used method, an extended Kalman filter (EKF) cannot be directly applied because the EKF

would not converge due to the high measurement error introduced by image segmentation and the limited observation

data due to the high flying speed of the bird. To cope with the problem, we develop a novel Probable Observation

Data Set (PODS)-based EKF method. First, we prove that the EKF converges when there is no measurement error,

and the new PODS-EKF searches the measurement error range for all probable observation data that ensures the

convergence of the corresponding EKF. The detection is based on whether the set PODS is non-empty and the

corresponding velocity is within the known bird flying velocity profile. The algorithm has been extensively tested

using both simulated inputs and physical experiments. The results are satisfying and have shown the bird detector

has less than 7% false negative rate and90% area under the receiver operating characteristic (ROC) curve.

Index Terms

monocular vision, autonomous observatory, nature observation, birddetection

I. I NTRODUCTION

Observing nature in harsh and inhospitable environments for a long period of time has been a major challenge for

natural scientists. Our group focuses on developing autonomous robotic observatories to address this problem. As a

recent development, a camera was installed in the middle of aforest to assist ornithologists to search and document

bird activities as illustrated in Fig. 1. Due to power and communication constraints, it is often prohibitive to install

multiple cameras at the same location. The challenging problem is how to automatically detect and identify the

bird species using the monocular vision system under the noisy background and varying lighting conditions of the

nature environment.
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Fig. 1. An example of a video sequence of a flying bird that is captured in Bayou DeView in eastern Arkansas. This sequence is generated

by superimposing the segmented bird images from consecutive video frames on the top of the background frame.

As illustrated in Fig. 1, the input of the problem is a segmented motion sequence of an object from consecutive

video frames. The output of the problem is to determine whether the motion sequence is caused by a targeted

bird species. To address the problem, we study the bird flyingdata and find that a bird body axis is an invariant

dimension during flying. We also notice that the bird body axis is often parallel to that of the tangent line of the

bird flying trajectory. Based on the observations, we develop a bird body axis filter that extracts the length and the

orientation of the bird body axis.

We then develop a model-based detection approach that verifies the body axis information with the known

bird flying dynamics. As a commonly used method, an extended Kalman filter (EKF) cannot be directly applied

because the EKF would not converge due to the high measurement error introduced by image segmentation and the

limited observation data due to the high flying speed of the bird. The sample bird sequence in Fig. 1 only contains

seven data points. To cope with this problem, we develop a probable observation data set (PODS)-based EKF and

an approximate computation scheme. Based on the fact that the EKF converges when there is no measurement

error, the new PODS-EKF searches the measurement error range for all probable observation data that ensures

the convergence of the corresponding EKF. The detection is based on whether the PODS is non-empty and the

corresponding velocity is within the known bird flying velocity profile. We show that the PODS-EKF theoretically

ensures a zero false negative rate. We have evaluated our biometric bird filtering algorithm using the simulated data

set and field test data. In physical experiments, we report how our algorithm has been applied for the detection

of rock pigeons on Texas A&M campus and for the search of the ivory-billed woodpeckers in eastern Arkansas.

The physical experiment results shown a promising result of90.0% area under the receiver operating characteristic

(ROC) curve.

The rest of the paper is organized as follows. Section II reviews the related works. The definition of the bird

filtering problem and necessary assumptions are presented in Section III. In Section IV and V, we model the bird
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filtering problem and propose the PODS-EKF method. The simulation on random input data and the experiments

on real data are presented in Section VII before we conclude in Section VIII.

II. RELATED WORK

Using vision to detect a flying bird relates to fields of remotenature cameras, vision-based motion detection, and

Kalman filter-based visual tracking and recognition.

Remote electronic nature camera systems have existed since1950s. Gysel and Davis [1] build an early video

camera based on remote wildlife observation system to studyrodents. Cameras have been deployed by biologists to

observe feeding behavior, species presence, and population parameters [2]–[7]. Commercial remote camera systems

such as Trialmaster [2] and DeerCam have been developed since 1986 and have been widely used in wildlife

observation and hunting sports. The Internet enables webcam systems that allow the general public to access live

robotic cameras. Thousands of webcams have been installed around the world, for example, to observe elephants

[8], tigers [9], bugs [10], birds/squirrels [11], [12], andswans [13]. Many other examples can be found in [14].

However, existing remote cameras do not have the ability to autonomously recognize animal species and are just

a mere recording/observation device. Our objective is to develop intelligent remote robotic observatories that are

capable of automatically classifying and documenting activities with respect to the targeted animal species.

Recent development in vision-based motion detection has greatly advanced the robustness of the motion detection

in noisy environments. Motion detection segments moving objects from their background in a video sequence. To

address the background noise, researchers propose many statistics-based background models such as temporal

average [15], median absolute deviation (MAD) [16], adaptive Gaussian estimation [17], mixed Gaussian model,

parameter estimation [18], non-parameter estimation [19], and Kalman filter compensation [20]. Our work builds

on the nonparametric background subtraction algorithm proposed in [?] to segment the moving foreground objects.

Moreover, our algorithm advances the mere motion-detection to bird species detection by utilizing the motion

information across multiple frames and the known bird flyingdynamics.

The fundamental technique we used in the bird detection is the extended Kalman filer. Kalman filter, extended

Kalman filter, and their variations can be viewed as model-based detection methods and are powerful in object

recognition involving the motion of the camera or the objectobserved [21]. The Kalman filter-based methods verify

the detected motion information from video frames with the prior known dynamic models. Since the methods

utilize the information across consecutive video frames, their robustness to errors make them ideal methods for

poor illumination conditions and outdoor environments [22]. Hence, the Kalman-filter has seen a wide range of

applications in object recognition and tracking [23] such as vehicles [24], pedestrians [25], human faces [26], and

even human eyes [27]. However, there is no existing work regarding how to detect a flying bird. Most existing work

assumes rigid objects such as vehicles or land markers [24] and objects with regular and known shapes. Also, the

existing work does not need to worry about the convergence ofKalman filter or its variations because an ample

amount of observation data is available. Unfortunately, those conditions do not hold for the detection of a flying

bird. Since a flying bird is a non-rigid, deformable, irregular, and highly dynamic object, our approach has to take
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on those challenges to develop a new class of filtering algorithms.

Our group has developed systems and algorithms [28], [29] for networked robotic cameras for a variety of

applications such as construction monitoring [30], distance learning [31], panorama construction [32], and nature

observation [33]. Our previous work [34] details how to build an autonomous nature observation system using

motion detection. We learn that mere motion detection cannot save the biologists from the herculean task of image

sorting, which inspires this work.

III. PROBLEM DESCRIPTION

A. Problem Context

Our system is a monocular vision system. To observe birds at adistance, the camera is equipped with a telephoto

lens, which has a narrow field of view (FOV). For example, the camera used in our experiments has only20◦

horizontal and15◦ vertical FOVs, respectively. The position of objects with respect to the camera is based on a

camera coordinate system. The camera coordinate system (CCS) is a right hand, 3D Cartesian coordinate system

with its origin at the camera center, itsz-axis along the optical axis, and itsx-y plane parallel to the imaging

plane. Thex-axis andy-axis of the CCS are parallel to theu-axis and thev-axis of the image coordinate system,

respectively.

From the knowledge provided by ornithologists, we know thata flying bird is usually an adult bird. A bird does

not change its size once reaching its adulthood. Birds of thesame species share a similar size and flying velocity

range. This biological information allows us to distinguish the targeted specie from other moving objects.

B. Assumptions

To establish the bird detection problem, we also have the following assumptions,

• A fixed and pre-calibrated camera is used. Hence we know the accurate perspective projection matrix.

• In the captured image, the foreground motion zone has been segmented using the method in [34] prior to the

bird filtering process. Although the motion could be caused by any objects, it must have a size of25×25 pixels

or larger in area. The assumption is proposed by ornithologists because they believe this is the requirement for

a human to read an image to positively identify a bird. We namea motion zone satisfying this size requirement

as a salient motion zone.

• There is only one salient motion zone in each frame because weonly detect the specie of a singulated bird at

this stage.

• The motion segmentation process has a segmentation error asmuch as half a pixel when computing the

boundary of the moving object.

• We assume that the bird is flying along a straight line with a constant velocity when captured by the camera.

Considering that the camera only has a narrow FOV and the sizeof the bird on the image has to be large

enough to satisfy the salient motion constraint, the lengthof the motion sequence is usually short given the
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Fig. 2. Segmented bird flying poses. The white pixels in the binary map indicate the segmented salient motion zone. Bird body axes are

overlaid on top of the segment image.

fast flying speed of the bird. In fact, the duration for a bird to fly across the camera FOV is around 1-2 seconds

for most cases. Since the duration is short, the assumption usually holds.

C. Inputs and Output

The input of the problem is a sequence ofn images,F1, F2, ..., Fn, which contain a moving object of any

type. The frames are obtained by a motion detection process and the salient motion zone on each frame has been

segmented as detailed in [34]. Each frame is time-stamped. Based on the information provided by ornithologists, we

also know the body lengthlb and the absolute flying velocity rangeV = [vmin, vmax] of the targeted bird species.

The output of the problem is to determine whether the motion sequence is caused by the targeted bird species or

not.

IV. M ODELING A FLYING BIRD

To develop a bird filter, the key is to extract the bird flying information from the segmented bird motion sequence

and associate the information with the known flying models and the prior information regarding the targeted specie.

Let us first observe the motion sequence of the flying bird to investigate how to extract the bird flying information.

A. Bird Body Axis Filter

As detailed in [34], we segment the moving object from its background and obtain a set of motion sequence.

Fig. 2 illustrates different flying poses of a pigeon. At firstglance, it is unclear how to utilize this information

because bird poses are not a simple discrete set of states. The wing configurations of the bird vary dramatically

from frame to frame. The shape of the bird changes significantly as well.
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As we scrutinize the collected flying pose data, we find that a bird does not bend or extend its body during the

flight as illustrated in Fig. 2. Hence, we have,

Conjecture 1 (Invariant Body Length):A flying bird maintains a fixed body length during flight.

The conjecture has been confirmed by ornithologists and our data. This is an important finding because it provides

an entry point to attack the bird detection problem. The ornithologists also utilize the bird body length as an

important index to classify birds because adult birds from the same species share the same body length with little

variance. Hence the problem becomes how to extract the body axis orientation and length of a flying bird from the

segmented motion sequence.

It is nontrivial to extract the bird body axis and length fromthe isolated poses in Fig. 2 because a bird is a

non-rigid and deformable object. However, if we superimpose the segmented bird flying pose data to the background

image as illustrated in Fig. 1, a new finding appears:

Conjecture 2 (Body Axis Orientation):The orientation of the body axis of a flying bird is always close to the

tangent line of its flying trajectory.

To validate our conjecture, we analyze 61 bird motion sequences with a total of 341 segmented birds that we have

collected in past years. The result confirms the conjecture.The mean orientation difference is0.8◦ and the standard

deviation isσb = 8.3◦. This means that the body axis orientation of a flying bird is usually very close to the tangent

line of the flying trajectory, which inspires us to develop a bird body axis filter (BBAF) to extract bird body axes

from the segmented motion zone.

Let us define the bird body line segment in the image frame as

z = [uh, vh, ut, vt]T , (1)

where(uh, vh) is the head position and(ut, vt) is the tail position. Fromz, we can compute the body axis orientation

θ = atan2(uh − ut, vh − vt),

and the body axis length

l =
√

(uh − ut)2 + (vh − vt)2.

Note thatl is different fromlb. l is the projection oflb on the image plane and is in units of pixels.

We know that the slope of the tangent line of the trajectory can be extracted easily based on the position of the

salient motion zone on the background image. The red line in Fig. 1 is the approximate trajectory generated by

linking the geometric center of each motion zone. The tangent line of the approximate trajectory can serve as an

initial solution for the bird body axis orientation. However, since varianceσb 6= 0, some refinements are required.

Define B as the boundary pixel set of the motion zone (i.e the boundarypixel set of the white pixels in each

block in Fig. 2). Defineθ̄ as the orientation of the corresponding tangent line of the flying trajectory. We set the

search range for the orientation as [θ̄ − σb, θ̄ + σb]. Hence the solution to following optimization

z = arg max
θ∈[θ̄−σb,θ̄+σb];(uh,vh)∈B;(ut,vt)∈B

l (2)

gives us the bird body axis orientation and length.
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Fig. 3. An illustration of bird detection. When a bird flies across the camera FOV, the corresponding motion sequence can be used to extract

a set of moving line segments that correspond to the body axis ofthe bird. The line segments are then verified using an EKF basedon the

known profile from the targeted specie. The segmentation error of the end of body axis are uniformed distributed in theu-v image plane and

can be represented as an inverse pyramid when the error range is back-projected from the camera center to the 3D space.

B. Bird Flying Dynamics

To determine whether the motion information is caused by thetargeted specie, we need to establish a bird flying

model in the image frame. Letp = [x, y, z]T denote the head position of the bird body axis andv = [ẋ, ẏ, ż]T

denote its velocity in the CCS. Since the bird flies along a straight line with a constant velocity, we have

ẋ =


 ṗ

v̇


 = [ẋ, ẏ, ż, 0, 0, 0]T =


 v

0


 , (3)
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where the state variablex =


 p

v


 ∈ R

6 describes the position and velocity of the bird head. Defining xtail =

[xt, yt, zt]T as the position of the bird tail, and we have

xtail =




x − ẋlb/‖v‖

y − ẏlb/‖v‖

z − żlb/‖v‖


 . (4)

As illustrated in Fig. 3, the relationship between the measurement dataz defined in (1) and the corresponding

statex can be described using the pin-hole camera model,

z =




fx/z

fy/z

fxt/zt

fyt/zt




=




fx/z

fy/z

f x‖v‖−lbẋ

z‖v‖−lbż

f y‖v‖−lbẏ

z‖v‖−lbż




+ w = h(x) + w, (5)

wheref is the focal length of the camera divided by the side length ofa square pixel on the CCD sensor andw

represents the measurement noise.

V. PROBABLE OBSERVATION DATA SET-BASED EKF METHOD

A. Extended Kalman Filter

Eq. (2) provides the bird flying information extracted from images. The nonlinear dynamic system described

by (5) captures the prior known information regarding the targeted specie. If the motion is caused by the targeted

specie, then the bird body axis information provided by (2) should follow the nonlinear dynamic system described

by (5), which can be validated using an EKF to track the statesof the moving object.

Eqs. (3) and (5) can be re-written in a discrete-time form,

x(k + 1) = A(k + 1)x(k) + q(k), (6a)

z(k) = h(x(k)) + w(k), (6b)

whereq(k) ∈ R
6 andw(k) ∈ R

4 represent the white Gaussian transition and measurement noises at timek with

covariance matrixQ(k) ∈ R
6×6 andW (k) ∈ R

4×4, respectively,

q(k) ∼ N (0, Q(k)),

w(k) ∼ N (0,W (k)),

andA(k + 1) is the state transition matrix at timek + 1,

A(k + 1) =


 I3×3 ∆T (k + 1|k)I3×3

03×3 I3×3


 ,

where∆T (k + 1|k) is the time interval between timek and timek + 1.
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We defineP ∈ R
6×6 as the covariance matrix for the state variablex. The EKF for the system in (6) can be

implemented as a state prediction stepx̂(k|k − 1), P̂ (k|k − 1) and measurement correction stepx̂(k|k), P̂ (k|k)

recursively as follows,

x̂(k|k − 1) = A(k)x̂(k − 1|k − 1), (7a)

P̂ (k|k − 1) = A(k)P̂ (k − 1|k − 1)AT (k) + Q(k), (7b)

K(k) =
P̂ (k|k − 1)HT (k)

H(k)P̂ (k|k − 1)HT (k) + W (k)
, (7c)

x̂(k|k) = x̂(k|k − 1) + K(k)(z(k) − h(x̂(k|k − 1))), (7d)

P̂ (k|k) = (I6×6 − K(k)H(k))P̂ (k|k − 1), (7e)

whereK(k) ∈ R
6×4 is the “Kalman gain” at timek andH(k) ∈ R

4×6 is the Jacobian matrix of the functionh(·)

in (5) with respect tox.

Recall thatx̂(k|k) =


 p̂(k|k)

v̂(k|k)


. For then-image motion sequence, the predictedx̂(n|n) contains the bird

velocity v̂(n|n). The decision of accepting or rejecting the moving object asa member of the targeted specie is

defined as the following indicator function,

I(Z1:n) =




1 (accept) if ‖v̂(n|n)‖ ∈ V and EKF converges,

0 (reject) otherwise,
(8)

whereZ1:n = {z(1), z(2), ..., z(n)} is the set of body axes acrossn-frames.Z1:n is also referred to as the observed

data. Eq. (8) basically states that the moving object is a member of the targeted specie if the EKF converges to the

desired absolute velocity rangeV.

B. EKF Convergence

As indicated in (8), automatically determining whether theEKF converges or not is necessary. Define the estimated

state set asX1:n = {x̂(1|1), x̂(2|2), ..., x̂(n|n)}. Since velocity convergence implies position convergence, we

determine the convergency of the EKF by inspecting the velocity component ofX1:n,

ε(X1:n) =
n∑

k=2

ω(k)‖v̂(k|k) − v̂(k − 1|k − 1)‖, (9)

where ω(k) > 0 is the weighting factor at timek. ω(k) is a monotonically-increasing function ofk, which

gives more weight to later states.ω(k) is usually pre-generated using simulated random inputs across the entire

possible parameter range without measurement error (i.e.W (k) = 04×4). SettingW (k) = 04×4 is to ensure EKF

convergency, which will be explained later in the paper. We repeat the EKF with randomized inputs for over106

times to observe the quantity of‖v̂(k|k) − v̂(k − 1|k − 1)‖. Then the weighting factor is,

ω(k) =
1

σv(‖v̂(k|k) − v̂(k − 1|k − 1)‖)
, (10)
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where functionσv(·) computes the stand deviation of the variable over the total simulated trials. When the EKF

converges,σv(‖v̂(k|k) − v̂(k − 1|k − 1)‖) appears as a decreasing function ofk. Henceω(k) is an increasing

function of k.

Therefore,ω(k) is a function ofk but not a function of the current absolute velocity difference‖v̂(k|k)− v̂(k−

1|k− 1)‖ in (9). If ‖v̂(k|k)− v̂(k− 1|k− 1)‖ → 0, thenε(X1:n) is smaller than that of the case‖v̂(k|k)− v̂(k−

1|k − 1)‖ 9 0. To determine the EKF convergence, we employ a thresholdδ on ε(X1:n) and introduce a new

indicate variable,

IEKF(X
1:n) =





1 (converge) if ε(X1:n) < δ,

0 otherwise.
(11)

Then the decision-making in (8) is re-written as,

I(Z1:n) =




1 (accept) if ‖v̂(n|n)‖ ∈ V andIEKF(X
1:n) = 1,

0 (reject) otherwise.
(12)

The underlying condition for (12) to be an effective bird detection mechanism is that if observationZ1:n is caused

by the targeted bird species then the convergence of the EKF has to be guaranteed. Unfortunately, the condition

usually does not hold due to two reasons:n is small and the measurement noisew(k) is too big.n is the number

of images that contain the moving object. Due to the fact thatthe bird flies very fast, the bird can only stay in the

camera FOV for less than 1 second for most of the time. Actually, n < 11 for most cases in our experiments. The

measurement noise covariance matrixW (k) is directly determined by the image segmentation error. Even at 0.5

pixel level, its relative range is5% for a bird body length of 10 pixels. For the nonlinear deterministic discrete time

system in (6), the largeW (k) means the EKF either fails to converge or converges very slowly according to [35].

The bird detection mechanism would have a close to 100% falsenegative rate if the simple EKF implementation

is used, which makes it useless.

C. Probable Observation Data Set-based EKF Method

Since simply applying EKF cannot address the bird detectionproblem, a new approach is required. Let us assume

there is no measurement noise (i.e.W (k) = 04×4) and no state transition noiseQ(k) = 06×6. At each timek,

the EKF in (7) is a system of equations with four inputs, whichis the dimensionality ofz, and six outputs, which

is the dimensionality ofx. We also know that matrixA introduces two constraints: the constant velocity and the

linear trajectory. Therefore, the equation system can be solved within one step. The convergence of the EKF is not

a problem when there is no noise provided that the bird does not fly in a degenerated trajectory (i.e. flying along

the optical axis of the camera).

Although Q(k) 6= 06×6 for most cases, the state transition noiseq(k) is often very small, which leads to the

following lemma,

Lemma 1:The EKF described in (7) converges whenW (k) = 04×4.
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Proof: We skip the proof because our system in (6) is a linear time-invariant discrete time system with a

nonlinear observer. The convergence of its EKF can be provedby directly applying the results in [35].

This is also confirmed in our experiments in which the EKF converges nicely under 7 periods (i.e.n ≤ 7).

At first glance, this result is useless because we cannot get rid of the measurement noise. However, this

result opens the door to a new approach. Define the observation data without measurement error asZ1:n∗ =

[z∗(1), z∗(2), ..., z∗(n)]T . Although we do not haveZ1:n∗, we know it is within the segmentation error range of

Z1:n. For thek-th image, the measurement data is

z(k) = [uh(k), vh(k), ut(k), vt(k)]T .

Define the error-free measurement data at timek as

z∗(k) = [uh∗(k), vh∗(k), ut∗(k), vt∗(k)]T .

Recall that the segmentation error is within 0.5 pixels. Define

S1(k) = [uh(k) ± 0.5], S2(k) = [vh(k) ± 0.5],

S3(k) = [ut(k) ± 0.5], S4(k) = [vt(k) ± 0.5],

and the segmentation error range at timek asS(k). Hence,

z∗(k) ∈ S1(k) × S2(k) × S3(k) × S4(k) = S(k). (13)

We partition the entire segmentation error range set{S(k), k = 1, 2, ..., n} according to the convergence of the

EKF using (11). Define the probable observation data set(PODS) Z
1:n as the set of observation dataZ1:n that

satisfies the condition for the EKF convergence,

Z
1:n = {Z1:n|z(k) ∈ S(k), k = 1, ..., n, andε(X1:n) ≤ δ}. (14)

HenceZ1:n∗ ∈ Z
1:n. EachZ1:n in the PODS is likely to beZ1:n∗ and hence it is named as the probable observation

data. For a given PODSZ1:n, there is a corresponding estimated state setX
1:n, which contains a set of all possible

estimated velocities at timen, which is defined asV,

V = {‖v̂(n|n)‖ such thatX1:n ∈ X
1:n}.

Then the decision making for our PODS-based EKF (PODS-EKF) method can be written as,

I(Z1:n) =





1 (accept) if V ∩ V 6= ∅ andZ
1:n 6= ∅,

0 (reject) otherwise.
(15)

Hence we have the following lemma,

Lemma 2: If the non-degenerated observation dataZ1:n is triggered by a bird of the targeted specie, then

I(Z1:n) = 1.

Proof: SinceZ1:n is triggered by the targeted specie, its correspondingZ1:n∗ ensures the convergence of the

EKF according to Lemma 1.
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DefineX1:n∗ as the corresponding estimated states forZ1:n∗. Hence

ε(X1:n∗) < δ → Z
1:n 6= ∅,

becauseZ1:n∗ ∈ Z
1:n.

Following our naming convention,̂v∗(n|n) is the velocity component ofX∗(n|n) ∈ X1:n∗. Since the observation

data is not degenerated,‖v̂∗(n|n)‖ ∈ V. We also know‖v̂∗(n|n)‖ ∈ V by definition,V∩V 6= ∅ holds. Since both

conditions are satisfied,I(Z1:n) = 1.

Lemma 2 ensures that the PODS-EKF method theoretically has azero false negative rate in the bird detection,

which is a very desirable property.

D. Approximate Computation for PODS-EKF

Computing the PODSZ1:n is nontrivial. It is possible to use conventional searchingmethods such as a binary

search. However, this would be very time consuming. Note that we actually do not needZ1:n because all we need

to know is whether the conditionsV∩V 6= ∅ andZ
1:n 6= ∅ hold or not. This allows an approximation method. For

a given observationZ1:n, we define the following optimization problem,

Z̃1:n = arg min
z(k)∈S(k);k=1,...,n

ε(X1:n), (16)

where Z̃1:n is the optimal solution to the minimization problem above. Actually, (16) is a typical nonlinear

optimization problem with the error rangez(k) ∈ S(k); k = 1, ..., n and the EKF in (7) as constraints. There are

many numerical methods from nonlinear programming that canbe used here [36].We apply a sequential quadratic

programming (SQP) method [37]. DefinẽX1:n = {x̃(1|), x̃(2|2), ..., x̃(n|n)} as the estimated states corresponding

to Z̃1:n. We have the following lemma,

Lemma 3:ε(X̃1:n) > δ ⇐⇒ Z
1:n = ∅.

Proof: Since (16) is a minimization problem,̃X1:n yields the minimalε(X1:n), namely,

ε(X̃1:n) > δ ⇐⇒ ε(X1:n) > δ,∀X1:n ∈ X
1:n (17)

⇐⇒ Z
1:n = ∅. (18)

It is worth mentioning that this method is an approximation in computation because the nonlinear programming

solver often falls in a local minimum instead of a global minimum.

Now we want to determine whetherV ∩ V 6= ∅. If we view the EKF output̂v(n|n) as a function ofZ1:n, it is

continuous and differentiable with respect to each entry inZ1:n. SinceZ
1:n is actually very small, the variance of

the velocity in the setV is very small. Instead of comparingV to V, we select a value inV to check if it is in

V. Define ṽ(n|n) as the velocity component of̃x(n|n) ∈ X̃1:n. The chosen value is the‖ṽ(n|n)‖ because it is

readily available. Therefore, the approximation is

‖ṽ(n|n)‖ ∈ V ⇐⇒ V ∩ V 6= ∅.
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Due to the approximation, the zero false negative rate cannot be guaranteed. However, the false negative rate is

still very low under the approximation as shown in the experimental results.

VI. A LGORITHM

We summarize our PODS-EKF based bird detection algorithm below in Algorithm 1. Note that the approximate

computation of the PODS-EKF is used here.

Algorithm 1: PODS-EKF based Bird Detection Algorithm

input : F̄i with segmented salient motion blocks,i = 1, 2, ..., n.

output: TRUE or FALSE for the targeted specie.

for eachF̄i do

calculate the geometric center pointCi of the bird;

ConnectCi, i = 1, 2, ..., n to generate a piecewise linear trajectory;

Obtain θ̄ from the trajectory;

for eachF̄i do

Obtainz(i) using the BBAF in (2);

solve the constrained nonlinear optimization problem in (16);

if ‖ṽ(n|n)‖ ∈ V AND ε(X̃1:n) < δ then

return TRUE;

else

return FALSE;

VII. E XPERIMENTS

We have implemented the PODS-EKF algorithm and tested the algorithm on both the simulated data and the real

data from field experiments. The computer used in the test is adesktop PC with Intel Core 2 Duo 2.13GHz CPU and

2GB RAM. The PC runs Microsoft Windows XP. The BBAF has been implemented using Microsoft Visual C++.

The PODS-EKF filter has been implemented using Matlab v7.0. We chose Arecont Vision 3100 high resolution

networked video cameras as the imaging devices. The camera runs at 11 frames per second with a resolution of 3

Mega-pixel per frame. The lens for the camera is a Tamron autoiris vari-focus lens with a focal length range of

10-40 mm. We have adjusted the lens to ensure a 20◦ horizontal FOV.

A. Bird Body Axis Filter Test

The first thing we want to verify is whether the BBAF is capableof extracting the bird body axis from the noisy

data. We compare the output of BBAF with a ground truth case on61 bird motion sequences with a total of 341

July 8, 2008 DRAFT



14

TABLE I

TWO SPECIES USED IN THE EXPERIMENTS

Species lb (cm) V (km/h)

Rock pigeon 34 [25, 55]

IBWO 48 [30, 60]

segmented birds. The ground truth case is a human’s choice inbird body axes. The difference between the BBAF

output and the ground truth has a mean of 0.3◦ and a standard deviation of 3.7◦. The statistics test shows that the

two populations come from the same distribution with statistic significance, which is satisfying.

B. Simulation

The second test we have conducted is to test the performance of our PODS-EKF using the simulated inputs.

The simulated inputs allow us to test the bird detection performance under a full range of possible changes in the

parameter settings, which is usually unavailable in a physical experiment setting.

1) Generating a random input:Let us introduce how we generate a random inputZ1:n. First, four random

numbers are generated as the coordinates of two random points in the image plane. These two image points

determine a straight line in the image. The straight line andthe camera center determine a motion plane in which

the motion sequence will be generated. We know that the camera FOV is a pyramid with its top vertex at the

camera center. The plane intersects with two faces of the pyramid. The fifth random binary number is generated

to choose one of the two faces as the initial face through which the bird enters the camera FOV. The chosen face

intersects with the motion plane and yields a line segment. We generate the sixth random number as a point on this

line segment. This point is used as the initial position of the bird. This line segment’s corresponding line divides

the motion plane into two halves. We are interested in the half motion plane that intersects with the pyramid.

The seventh random number in the range of[0, π) is generated as the pitch angle of the bird heading on the half

motion plane. Finally, the eighth random number is used to generate the velocity of the bird. Hence, 8 random

numbers determine a complete trajectory of a flying bird. By projecting the trajectory back to the image plane with

predefined time stamps and the preset bird body length, we obtain a random inputZ1:N .

2) EKF Convergence without measurement error:An immediate step in simulation is to verify if the EKF

converges without measurement noise. Although Lemma 1 ensures the convergence in theory, it is unclear how

many steps it would take. We simulate two types of birds in thetest: rock pigeons and the ivory-billed woodpeckers

(IBWO). The former is a common bird that is easy to be found in Texas and the later is a rare bird which our

system is used to search for. As indicated in Table I, a rock pigeon is a relatively small bird and an IBWO is a

large bird. The two species represent a pretty good coverageof different bird species.

For each species, we generate106 different sets of random inputs to test the EKF. We record thevalues of

‖v̂(k|k) − v̂(k − 1|k − 1)‖, k = 2, 3, ..., n for the first 11 steps. We choosen = 11 because that is the typical

number in our physical experiments. The average values of‖v̂(k|k) − v̂(k − 1|k − 1)‖ over the106 trials are as
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Fig. 5. σv(‖v̂(k|k) − v̂(k − 1|k − 1)‖) vs. timek.

shown in Fig. 4. It is clear that the EKF converges within seven steps. Recallσv(‖v̂(k|k)− v̂(k− 1|k− 1)‖) is the

standard deviation of‖v̂(k|k)− v̂(k − 1|k − 1)‖. Its inverseω(k) is the weighting factor in (11). Fig. 5 illustrates

how σv(‖v̂(k|k) − v̂(k − 1|k − 1)‖) decreases ask increases.

3) Performance of PODS-EKF under simulated inputs:Now we are ready to evaluate the performance of the

PODS-EKF bird detection algorithm. The targeted specie is the IBWO. We generate the set of random inputs to

mimic the IBWO that have a similar size and a similar flying velocity. We set a velocity range of 20 km/h to 70

km/h with an incremental step of 5 km/h and a bird size range from 40 cm to 60 cm with an incremental step of 2

cm. We also observe how the algorithm performs under different EKF convergence thresholdsδ. For each setting of

the input data, 20 trials are carried out. Fig. 6 demonstrates how the rates of false positive (FP) and false negative

July 8, 2008 DRAFT



16

0 0.5 1 1.5 2

x 10
11

0

0.25

0.5

0.75

1

δ

False positive
False negative

Fig. 6. False positive and false negative rates with different δ.

TABLE II

EXPERIMENTAL RESULTS FROM THE ROCK PIGEON DETECTION EXPERIMENT.

pigeon not pigeon

predicted pigeon 27 24

predicted not pigeon 2 66

(FN) change according toδ. As shown in the figure, the algorithm is not sensitive to the selection of the threshold

δ after δ > 1.25 × 1011, which is desirable. The false negative rate can be reasonably controlled to less than 5%,

which again confirms that the approximation in Section V-D isreasonable. The false positive rate is around65%,

which is a little high. However, considering the fact that weare comparing the bird with objects similar in size and

velocity, this result is not surprising. In fact, the algorithm should behave better in real tests where the noise from

moving objects has a much larger range in both size and velocity. On the other hand, the monocular system has

its problem in detecting objects close to its optical axis, which also contributes to the high false positive rate.

C. Physical Experiments

We have conducted two field experiments: detecting flying rock pigeons and assisting the search of the legendary

ivory-billed woodpecker.

1) Detecting a flying pigeon:In this experiment, the targeted specie is rock pigeons. With a camera setup in room

311B of H.R. Bright Bldg. from May 2005 to October 2005 and another camera setup in Bayou DeViewm AR from

Oct. 2006 to Oct. 2007, we have collected 119 events withn > 7 for each motion sequence. 29 of the sequences

are rock pigeons while the other 90 are not pigeons, which areimage sequences of typical environment noises

such as vibrating trees, falling leaves, flying insects, andother bird species. The PODS-EKF filtering algorithm is

applied to the data set with the thresholdδ = 1.25× 108. The outcome of the algorithm is summarized in Table II.

Table II indicates that our filtering algorithm can achieve very low false negative (2/29 = 6.9%). This is
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Fig. 7. The ROC curves using the data from both the simulation and the rock pigeon experiments. The correspondingδ range for the simulation

data is[6.51 × 104, 9.64 × 1011] and the correspondingδ range for the rock pigeon experiment is[1.32 × 106, 9.03 × 108].

very important for the purpose of finding birds of targeted species. The false positive rate is26.7%. The overall

performance is actually better than that of the simulation results. This is due to the fact that it is much easier for

the algorithm to distinguish the targeted specie from noises such as flying insects and falling leaves. As illustrated

in Fig. 7, we also draw ROC curves using the data from both the simulation and physical experiments with the rock

pigeon. The area under the ROC curve of the simulation data is71.2% under the simulation and the area under

the ROC curve from the rock pigeon experiment is90.0%, which again shows that the algorithm performs much

better in physical experiments.

2) Assisting the search of the legendary ivory-billed woodpecker in Arkansas:Since October 2006, our team

began to assist the search for the thought-to-be-extinct ivory-billed woodpecker (IBWO). The IBWO is the largest

woodpecker in North America and was last seen over 60 years ago. Sporadic sightings have been reported in past

decades but no definite evidences such as a clear picture of the bird have been available. In October 2006, we

installed a camera system in Bayou DeView wildlife refuge inArkansas, where sightings of the bird were reported

in 2004, in order to capture any possible activities of the IBWO. Due to the low false negative rate, our PODS-

EKF algorithm is very desirable for this type of application. Fig. 8 illustrates the setup. The system monitored the

sky from Oct. 2006 to Oct. 2007. Although we have detected several species of similar size, no IBWO has been

captured.

VIII. C ONCLUSION AND FUTURE WORK

We reported our development of a bird detection algorithm. To extract the invariant information from a flying

bird, a BBAF that reports the bird body length and orientation was developed. We then developed a model-based

detection approach that verifies the body axis information with the known bird flying dynamics. We show that an

extended Kalman filter (EKF) cannot be directly applied because the EKF would not converge due to the high
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Fig. 8. Assisting the search of the IBWO.

measurement error introduced by image segmentation and thelimited observation data due to the high flying speed

of the bird. Instead, we developed a novel Probable Observation Data Set (PODS)-based EKF method. The detection

is based on whether the PODS is non-empty and the corresponding velocity is within the known bird flying velocity

profile. The algorithm has been extensively tested using both simulated inputs and physical experiments. The results

were satisfying and the PODS-EKF bird detector has less than7% false negative rate and90% area under the ROC

curve in physical experiments.

In the future, an immediate extension is to consider the casewithout the linear flying trajectory and/or the constant

velocity. We will consider the simultaneous detection of a flock of birds using a single camera or multiple cameras.

It is also interesting to consider the use of a robotic camerato combine tracking with detection. A pan-tilt-zoom

robotic camera can give a closer view of a flying bird, which reduces the measurement error at a price of increasing

the state transition error and the nonlinearity of the system. We will investigate how to achieve the best tradeoff.

We plan to utilize multiple cameras or moving cameras in the detection.
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